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ABSTRACT The star identification (star-ID) algorithm can match the stars captured by an optical system
with a star catalog according to certain features. Star-ID has been an important research issue in many
astronomical studies and a strong robust star-ID algorithm can effectively identify a certain number of stars
as a standard source to correct uncalibrated telescopes. Generally, before star-ID, the celestial coordinates
should be translated into the image coordinates with knowledge of optical center coordinates, image rotation
angle, focal length of optical system, image sensor’s pixel size and so on. For an uncalibrated telescope, the
star-ID performance usually suffers from the errors or even the lack of these parameters. In this paper, a novel
star-ID algorithm is devised which is based on image normalization technique and the Zernike moment such
that the invariant features of asterisms are extracted instead of traditional ways. And three real images which
captured via an uncalibrated ground-based telescope are used to validate our method, and the results show
that it can effectively identify stars with a success rate of 99.27%, which demonstrate the robustness and

accuracy of the proposed method.

INDEX TERMS Image normalization, star identification, Zernike moment.

I. INTRODUCTION

The star-ID algorithm is a basic algorithm in the astronomical
research which has a wide application in many fields such
as navigation, attitude determination and error correction. Its
essence is to compare certain features to those in a catalog.
To determine the transforming relationship between the celes-
tial coordinates of the catalog and the pixel coordinates of
the star point, many parameters are required, such as optical
center pixel coordinates, image rotation angle, optical system
focal length, pixel size of image sensor, pointing of telescope
and so on. These parameter errors listed in Table 1 have
different effects on the final coordinate conversion result.

For an uncalibrated telescope, the initial parameters often
contain large errors which will affect the results of coordinate
transformation and feature extraction, and ultimately cause a
negative impact on star-ID.

The key to solving this problem is to find proper invari-
ant features independent of the equipment’s parameters.
At present, many approaches have been adopted to improve
the performance of the extracted features. In 1995, Liebe
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used two angular distances and a spherical angle between the
two neighbouring stars as a feature to identify stars [1]. This
method can solve the identification problem under translation
and rotation transformation, but a pattern of three stars is too
simple to ensure success rate when identify the faint stars.
In 1996, Quine and Durrant-Whyte proposed an algorithm
which is similar to that of Liebe and a scale-invariant feature
is added [2]. In 1997, Padgett and Kreutz-Delgado proposed
the grid algorithm which can extract translation and rotation
invariant features [3]. However, the main defect of grid algo-
rithm is that its recognition depends on the correct selection
of the nearest neighboring star and cannot directly identify
neighboring stars. In 2008, Yang et al. improved the grid
algorithm which can extract scale-invariant features by using
the distance between nearest neighboring star and the refer-
ence star as a standard scale factor [4]. By using this method,
the recognition problem under translation, rotation and scale
transformation is solved. In 2008, Zhang et al. used radial
and cyclic star pattern to identify stars, this method does not
depend on the selection result of the nearest neighboring star
to calculate the image rotation [5]. In 2013, Ji et al. improved
the radial and cyclic star pattern, acquiring a translation,
rotation and scale invariant feature [6], but it is sensitive to
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TABLE 1. The impacts of parameters on coordinate transformation.

Parameter name Impact on Transformation Results ~ Linear/Nonlinea
optical center pixel coordinates (X, Yy) translation transformation linear
image rotation angle (&) rotation transformation linear
focal length (f) scaling transformation linear
CCD pixel size (p,,p,) scaling transformation linear
CCD vertical error skew transformation linear
pointing of telescope (4,E) nonlinear error nonlinear
optical system distortion nonlinear error nonlinear

the number and magnitude of stars. In 2015, Aghaei and
Moghaddam developed an iterative algorithm to eliminate the
spurious candidate stars and find the true match [7]. In 2016,
Ji et al. proposed a parameter estimation method to optimize
the grid algorithm [8]. In 2019, Win et al. used the dynamic
cyclic features to suppress the star group’s position noise and
magnitude noise [9].

