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ABSTRACT A robust nonlinear adaptive controller merging a backstepping approach with neural networks
is proposed for a nonlinear non-affine model. The work presented here is evaluated on a complex uncertain
model of a continuous stirred tank reactor plant including an unknown varying parameter that enters the
complexity model. By exploiting NN and adaptive backstepping approximation methods, an equivalent
adaptive NN controller is constructed to achieve robust asymptotic output tracking control. The robustness
to uncertainties as well as the lack of informative process data is the main enhancement of this work. This is
attained through the implementation of the covariance resetting algorithm in the least square estimation of
the NN weight tuning algorithm. The proposed novel control algorithm has been analyzed using Lyapunov
analysis. In addition to excellent output trajectory tracking performance, the proposed approach has a
profound benefit in terms of substantially lower control effort in comparison to the established work in
the literature. In terms of applications in the petrochemical industry, lower control effort can translate to
a more energy-efficient actuator, leading to lower costs over a long-run operation. The proposed method’s
feasibility for chemical process control was shown via numerical simulation.

INDEX TERMS Nonlinear non-affine model, Lyapunov theory, backstepping adaptive design, neural
network approximation.

NOMENCLATURE
q CSTR flowrate
cmin Component concentration
TF Feed stream temperature
TCF Inlet fresh coolant temperature
TA The reaction temperature
VT Total volume of the CSTR
Qc Coolant flowrate
ISE Integral of the square error
IAE Integral absolute error
CSTR Continuous stirred tank reactor
NN Neural network
IFT Implicit function theorem
MVT Mean value theorem
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I. INTRODUCTION
Numerous chemical plants such as chemical reactors, distil-
lation columns and water desalination processes can display
notable nonlinear behavior. In the case of operating in the
neighborhood of nominal steady states, severe impacts of
nonlinearities may not persist while satisfactory control per-
formance could be achieved via conventional control schemes
with regard to local first-order linearized models. Neverthe-
less, should a broad range of conditions be handled by the pro-
cess, traditional linear control techniques fail to manage the
system nonlinearities. In such cases, appropriate detuning of
controllers ensures closed-loop stability, resulting in losses in
the global closed-loop achievements [1], [2]. Recently, the lit-
erature has presented numerous interesting results regard-
ing chemical process control [3], [4]. Exact and accurate
knowledge of mathematical models of the plant dynamics
is needed for most feedback linearization control strategies.
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Nonetheless, in general practice, it is complicated to obtain a
precise model due to the lack of imminent process parameter
data and measurements as well as the inherent complex-
ity of chemical plants. To manage uncertainties and hard
model nonlinearities, it is imperative to make use of adap-
tive approaches ensuring interesting control performance [5].
In [6]–[9], records of many control schemes regarding online
scheduling in feedback controller design have been provided,
which showed larger achievements when time-varying pro-
cess parameters and/or uncertainties were present. In this
research work, the control issue pertaining to an uncertain
nonlinear model of a CSTR, as presented in [10], has been
considered. The following state equations define the process
dynamics:

ċA =
q
VT

(cmin − cA)− A0 cA e(−Ae/TA)

ṪA =
q
VT

(TF − TF )+ A0 cA e(−Ae/TA)

+A3Qc[1− e(−A2/Qc)](TCF − TA)

(1)

The significance and the numerical values of the different
parameters of the CSTR model are depicted in Table 1.

TABLE 1. CSTR model parameters and their corresponding significance
and values.

TABLE 2. Descriptions of the parameters for the studied CSTR model.

Inside the tank reactor, compound A is synthesized by
mixing two chemicals for reaction at a mixture temperature
of TA and concentration of cA. The reaction is characterized
as being both exothermic and irreversible. The purpose of
the control is to alter the control variable Qc for regulating
the desired output variable cA. It needs to be noted that the
description of the CSTR mentioned above does not match
that of conventional reactor control schemes [3], [8]. For a
majority of applications, the selection of cooling temperature
is chosen as the control input variable and is considered to
remain a steady value through the reactor cooling circuit.
Selecting Qc as the manipulated variable offers two key
advantages. First, the coolant temperature can be changed
along the cooling circuit’s length [11]. Should the cooling
circuit be lengthy, which is common in practical plants,
assuming the coolant temperature to be constant could create
a significant approximation in the CSTR modeling. Second,
when compared with manipulating the coolant temperature,
varying Qc provides a readily and easily implementable con-
trol strategy from a practical point of view. Although simple
dynamics are considered to be associated with the CSTR,
the model demonstrates the issues faced when controlling
such processes. It needs to be noted that the developed tech-
niques in the literature can be implemented for large chemical
reactors.