Although the above researches have shown considerable
success in star-ID, however, they can only partially meet
the requirements under our situation. To solve this problem
thoroughly, an extreme case is assumed where the first four
parameters in Table 1 are completely missing, at the same
time, there is an error in the telescope pointing, the image sen-
sor is tilted, and the optical system distortion is unsolved. Our
invariant feature extraction method is realized by implement-
ing image normalization technique and Zernike moments to
eliminate the negative influence outlined above.

The performance of our algorithm is tested by using
three images acquired by the telescope whose aperture is
600 mm. In this process, we totally identify 216 reference
stars and 864 neighboring stars. Meanwhile, we compared
the proposed method with Yang et al.’s [4], Li et al.’s [6],
Ji et al’s [8], and Win et al.’s [9] algorithms. Note that the
radial feature is not a scale invariant feature. To test this
algorithm under the same conditions, a method similar to
reference 4 is used to extract scale invariant features.

The results show that the algorithm of this paper cor-
rectly identifies 137 star groups in three star images with
99.27% success rate. While Yang et al.’s algorithm identifies
119 star groups with accuracy of 94.96%, Ji et al.’s algorithm
identifies 129 star groups with accuracy of 96.12%, Mahdi
et al.’s algorithm identifies 113 star groups with accuracy
of 99.12%, and Xin et al’s algorithm identifies 122 star
groups with accuracy of 97.54%. But, when the star image is
mirrored or severely tilted, the four comparative algorithms
are completely invalid while the algorithm in this paper is not
affected by the two factors. The results show that our algo-
rithm offers conspicuous advantages over existing star-ID
algorithms under the condition of some specific parameters
of our telescope lacking with better robustness and accuracy.

The chapters of this article are arranged as follows.
Chapter 2 gives the proof of affine transformation rela-
tionship. Chapter 3 describes the star image normalization.
Chapter 4 discusses the way of Zernike moments calculation.
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Chapter 5 introduces the method of star choosing and iden-
tification. Chapter 6 analyzes the result of our experiment.
Chapter 7 concludes this paper with a discussion.

Il. PROOF OF THE AFFINE RELATIONSHIP

Affine transformation is a kind of linear transformation
including translation, rotation, scaling and skew. It is the
mathematical basis of image normalization, so in this paper,
we first give the proof that the star’s pixel coordinates cal-
culated by inaccurate parameters in Table 1 are actually
an affine transformation of the coordinates under the ideal
parameters. To simplify the proof process, only one star’s
affine transformation relationship is given. The proof for
multiple stars is similar with this.

A. TRANSFORMATION FROM CELESTIAL COORDINATES
TO PIXEL COORDINATES
The transformation from celestial coordinates to pixel coor-
dinates is a nonlinear process. We have given this coordinate
transformation method in our previous work [10]. It is note
worth that the parameter errors in Table 1 do not affect the
calculation of theoretical azimuth and elevation angle (AE)
of the star, so only the conversion algorithm from angle
coordinates to pixel coordinates is given here, and this is a
linear process as can be seen from formula 1 to 9.

Let P and R(y) denote the scaling matrix and the rotation
matrix, respectively.

1
— 0
p=|P e
0 __
L Dy
cosw —sina
Re) = | sina cosa ] )

Here p, and p, represent the pixel size of CCD in the
x and y directions, respectively. « is the rotation angle of the
star image.

Then, the transformation from angle coordinates to pixel
coordinates can be expressed by a liner equation:

DRI

where (X, Y)T represents the pixel coordinates of a star,
(x, y)T is the distance from optical center in millimeter which
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can be calculated from formula 4 [11].

x =tan AA - (f cos Ey — ysin Ep)

_f tan E - cos Eg — cos AA - sin Ey
r= tan £ - sin Ey + cos AA - cos Ey
AA = A — Ap.

“

In formula 4, f represents the focal length of the tele-
scope optical system; (A, E)T represents the AE of the star;
(Ao, Eo)T represents AE of the optical center.

B. PROOF OF THE AFFINE RELATIONSHIP
Assuming that some of the parameters in Table 1 contain the
errors which shown in formula 5.

f'=a-f

Py =Db1-px

Py =b2py ®)
X(/) = Xo + AXp

Y(; = Yo+ AYp

o' =a+ Aa.

Suppose that there is no error in (A, E) and (Ao, Eo)’.
Mathematically, the star pixel coordinates calculated with the
parameter error can be represented in formula 6:

v]=rme V][]
:PR( b —+ 0
|:Y/ o y/ YO/

1
— 0
. b p. p1 X — AXp
=a 0 i P-Rpa)- P [Y—AYO
by
Xo + AXo
* |:Yo + AYy } ©
Define A and B as:
1
A = b_l 0 P-R P—] _ | an a2 (7)
- 1 (&a) T lan an |’
by
_ | Xo+AXo | ,|Xo|_|bn
B‘[Y0+AY0] AI:Yoi|_|:b12 ' ®
Then the formula 6 can be written as the following form:
X’ X
Ff)e o

where A is a 2-by-2 constant coefficients matrix and B is
a 2-by-1 constant coefficients matrix.

The formula 9 shows that there is a strict affine transforma-
tion relationship between the errorless pixel coordinates and
the error containing pixel coordinates.

Ill. STAR IMAGE NORMALIZATION

Having proved that the calculation error of pixel coordinates
of star caused by parameter errors is essentially equivalent to
an affine transformation of error-free coordinates. The nor-
malization technique of image can effectively eliminate the
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transformation factor generated by an affine transformation,
and gets a “‘standard” image. Theoretically, the ““‘standard”
images of arbitrary affine transformed images are strictly
consistent [12], and can be used to extract invariant features
when the parameters are missing [13], [14].

There are at least two advantages to applying normalization
to star identification. First, by calculating the pixel coordi-
nates of the star’s center [15], the image can be transformed
into a sparse matrix, which can effectively reduce the amount
of computation and improve the efficiency of the algorithm.
Second, the index of a digital image is integral, however,
our ultimate goal is to extract features from original image
rather than restore the star image. We extract features directly
from non-integer star pixel coordinates to effectively avoid
redigitization errors.

First, let (X, YS)T denote the center of the star spot
extracted from the star image. Then, re-denote the image
signature by p(x,,y,) in formula 10.

1 : star center
P&YD =10 background, (19)
And finally, a star image is turned into a sparse binary
matrix. This matrix is independent of magnitude, which can
effectively reduce the interference of magnitude uncertainty
to the feature extraction, and also effectively reduce the time
and space complexity of the algorithm.
Then, formula 11 can be employed to calculate the origin
moment of a star group.

my = > XY P, (b

Xs Y

And the center of the group can be denoted as follows:

{Xs = myo/moo (12)

Y = mo1/moo.

Let formula 13 denote the central moments of i 4 j order:

my =YY X - X) (Y =V px,vy.  (13)

X, Y
And, then define M as:
M= |20 (14)
mpp me2
Let A; and X, denote two eigenvalues of M(A1 > X»),
and e; = ey, e1y]’ and ex = [ex, ez]” represents
the two corresponding unit eigenvectors. It has the property:
e;-er=0.
Define rotation matrix as:
E— €1x €ly ’ (15)
—€ly  €lx
scale matrix as:
W = diag(——, ——) (Aha)? (16)
=diag(—=, —=), c¢=R1r)%.
VA A A
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FIGURE 1. Unit circle mapping diagram. (a) Normalized star group, (b) star group translation, (c) star group

mapping to unit circle.

At last, the normalization of the image can be denoted as:

X7 X, — X,
|:YS/]_WE|:YS—)_’S . (17)
where (X!, ¥)T denotes the normalized star position corre-
sponding to (X, Yy)T.

IV. ZERNIKE MOMENTS CALCULATION

Zernike moments have extensive applications in image recon-
struction [16], target recognition [17], feature detection [18]
and so on. Using Zernike moments as a feature has many
advantages. In this paper, we mainly utilize its rotation invari-
ance, mirror invariance, and fast calculation properties. Note
that Zernike moment is not a scale invariant feature [19],
so the star group is pre-processed by the star image normal-
ization. Star image after normalization is actually a set of
discrete points. Using Zernike moments as a feature has three
advantages: (1) Using the appropriate number of moments as
features can effectively improve the success rate of the star-ID
algorithm; (2) the features extracted by Zernike moment are
mirror-independent; (3) star-ID can be accomplished without
cyclic shift.