In this research work, the developments are limited to the
particular described dynamics (1) to offer a straightforward
case for the presented approach. The key difficulty faced
in the present control issue is that a common affine system
control input is not assumed by the plant since the control
input Qc tends to exhibit nonlinearity. If the plant model is
well defined, for a wide category of nonlinear non-affine
systems, input-output linearization control was evaluated
in [2]. [12] and [13] investigated the implementation pertain-
ing to an online control design for uncertain nonlinear models
based on an adaptive learningmethod. To show the benefits of
employing learning and adaptation, control implementation
for CSTR models was given in [14], [15]. Nevertheless,
a thorough stability investigation was missing for the global
control design because of high complexity associated with
neural network systems [12], [13], [16], [17]. Measuring
the time derivative of cA is needed for the scheme given
in [10], whose estimation is difficult. In reality, the literature
demonstrates numerous studies that have recommended the
implementation of NNs as potent structures to control the
class of complex nonlinear models [18], [19]. Moreover, the
efficiency of NN controllers has been extensively justified,
particularly when the model information is lacking or even
when a controlled process is characterized by model param-
eter uncertainties [20].

In fact, the most valuable feature of NNs is their ability
to approximate any nonlinear function without complete
knowledge of the plant model structure. Thus, NNs are
characterized by a dynamic representation that provides sat-
isfactory control achievements in the case of unmodeled plant
dynamics [21], [22]. The fundamental concepts in NN-based
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controllers are to offer online learning structures that do not
necessitate initial offline adjustment. Some of these learning
structures have been established from the Lyapunov stabil-
ity theory [23]–[26]; however, some other algorithms were
inspired by backpropagation learning algorithms [27], [28].
On the other hand, several works have been dedicated to
backstepping control design for parametric uncertain nonlin-
ear models [29], [30]. This latter approach can be efficiently
implemented to linearize hard system nonlinearities in the
existence of modeling uncertainties [31], [32]. Its basic con-
cept consists of selecting recursive proper functions for a state
variable subcontrol law for subsets of reduced dimension
regarding the global system. Every backstepping step out-
come is a new subcontrol scheme, stated in the form of a new
pseudocontrol input from previous synthesized steps. The
design includes a feedback-based scheme for the system input
variable, which attains the pertaining performance based on
the Lyapunov stability theory [33]. Recently, there has been
an important amount of research activities in the field of adap-
tive control for nonlinear systems exploiting the feedback
linearization formalism [34], [35]. The main assumption in
these works is that the plant under investigation is affine in
control variable, i.e., from the point of view of control inputs,
the plant model is linear, and the nonlinearities are linearly
parameterized. Nonetheless, several real plants with chemical
reactors are characterized by inherent nonlinearities, whose
manipulated variables may not be defined in an affine form.
In this situation, feedback linearization techniques are not
applicable, motivating us to resort to creating a virtual con-
troller via an adaptive backstepping technique.

The most challenging constraints for the investigated con-
trol problem are two-fold: First, selecting Qc as the manipu-
lated variable compels the control input to evolve with only
a positive sign, implying that the coolant flows in only one
direction toward the coolant jacket, i.e., irreversible flow.
Second, the dynamics of the desired output submit a hard
constraint, as the output cA has been characterized by a step
variation along the input reference of ±0.02 mol/l as well
as a suitable concentration value of 0.1 mol/l. Moreover,
the concentration cannot exceed 1 mol/l. Overcoming these
two constraints while achieving the output tracking of the
studied CSTRmodel with accurate nonoscillatory behavior is
considered one of the main contributions of this work. In this
paper, the investigation of a robust backstepping adaptive
control method for a CSTR plant (1) is evaluated. To derive
the control strategy, the method integrates a Lyapunov stabil-
ity design with neural network modeling and adaptive back-
stepping control. The robustness against uncertainties, which
is the main enhancement of this work, is attained through an
implementation of the covariance resetting algorithm in the
least square estimation of the NN weight tuning algorithm.
Section II of this paper provides some of the notation as
well as the theoretical background. Section III presents the
main developments of robust adaptive backstepping design.
Addressing both the control performance and stability per-
taining to closed-loop systems is performed. Section IV

provides the numerical simulation results to display the
efficiency of the proposed approach. Concluding remarks are
provided in the last section.