A. UNIT CIRCLE MAPPING

Zernike moment is a complex number defined in the unit
circle. Before calculating the moment, the coordinates of the
star center must be mapped to the unit circle. Fig. 1 shows
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this mapping process. First, translate all star points accord-
ing to the reference star coordinate, so that the reference
star is located at the origin of the coordinate, as shown
in Fig. 1 (a) and Fig. 1 (b); second, find the neighboring star
that is farthest from the reference star and calculate the cor-
responding distance d,;,y; finally, use d,,4x as the scale factor
to perform rotation-free scale transformation on the star point
coordinates, as shown in Fig. 1 (c).

B. ZERNIKE MOMENTS CALCULATION
After mapping the star group to the unit circle, the corre-
sponding Zernike moments of n + m order can be calculated
according to the formulas 18 to 20 [16]:

+1
Zun(x.3) = == D Y Vi ype . (18)
x oy

Vam(%.3) = Run(x. y) exp(imtan™" ), (19)
and
(n—|ml)/2
(n—ys)!
Rn(x.0)= ), (-1 n+|m n—|ml
s=0 s!( > - 3 —s5)!

x (y/x24+y)72 0 (20)

where n and m satisfy constraint conditions mod(n — m, 2) =
Oand 0 <m < n.
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Noting that Z,,,, is a complex number, we take the |Z,,,| as
a feature to accomplish the final identification.

The feature extraction method of this paper is indepen-
dent of magnitude information considering the features may
be contaminated by the large star magnitude noise (usually
40.2~0.3 magnitudes).

Up to now, the feature extraction method of star group is
compendiously described which can minimize the reliance on
the parameters in Table 1. It is noteworthy that the features
extracted by this method are also invariant to tilt or mirror
transformation.

V. STAR CHOOSING AND IDENTIFICATION

A. STAR CHOOSING IN IMAGE

The bright star in the image usually has larger centroid-
ing error, which is not suitable as a high-precision standard
source. So, this paper identifies the stars with less polluted
and relatively faint.

The number of faint stars is more than bright ones, to dis-
tinguish each pattern from massive other stars in the catalog,
we employ a star group consisting of one reference star
and four neighboring stars to raise the probability of unique
star-ID results.

The selection method is as follows:

(1) Select a relatively faint star that can calculate
high-precision centroid coordinates as the reference
star; (2) take the reference star as the center, all the
neighboring stars which can accurately calculate the
centroid coordinates are found within a small neigh-
borhood (the radius of the neighborhood is 70 pixels in
this paper); (3) calculate the magnitude of the searched
out neighbouring stars; (4) sort and select top 4 neigh-
bouring stars with the highest brightness to form the
five-star mode. And the reference star with insufficient
neighbouring stars will be ignored.

There are three advantages to adopt this strategy:

(1) it can effectively avoid selecting stars that are not
recorded in the catalogue; (2) it is conducive to subsequent
screening and reducing the number of the stars in cata-
logue; (3) it is beneficial to lower the mismatching rate,
increase success rate and improve the efficiency of the
algorithm.

B. STAR CHOOSING IN CATALOG
In this paper, we use the Fourth U.S. Naval Observatory CCD
Astrograph Catalog (UCAC4) as the main catalog, and filter
it according to the pointing and field of view (FOV) of our
telescope.

The selection method is as follows:

(1) Select reference star candidates according to the mag-
nitude calculated from the image and magnitude error;

(2) selecttop N(N >4, and N =15 in this paper) stars with
the highest brightness near each candidate reference
star.
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FIGURE 2. Algorithm flowchart.

C. STAR IDENTIFICATION

We apply multiple Zernike moments as features to reduce the
ambiguities of star pattern. For a star group, SG, in an image,
supposes that its pattern formed by multiple Zernike moments
extracted from SG is shown in formula 21.

patin (5G) = (i . 243 .. |Zim

im
an

). (21

And, assuming that Q star groups are totally selected from
the catalog according to the method in chapter 5.B. For
each reference star, there are C;\‘, kinds of combinations of
neighboring stars.

After the coordinate transformation, the Zernike moments
of the star group are calculated, let patﬁ?,ﬂ(SGJi) denote the
pattern of the star group consisting of the ith reference star
and the combination of its jth neighboring stars. And, its

expression is shown in formula 22.

g ey

im im
’ ZOm an

)s
j=12,....Ch. (22

g e ooy

nm

patis(5G) = (|74 |z

i=1,2,...,0.

Using formula 23 to measure the similarity between SG
and SGJi. Then, the SGJi who satisfy formula 24 are considered
as the identified stars.

- 1z = 1z

Inm(patyy, patin) = % T, (23)
k=0 1=0 | kl
where mod(n —m,2) =0,0 <m < n.
argmin(Jy,;,,) and min(J,,) < &, (24)

where ¢ is a threshold to prevent false alarms.

The flow chart of our algorithm is shown in Fig. 2.

The image processing module is used to find all objects
within a certain magnitude range; the star catalog area selec-
tion module is mainly used to reduce the number of stars
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TABLE 2. Comparison of the prior value and the input.

Prior value of

Prior value of

Prior value of

Parameter name image #1 image #2 image #3 Input 1 Input 2 Unit
optical center pixel coordinates (X, ¥y) [1014,1005] [1014,1005] [1014,1005] [0,0] [0,0] pixel
image rotation angle (&) -1.5731768 -0.5540649 -0.5753618 0.0 0.0 rad
focal length (f) 830.0 830.0 830.0 1.0 1.0 mm
CCD pixel size (p,,p,) [0.024,0.024]  [0.024,0.024]  [0.024,0.024]  [0.01,0.01] [0.01,0.02] mm/pixel
is image mirrored? No No No No Yes
is pointing calibrated? No No No No No
is distortion of optical system corrected?  No No No No No

to be matched according to the pointing and FOV; star spot
centroiding can locate the star’s peak to sub-pixel precision;
coordinate transformation is used to convert the celestial
reference coordinates of a star under the catalog’s epoch to the
pixel coordinate under the current epoch; the feature extrac-
tion module has been discussed in detail in chapter 3 and
chapter 4; star identification is used to find the optimal match-
ing results according to the invariant features.

The pixel position of stars formed on CCD through the
optical system of telescopes can be calculated accurately
according to the telescope location, telescope pointing, dis-
tortion coefficient, optical system parameters, CCD param-
eters, etc. Ideally, the Zernike feature vector calculated by
the catalog through coordinate transformation is invariant to
the feature that directly calculated by the pixel coordinates
of the same star group. However, these parameters will have
some errors in practice, and have a negative impact on feature
extraction. We divide the factors that affect the results of
coordinate transformation into two categories. One is com-
posed of optical system parameters and CCD parameters, its
adverse effects can be eliminated by image normalization,
and the corresponding proofs have been given in chapter 2.B;
the other consists of the telescope location, pointing and
distortion coefficient, etc. Considering the background of this
paper, it is difficult to completely eliminate errors caused
by such factors. To suppress these errors, the methods in
chapter 5 are used to select reference stars and neighbouring
stars. By selecting several neighboring stars in a small neigh-
borhood near the reference star, this kind of error can be sup-
pressed by means of coordinate translation, because the error
caused by pointing error and distortion can be considered as
a constant in a small neighborhood. In addition, formula 23 is
used to evaluate the similarity of star group’s features in the
catalog and image, and threshold ¢ is employed to describe
the tolerance of this error. The robustness of our algorithm
will be tested without correcting the telescope pointing and
distortion, and the corresponding results will be analyzed in
chapter 6.

VI. EXPERIMENTS AND RESULTS

Taking advantage of the feature extraction method outlined
in chapters 3 and 4, the novel star-ID algorithm is employed
to process three real sky images. Our experiment is used
to identify the recognize performance from real image by
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using a ground-based telescope. The diameter of our tele-
scope is 600mm with a focal distance of 830mm. In addi-
tion, it employs a single 16-bit (2040 x 2040) chips, with a
reference pixel-scale of 5.94” /pix (0.024mm/pix), providing
a total FOV of ~3.37° x 3.37". And, the algorithm was
implemented using C++- language, on a PC (CPU: Intel Core
i5-3210M 2.5 GHz, RAM: 8 GB).