II. PROBLEM DESCRIPTION
In this research work, nominal values of the CSTR pro-
cess parameters (VT ,TCF , q, cmin, and TF ) are assumed,
as described in Table 1. Let us state the state variable rep-
resentation expressed by x = [x1, x2]T = [cA,TA]T and
y = cA. The description of the CSTR plant is:

ẋ1 = 1− x1 − A0x1 e−1e4/x2

ẋ2 = TF − x2 + A1x1 e−1e4/x2

+A3u(1− e−A2/u(TCF − x2)
y = x1

(2)

It needs to be emphasized that constant parameters (Ai,
i = 0, . . . , 3) represent the unknown parameters, subject to
uncertainties in the studied CSTR model. The aim of this
work is to develop a control law u to track the real system
output y toward a selected signal yd . Two main problems are
faced by the control design. First, the uncertain parameter
represented as A2 is seen as nonlinear in the second equation
of the plant model (2). Due to this, conventional identification
and estimation techniques cannot be exploited for accurate
determination of A2. Second, the manipulated variable is seen
as nonlinear and non-affine in equation (2) of themodel. Even
though this cannot be regarded as a major shortcoming for
the design of a control strategy, a more cautious analysis is
needed here instead of backstepping-based control and feed-
back linearization formalism. This research work proposes a
novel control strategy to address the advanced robust tracking
control issue for nonlinear non-affine models that face related
types of structural modeling complications [36].

III. ADAPTIVE BACKSTEPPING-BASED CONTROL DESIGN
To start, some important assumptions are stated for the devel-
opments in this section.
Assumption 1: The CSTR’s state variables operate in the

set �x under the following constraints:
x1 ∈ [cmin 0.12]
x2 ∈ [Tmin Tmax]
u ∈ [0 u0]

(3)

wherein Tmin is the lower bound of the tank temperature
and cmin is the minimal considered value of the product
concentration.
Assumption 2: The uncertain parameters (Ai, i = 0, . . . , 3)

are assumed to be bounded by constant known parameters as
follows: 

A0 ≤ A0max

A1 ≤ A1max

A2 ≥ A2min

A3 ≥ A3min

(4)
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Assumption 3: The desired reference input yd and its
derivatives ẏd , ÿd and y

(3)
d belong to an unknown compact set

�d ⊂ R4.
In recent literature [37], [38], a known backstepping adap-

tive control law was further designed for a broader nonlinear
systems class. The triangular structure needed for the back-
stepping design is satisfied by model (2). Indeed, the nonlin-
ear quantity

Aox1e−1e4/x2 (5)

can be considered inner control for the first model state vari-
able x1. Then, the second state variable x2 can be controlled
based on the manipulated variable u letting the quantity in (5)
be compelled to attain the control objectives. The backstep-
ping design investigated in this work is performed based on
the changes in the following variables:{

z1 = x1 − yd
z2 = x1e−1e4/x2 − α1

(6)

where α1 is a smooth function to be designed later. By merg-
ing equations (2) and (6), it is easy to obtain:

ż1 = 1− ẏd − A0 (α1 + z2)− x1 (7)

Let us define the positive definite Lyapunov function given
by:

V1 =
z21
2A0

(8)

For equation (8), its time derivative is:

V̇1 = z1

[
1
A0
(1− x1 − ẏd )− (z2 + α1)

]
(9)

Thus, selecting α1 as

α1 = θ̂1 (1− x1 − ẏd )+ k1z1 (10)

leads to the following:

V̇1 = −z1 (k1z1 + z2)−
(
θ̂1 − θ

∗

1

)
(1− x1 − ẏd ) (11)

where θ̂1 is the estimator of the uncertain parameter A0 that
can be written as θ̂1 = θ∗1 −1/A0 and k1 is a positive constant.

Let us denote:
θ̃1 = θ̂1 − θ

∗

1

Vs1 = V1 +
θ̃21

2γ1
with γ1 > 0

(12)

DifferentiatingVs1 allows obtaining an adaptive law given by:

˙̂
θ1 = −δsθ̂1 + γ1 (1− x1 − ẏd ) (13)

and thereafter:

V̇s1 = −
[
δs

γ1
θ̃1θ̂1 + z1 (k1z1 + z2)

]
(14)

It should be noted that δsθ̂1 is a leakage term that has
been characterized by the constant δs > 0 and was asso-
ciated with the adaptive law (13); this is comparable to the

σ -modification learning control input that was developed
in [39] to enhance the robustness of the adaptive controlled
systems.

From equations (2), (6), and (10), the following is obtained:

ż2 = η1(ψ)− A3η2(x)l(u) (15)

where ψ =
[
x1 θ̂1 yd ẏd ÿd z2

]T
.