Table 2 shows the partial prior values of parameters in
Table 1. To verify the performance of our algorithm under
the parameters missing conditions, a set of arbitrary values is
chosen as the input. Meanwhile, the robustness of our algo-
rithm is tested by identify stars without correcting telescope
pointing and distortion.

We totally identify 216 star groups (71 star groups in
image #1, 71 star groups in image #2, and 74 star groups
in image #3) in Fig. 3 in which the reference stars are
red pentacled while the neighboring stars are green circled.
To test the robustness of the algorithm, we do not eliminate
the star group which contains double star, large proper motion
star and star not recorded in the UCAC4. We respectively
use the proposed algorithm, an improved grid algorithm [4],
an improved radial and cyclic star pattern [6], a grid algorithm
using optimization approaches [8], and a radial and dynamic
cyclic star pattern to identify stars [9], and their final results
are compared.

Testing based on the prior value is performed to evaluate
the identification ability under normal conditions. And input
1 is used to verify the identification ability of the five algo-
rithms in the absence of four major coordinate transformation
parameters. While the input 2 is to further test the perfor-
mance when the image is mirrored and the image sensor is
tilted.

Before star-ID, the number of Zernike moments which we
used in this paper must be decided. A star group has an infinite
number of Zernike moments. However, in practice, a limited
number of moments are used for star-ID. In this paper, the
performance of the algorithm under different numbers of
Zernike moments is tested by the star image #1 and the
corresponding results are compared under the condition of
input 2 in Table 2 and the corresponding results are shown in
Table 3.

Table 3 shows that when identification threshold is station-
ary, the accuracy of star-ID decreases with the use of a small
number of Zernike moments, while when a large number
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FIGURE 3. The three images used in this paper. The coordinates of the center of the field of the image #1 are RA = 02h06m18s, DEC =
26°08'34" (J2000.0). The coordinates of the center of the field of the image #2 are RA = 19h02m47s, DEC = 07°51°'02"” (J2000.0). The
coordinates of the center of the field of the image #3 are RA = 17h48m55s, DEC = —04°1027" (J2000.0).
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TABLE 3. Algorithm performance under different number of Zernike moments (¢ = 0.6).

Number of Zernike ~ Number of identified Numl_aer Of Success Running
(n,m) moments star groups correctly identified rate time
group star groups
5 . 0 088
4,4 9 71 61 85.92% 400.68
, . 0 dzZs
(6,6) 16 64 59 92.19% 625.12
(8,8) 25 61 58 95.08% 962.88s
(10,10) 36 54 54 100% 1466.73s
> (] 478
(12,12) 49 46 46 100% 2095.49
(14,14) 64 46 46 100% 3210.13s

TABLE 4. ldentification Results of image #1.

Number of identified
reference stars

Number of identified

. . Success rate
neighbouring stars

Prior
value Input 1  Input2
Our method 54 54 54

51 51
51 50

Comparative method 1 [4

Comparative method 3 [6

46 47

Prior Prior
value Input1  Input2 value Input 1 Input 2
216 216 216 100% 100% 100%

204

184

L 216%  9216% 0%

200 28 96.08%  98.00% 0%

188 24 97.83%  97.87% 0%

(4] 2
(6] 7

Comparative method 2 [8] 44 44 0 / 100% 100% 0%
[9] 6

Comparative method 4 [9

TABLE 5. Identification Results of image #2.

Number of identified
reference stars

Number of identified

. . Success rate
neighbouring stars

5:1?12 Input 1  Input2
Our method 42 42 42
Comparative method 1 [4] 32 32
Comparative method 3 [6] 35 35
Comparative method 2 [8]
Comparative method 4 [9] 34 35

Prior Prior
value Input1  Input2 value Input 1 Input 2
168 168 168 100% 100% 100%

140

136

T 96s8%  9688% 0%

140 24 97.14%  97.14% 0%

9
6

34 34 0 / 97.06%  97.06% 0%
6

140 24 97.06%  97.14% 0%

TABLE 6. Identification results of image #3.

Number of identified
reference stars

Number of identified

. . Success rate
neighbouring stars

S;il?lre Input 1  Input2
Our method 41 41 41
Comparative method 1 [4] 36 36 8
Comparative method 3 [6] 43 43 2
Comparative method 2 [8] 35 35 0
Comparative method 4 [9] 42 39 3

Prior Prior
value Input1  Input2 value Input 1 Input 2
164 164 164 97.56%  97.56%  97.56%

172

168

L im% 9I% 0%

172 8 9535%  9535% 0%

0% 100% 0%

156 12 97.62%  97.44% 0%

of Zernike moments are used, the number of identified star
groups will be significantly reduced, and the running time of
the algorithm will be significantly increased.

Therefore, in this paper, 36 different Zernike moments
are used as features in our experiment. And to ensure the
reliability of the star-ID results, a conservative identification
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threshold (¢ = 0.6) is applied to lower the false alarm rate,
although this will increase the missing alarm rate.

We use the same parameters to identify the star groups
in the other two star images, and the identification results
under the corresponding prior values, input 1 and input 2 are
respectively shown in Table 4 to 6.
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From Table 4 to 6, we can draw the conclusion that under
the prior value and input 1, all the five algorithms can identify
star groups effectively, but our algorithm has a better accu-
racy and recognition rate. And none of the four comparative
algorithms can effectively identify the stars under input 2,
and even some algorithms get wrong identification results.
Note that the features extracted by the grid algorithm and
the radial and cyclic feature algorithm are not independent
to the mirror and tilt transformation, thus impose a negative
affects to the identification results, therefore, none of the four
comparative algorithms can identify star groups effectively
when the image is mirrored and the image sensor is tilted,
while our algorithm guarantees the success rate for mirrored
image.

When using our star-ID algorithm to identify the star
groups in Fig. 3 (a) and (b), 17 star groups are not successfully
identified among which 8 missed alarm for the small ¢, 7 are
interfered by binary stars or bad pixels, and 2 contained star
which are not in the UCAC4 catalog. And 29 star groups are
failed to identify when using Fig. 3 (c) and (d) as input image,
among them 17 missed alarm for the small &, 10 are interfered
by binary stars or bad pixels, and 2 contained star which
are not in the UCAC4 catalog. Furthermore, Fig. 3 (e) and (f)
contain 33 unrecognized star groups, including 16 missed
alarm for the small ¢, 16 are interfered by binary stars or bad
pixels, and 2 contained star which are not in the UCAC4 cat-
alog, one of the star group is interfered by binary stars and
stars that are not in the catalog simultaneously. In Figure 3,
a star group is incorrectly identified, the main reason is that
the magnitude difference between the identified reference star
and the correct one is less than 0.2mag. Therefore, it is impos-
sible to eliminate this wrong recognition result according to
the magnitude conditions.

Obviously, the success rate of our algorithm is higher than
that of the four comparative algorithms, and it can accurately
identify the neighboring stars while identifying the reference
star. Meanwhile, when the image is mirrored and tilted, our
algorithm can still correctly identify stars, while the four
comparative algorithms cannot.

VII. CONCLUSION
In this paper, a novel star-ID method based on image nor-
malization technique and the Zernike moment is employed
to solve the star-ID problem when optical center coordinates,
image rotation angle, focal length of optical system and image
sensor’s pixel size contain errors or even missing. Experiment
results show that our algorithm can accurately identify stars
under the prior values. Meanwhile, it can guarantee a high
success rate under the condition that the first four parameters
in Table 1 are completely missing, and can deal with the
interference of pointing error of the ground-based telescope,
mirrored star image, tilted image sensor and distortion of the
optical system to some extent with strong robustness.

There are still some shortcomings in the algorithm. For
example, the correct identification rate is close to zero when
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a star group contains the star which is not recorded in the
catalog. In addition, the algorithm is more time consuming
than traditional ones due to the need to traverse the combina-
tion of all neighboring stars.

In our future work, we hope to further optimize the speed
and adaptability of the algorithm, test our algorithm on more
data, and explore some applications of the algorithm on
space-based platform.
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