• η1(ψ) = ẋ1e−1 e4/x2 +
1e4 x1
x22

e−1e4/x2(
TF − x2 + A1x1e−1 e4/x2

)
− k1ż1

− θ̂1 (1− x1 − ẏd )+ θ̂1 (ẋ1 + ÿd ) ,

• η2(x) =
le 4 x1
x22

e−1 e4/x2 (x2 − TCF ) ,

• l(u) = u
(
1− e−A2/u

)
Based on the defined operating region characterized by sys-
tem (3) and according to assumption 2, that the following is
obtained:

∂l (u)
∂u
= 1− e−A2/u −

A2
u
e−A2/u,

∂2l
∂u2
=
−A22
u3

e−A2/u
(16)

which can be bounded by:
∂l (u)
∂u
≥ b0∣∣∣∣∂2l(u)∂u2

∣∣∣∣ ≤ b1 (17)

where b0 and b1 are positive coefficients and given by:
b0 = 1− e−A2min/u0

− (A2min/u0)e−A2min/u0

b1 =
73.386
A2min

(18)

Note that also according to the operating region (3), it is easy
to conclude that:

0 < η2min ≤ η2 (x) ≤ η2max, (19)

where η2min and η2max are defined by:
η2min = infx∈�x {η2 (x)} and η2max = supx∈�x {η2 (x)},

respectively.
Remark 1: There exists a control input u such that when

u = ρ(ψ), then

f2(ψ, x) = 0, (20)

where f2(ψ, x) = η1 (ψ) − A3η2 (x) l (ρ(ψ)) and (20) holds
within a finite set of time intervals [t1, t2, ti, . . . , tn] at any
arbitrary initial time as long as the function ρ(ψ) is differen-
tiable and continuous, which leads to the condition defined
in (16). Let a vector function ϕ be defined as follows:

ϕ =
∂[η1(ψ)− A3η2(x)l(u)]

∂u
. (21)
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Then, there exists a function u that is qualified to be regarded
as a sufficiently rich (SR) signal [39], such that the following
condition holds:

tf∫
ti

ϕ(r)ϕ(r)T dr ≥ Iυ ≥ 0, (22)

where r(ψ, x, u) ∈ Rk
×Rn

×Rp
→ Rn, υ is a large enough

positive constant and I ∈ Rn×n is the identity matrix. The
condition in (22) is also well known as a persistent excitation
condition, or PE, as defined in [39].
Remark 2: Let f1(ψ, x, u) = η1 (ψ)− A3η2 (x) l (u); then,

invoking IFT as expounded in [39], [40] and followed by
MVT in [41], [42],

f1(ψ, x, u)− f2(ψ, x, ρ) = (u− ρ)f ′uλ (23)

where f ′uλ =
∂f (ψ,x,u)

∂u

∣∣∣
u=uλ

with uλ = λu + (1 − λ)ρ,

where λ ∈ {0, 1}. From the IFT, there exists a unique and
ideal continuous control ρ = U ∈ �ρ ⊂ R+ such that
f2(ψ, x, ρ) = f2(ψ, x,U ) = 0 for all ψ ∈ �ψ ⊂ Rk ,
x ∈ �x ⊂ Rn, where �i, i ∈ {ρ,ψ, x} is used to denote the
compact set. Using this notation, (23) can be further rewritten
as

f1(ψ, x, u) = f2(ψ, x, ρ)+ (u− ρ)f ′uλ
= (u− ρ)f ′uλ (24)

Hence, using the result from (24) and the notation undertaken
in Remark 1 and Remark 2, the error equation in (15) can
be written as:

ż2 = −A3f ′uλη2(x)[u− ρ(ψ)] (25)

Proposition 1: The state equation in (25) can be trans-
formed from a non-affine to an affine form by a technique
reported in Lemma 3 of [40] where a 2-stage affinity trans-
formation is employed. Let û = u − ρ be the universal
control input embedding the tracking control and the approx-
imator to be designed later. A lumped function is proposed as
follows:

h̆(x, û) = −A3f ′η2(x)û (26)

Invoking the MVT, (26) can be rewritten as

h̆(x, û) = h̆(x, ˆ̄u)+ (û− ˆ̄u)
∂ h̆(x, û)
∂ û

(27)

There exists a unique and continuous universal control input
ˆ̄u ∈ �û ⊂ R such that h̆(x, ˆ̄u) = 0 for all x ∈ �x ⊂ Rn.
Subsequently, (27) can be further simplified to,

h̆(x, û) = (û− ˆ̄u)
∂ h̆(x, û)
∂ û

= −kû+

(
∂ h̆(x, û)
∂ û

+ k

)
û−

∂ h̆(x, û)
∂ û

ˆ̄u (28)

Thus, (25) can be rewritten as

ż2 = −kû+

(
∂ h̆(x, û)
∂ û

+ k

)
û−

∂ h̆(x, û)
∂ û

ˆ̄u

= −ku+ kρ +

(
∂ h̆(x, û)
∂ û

+ k

)
û−

∂ h̆(x, û)
∂ û

ˆ̄u (29)

Furthermore, the nonlinear function n(x, ˆ̄u) = kρ +(
∂ h̆(x,û)
∂ û + k

)
û− ∂ h̆(x,û)

∂ û
ˆ̄u can be approximated with the help

of the HONN approximator so that (29) can be expressed as,

ż2 = −ku+ n(x, ˆ̄u) (30)

The approach adopted in this paper is to construct an approx-
imator for function n(x, ˆ̄u) such that (20) holds. The function
n(x, ˆ̄u) is assumed to be linear-in-parameter, or in a technical
sense, it can be linearly parameterized as follows:

n (·) = W ∗TF (ϑ) (31)

where F(ϑ) is the regressor basis function comprising ϑ =
[ψ, û],W ∗T is the corresponding weightage gain to the basis
and εl is the approximation error. The weightage gainW can
be estimated such that Ŵ → W ∗ by various adaptive laws
in the control literature [43]–[45]. In this paper, we intend
to exploit a high-order neural network as in [46] and aug-
ment the adaptation law with a covariance resetting feature.
Based on the selected approximator, the basis vector F (ϑ) =
[f1 (ϑ) , f2 (ϑ) , . . . fl (ϑ)]T ∈ Rl is taken. The basis functions
are defined as:

fi (ϑ) =
∏
j∈Ii

[f (ϑ)]dj(i) , i = 1, 2, . . . l,

with f
(
ϑj
)
=

ϑ
√
1+ ϑ2

(32)

where {I1, I2, . . . , Il} can be defined as a gathering of l dis-
ordered subsets pertaining to {1, 2, . . . 6} and dj (i) that are
nonnegative integers.

n̂(x, ˆ̄u) = Ŵ TF(ϑ)+ εl (33)

Consider the control law described by:

u = µz2 +
1
k
Ŵ TF (ϑ)+

1
k
ξsign(z2) (34)

where ξ > 0, µ > 0 and k > 0 are the design constants
and Ŵ can be defined as the estimation of W ∗ selected to
fulfill ‖ Ŵ ‖≤ wm when designing the adaptive control.
Substituting (34) into (30) would yield

ż2 = −kµz2 − W̃ TF(ϑ)− ξ sign (z2)− εl (35)

Theorem 1: Consider the nonlinear non-affine system
described in (2). If the adaptive backstepping neural network
controller is designed as in (34) in which the adaptive control
input is designed as in (13) and the neural network tuning
algorithm is described by:

˙̂W = γ2φz2 − γ 2
2 Ŵ (36)

VOLUME 8, 2020 29759



O. Alshammari et al.: Neural Network-Based Adaptive Backstepping Control Law With Covariance Resetting

where φ = F (ϑ) for notation brevity,

γ̇2 = µ0γ2 − γ2φφ
T γ2/m2 (37)

where µ0 is a positive constant; m2
= 1 + n2s ; n

2
s = ms;

ṁs = −δms + u2 + y2 when parameter γ2(t) > 0 as
well as initial condition

∥∥∥Ŵ (0)
∥∥∥ ≤ wm; and δ is a positive

constant. The covariance matrix γ2(t) has elements that are
discontinuous functions of time, whose values are obtained
by differentiating the function given in (37). At the point of
discontinuity, t∗,

d
dt

(
γ2(t∗)

)
≥ 0, i.e. γ−12 (t2)− γ

−1
2 (t1) ≥ 0.

∀t2 ≥ t1 ≥ 0, (38)

It should be noted that

γ−12 (t) ≥ r−10 Il, ∀t ≥ 0. (39)

r0 Il ≥ γ2(t) ≥ r1 Il (40)

r−11 Il ≥ γ
−1
2 (t)� r−10 Il ∀t ≥ 0 (41)

where r > 0.
Proof: Define the following positive definite function:

Vw(W̃ ) =
W̃ T γ−12 W̃

2
(42)

where γ2 is given as in (37) and W̃ = W−Ŵ is the estimation
error vector. As shown and motivated in (40) and (41), γ−12 (t)
is a bounded and positive definite symmetric matrix. We may
differentiate (42) as follows:

V̇w =
1
2
W̃ T d

dt

[
γ−12

]
W̃ +

d
dt

[
1
2
W̃ T γ−12 W̃

]
(43)

V̇w =
1
2
W̃ T d

dt

[
γ−12

]
W̃ +

1
2
˙̃W T γ−12 W̃ +

1
2
W̃ T γ−12

˙̃W

=
1
2
W̃ T d

dt

[
γ−12

]
W̃ + W̃ T γ−12

˙̃W (44)

knowing that ˙̃W = Ẇ − ˙̂W = − ˙̂W due to Ẇ = 0,

V̇w =
1
2
W̃ T d

dt

[
γ−12

]
W̃ + W̃ T γ−12

[
−
˙̂W
]

(45)

Knowing that the matrix identity in [37] has the following
form:

d
dt

[γ2] γ
−1
2 + γ2

d
dt

[
γ−12

]
=

d
dt

[
γ2γ
−1
2

]
= 0 (46)

and consequently,

d
dt

[
γ−12

]
= −γ−12 γ̇2γ

−1
2 (47)

It follows for the identity,

V̇w =
1
2
W̃ T

[
−γ−12 γ̇2γ

−1
2

]
W̃ + W̃ T γ−12

[
−
˙̂W
]

(48)

To guarantee VW in (48) decreases, we let

γ̇2 = −
γ2φφ

T γ2

m2 + µ0γ2 (49)

and
˙̂W = −γ2φz2 − γ 2

2 Ŵ (50)

such that

V̇w =
1
2
W̃ T

[
φφT

m2

]
W̃ −

1
2
µ0γ

−1
2 W̃ T W̃

+ W̃ T γ−12 [γ2φz2]

+ W̃ T γ−12

[
γ 2
2 Ŵ

]
(51)

V̇w =
1
2
W̃ TφφT W̃

m2 −
1
2
µ0γ

−1
2 W̃ T W̃

+ W̃ Tφz2
+ γ2W̃ T Ŵ (52)

Taking Ŵ = W − W̃ yields

V̇w =
1
2
W̃ TφφT W̃

m2 −
1
2
µ0γ

−1
2 W̃ T W̃

+ W̃ Tφz2
+ γ2W̃ TW − γ2W̃ T W̃ (53)

Using the Cauchy-Schwarz inequality for the term
γ2W̃ TW <

γ2
4 W̃

T W̃ + γ2
4 W

TW and consequently, taking
the upper bound of (53) as follows:

V̇w ≤
1
2
8m

∥∥∥W̃∥∥∥2 − 1
2
µ0σmin(γ

−1
2 )

∥∥∥W̃∥∥∥2
+

∥∥∥W̃∥∥∥ ‖φ‖ z2m
−

3
4
σmin(γ2)

∥∥∥W̃∥∥∥2 + 1
4
σmax(γ2) ‖W‖2 (54)

where8m = ‖φφ‖F /m
2 in particular is the bound of regres-

sor matrix multiplication defined by the Frobenius norm and
W is a true value of the parameter estimates, i.e., a constant.
Next, we proceed in the analysis by denoting the following
positive definite function:

V̄ = V2 + Vw =
1
2
z22 +

1
2
W̃ T γ−12 W̃ (55)

Taking the derivative of (55) yields

˙̄V = z2ż2 + V̇w (56)

and then one has the following:

˙̄V = z2[−kµz2 − W̃ TF(ϑ)− ξsign(z2)− εl]

+
1
2
W̃ T φφ

T

m2 W̃ −
3
4
µ0γ

−1
2 W̃ T W̃

+ W̃ Tφz2 +
γ2

4
W TW (57)

Noting that φ = F(ϑ),

˙̄V = −kµz22 − ξsign(z2)z2

− εlz2 +
γ2

4
W TW

− W̃ T
[
−
1
2
φφT

m2 +
3
4
µ0γ

−1
2

]
W̃ (58)
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Let 1 = σmax(γ2) ‖W‖2, where σmax(·) denotes the max-
imum singular values. Taking the upper bound of (58)
yields

˙̄V ≤ −
[
3
4
µ0σmin(γ

−1
2 )−

1
2
8m

] ∥∥∥W̃∥∥∥2
− kµz22m −

z2
|z2|
|z2| ξ + z2mεl +1 (59)

Under the notion that the upper bound of z2 is z2m, then (59)
can be deduced to

V̄ ≤ −
[
3
4
µ0σmin(γ

−1
2 )−

1
2
8m

] ∥∥∥W̃∥∥∥2
− kµz22m − z2m [ξ − ε̄l]+1 (60)

where ε̄ is the maximum bound of the approximation error εl .
The error term z2 and parameter estimation error W̃ will
converge to a compact set around zero that is bounded by
1 with a condition that the design control parameter µ0 be
selected as follows:

µ0 >
2
3

8m/m2
2

σmin(γ
−1
2 )

(61)

where σmin(·) denotes the minimum singular values and the
control parameter ξ is selected such that ξ > ε̄l
This completes the proof.

Consequently:

• The boundedness of the closed-loop signal is ensured.
• The mean square tracking error is close to 0 by the
tuning of parameters δs, µ0,m, γ2, k, µ, ξ and the NN
architecture.

The designed control scheme is summarized below in six
main steps as shown in the algorithm 1.

Block diagrams summarizing the control strategy are pre-
sented in Fig. (1) and Fig. (2) and describe in detail the
proposed structure of the adaptive neural network controller.
Fig. (1) and Fig. (2) show that the main concept behind the
neural adaptive backstepping controller is to treat the CSTR
plant as a nonlinear system. The neural network detailed
in Fig. (2) shows the novelty of this work while implementing
online learning through an adaptive law with the covariance
resetting algorithm and allowing the adaptation process to be
performed only if specified limits are not reached. As the
parameters of the CSTR plant are assumed to vary with uncer-
tainties, the adaptive backstepping block shown in Fig. (1)
handles this delicate problem and ensures the robustness of
the controller. The adaptive internal blocks are implemented
in the controller structure to cover the inherent nonlinearity
characterizing uncertain parameters according to the dynam-
ics of the process.

Algorithm 1 NABC Algorithm
1. Initialization
Initialize the simulation control parameters as shown in table 1.

2. Define the estimator of the uncertain parameter A0 as given by equation (13).

˙̂
θ1 = −δsθ̂1 + γ1 (1− x1 − ẏd )

3. Infer the equations of the quantities η1 (ψ) and η2 (x) as:
η1(ψ) = ẋ1e−1e4/x2 +

le 4 x1
x22

e−1e4/x2 +
(
TF − x2 + A1x1e−1e4/x2

)
− k1ż1

− θ̂1 (1− x1 − ẏd )+ θ̂1 (ẋ1 + ÿd )

η2(x) =
1e 4 x1
x22

e−1e 4/x2 (x2 − TCF )

4. Define the backstepping transformation as given by equation (7) and (15).{
ż1 = 1− ẏd − A0 (α1 + z2)− x1
ż2 = η1(ψ)− A3η2(x)l(u)

5. Define the backstepping controller as:

u = µz2 +
1
k
ξ sign (z2)+ uNN

6. Synthesize the adaptive neural controller given by:

uNN =
1
k
Ŵ TF(ϑ)

7. Adaptive law with covariance resetting feature for Neural Network Weight Online Tuning.

˙̂W = γ2φz2 − γ 2
2 Ŵ (36)

γ̇2 = µ0γ2 − γ2φφ
T γ2/m2 (37)
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FIGURE 1. Block diagram of the closed-loop controlled plant.

FIGURE 2. Block diagram of the NN adaptive control.

IV. MAIN RESULTS AND DISCUSSION
This section is dedicated to discussing and evaluating the
approach developed in this work. A comparative study is
conducted to evaluate the designed neural adaptive back-
stepping controller (NABC) scheme against a conventional
proportional-integral-based controller and the adaptive con-
troller (coined as adaptive uncertain controller (AUC)) devel-
oped in [47]. For the sake of brevity, one can easily exploit
the block diagrams presented in Fig. (3) and Fig. (4), where

a detailed analytical description is provided. The elaborated
representation of the algorithm in block diagram gives an
accurate block connection that is performed within the simu-
lation study for easy reference.

The control object for the three fixed control techniques
would be to enable the concentration state variable y = cA
to track a reference input signal r(t). To obtain a smooth
reference input trajectory, a second-order reference linear
system is exploited to form a continuous step change
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FIGURE 3. Analytical block diagram of the closed-loop controlled plant.

FIGURE 4. Analytical block diagram of the NN adaptive controller.

reference input characterizing the desired variable and its
derivatives. From this perspective, a linear second-order
model is shown as follows:

yd (t) = (1−
ζωnt√
1− ζ 2

×

(
(
√
1−ζ 2) cos(ωndt)+ζ sin(ωndt))

)
r(t) (62)

where 0 < ζ < 1 and ωd = ωn
√
1− ζ 2 are used to set

the step change reference input r(t) to generate the desired
output yd and its first and second derivatives ẏd and ÿd ,
respectively. To assess the proposed NN scheme’s control

performance, an alternative PI control input frequently
employed in chemical processes with control fixed gains kc
and Ti is defined as:

upi = kcε(s)+
kc
Tis
ε(s) (63)

where ε(s) is the tracking error. Note that gains kc and Ti
are chosen to provide a suitable response required for step
variation r(t) along the input reference of ±0.02 mol/l as
well as a suitable concentration value of 0.1 mol/l. Note that
the initial conditions of the CSTR state variables are fixed as
follows: cmin = 0.08 mol/l and TA0 = 440 K [48].
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The numerical simulation conditions are set as shown
in Table 3 [48].

TABLE 3. Simulation model parameters.

The simulation study outcomes are depicted in
Figs. (5)-(8), where the different real output responses and
their corresponding manipulated variables are drawn. Fig. (5)
illustrates the perfect tracking behavior of the improved
backstepping NN control avoiding any strong oscillations,
as shown in Fig. (7) for both PI and AUC. The designed
control input is presented in Fig. (6). The undesirable
high-oscillation behavior is well mitigated in comparison
with the results shown in Fig. (8) for the different manip-
ulated variables. This performance can be explained by the
interesting added value of the covariance resetting algorithm
implementation in the least square estimation for the NN
weight tuning algorithm, where the parameter settings are as
follows:

(m2
= 1 + n2s , n

2
s = ms and ṁs = −δms + u2 + y2). The

implemented algorithm provides a valuable compensation
for the neural network’s lack of information regarding the
CSTR plant dynamics. Indeed, to attenuate the oscillation in
the AUC, the NN needed various learning periods (around

FIGURE 5. Output trajectory tracking using the NN adaptive backstepping
controller.

FIGURE 6. NN adaptive backstepping control input.

FIGURE 7. Output trajectory tracking of peer control strategies for a
desired step change varying trajectory.

FIGURE 8. Control input signal of the NN adaptive backstepping
controller against peer controllers.

five minutes) to reduce the tracking error. The average per-
formance of the overall controllers can be appreciated by con-
sidering the quantitative summary results shown in Table 4,
which reports the values of the control efforts, IAE, ISE
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TABLE 4. Results of a comparative performance study.

and maximum overshoot where the output convergence is
attained. Based on the values of the selected key performance
indicators shown in Table 4, it can be concluded that besides
guaranteeing global stabilization, the proposed NABC algo-
rithm outperforms the rest in terms of minimal control effort
and performance indices (IAE, ISE and overshoot). It is
apparent to witness that the control effort is excessive for
the case of the AUC. In contrast, this effort is comparable in
magnitude for both PI-based control and improved backstep-
ping NN control. However, the tracking error is substantially
reduced in the case of the NABC, allowing the increased cost
of the control effort to be tolerated with respect to PI-based
control.

V. CONCLUSION
In this research work, a novel neural network adaptive con-
troller had been presented pertaining to a non-affine nonlinear
chemical process. A detailed step algorithm was given to
perform the synthesized control scheme. The control struc-
ture and an adaptive learning approach were developed with
the enhancement of an adaptive backstepping design and the
Lyapunov stability method. It has been established that
the proposed controller ensures stability as well as robust
accurate trajectory tracking pertaining to the asymptotic
closed-loop adaptive performance. A main enhancement was
attained through the implementation of the covariance reset-
ting algorithm in the least square estimation of the high-order
NN weight tuning algorithm. The novel contribution is the
online learning of the neural network through an adaptive law
that includes a covariance resetting feature to allow the adap-
tation to run only if it does not reach a certain limit. This nov-
elty prevented any possible occurrences of winding-up issues,
which may lead to instability. In addition, the covariance
resetting feature adaptation as a self-regulating mechanism
promotes light computation, i.e., the learning occurs only
when it is needed, and the adaptation can be automatically
switched off when it is not necessary. In addition to excel-
lent output trajectory tracking performance, the proposed
approach has a profound benefit in terms of substantially
lower control effort in comparison to the established work
in the literature. In terms of applications in the petrochemical
industry, lower control effort can translate to a more energy-
efficient actuator, leading to lower costs over a long-run
operation. The efficacy of the recommended control scheme
has been depicted through a numerical simulation analysis.
Future work will investigate the control problem of a CSTR
model characterized by nonlinear dynamics with the exis-
tence of input saturation, time-varying parameters and non-
measurable state variables.
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