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ABSTRACT Traditional methods of multi-label text classification, particularly deep learning, have achieved
remarkable results. However, most of these methods use word2vec technology to represent sequential text
information, while ignoring the logic and internal hierarchy of the text itself. Although these approaches can
learn the hypothetical hierarchy and logic of the text, it is unexplained. In addition, the traditional approach
treats labels as independent individuals and ignores the relationships between them, which not only does
not reflect reality but also causes significant loss of semantic information. In this paper, we propose a novel
Hierarchical Graph Transformer based deep learning model for large-scale multi-label text classification.
We first model the text into a graph structure that can embody the different semantics of the text and the
connections between them. We then use a multi-layer transformer structure with a multi-head attention
mechanism at the word, sentence, and graph levels to fully capture the features of the text and observe
the importance of the separate parts. Finally, we use the hierarchical relationship of the labels to generate
the representation of the labels, and design a weighted loss function based on the semantic distances of
the labels. Extensive experiments conducted on three benchmark datasets demonstrated that the proposed
model can realistically capture the hierarchy and logic of text and improve performance compared with the
state-of-the-art methods.

INDEX TERMS Multi-label text classification, graph modeling, graph transformer, deep learning.

I. INTRODUCTION
Text classification is a significant and classical problem in
natural language processing [1]. One of the major topics to
be investigated in this field is multi-label hierarchical text
classification (MLHTC), which aims to assign (tag) a text
with multiple appropriate labels from hierarchical label struc-
tures. Such a structure can be a tree or a directed acyclic
graph indicating the parent-child relations between labels [2].
MLHTC methods have been utilized in an extensive range of
applications, including question answering, online shopping,
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and news tag organization [3]. It is an extremely meaningful
classification problem in real-world situations. In contrast to
single label or multi-class classification, the key challenges
of MLHTC involve utilizing its powerful text representation,
feature extraction, and label structure relationship exploration
capabilities.

The text representation model is a fundamental but chal-
lenging issue for natural language processing tasks [4]. Tra-
ditional text representation utilizes the vector space model
founded on the bag of words/phrases representation [5].
To handle downstream tasks, most natural language process-
ing tasks leverage the vector space model to model (repre-
sent) text, owing to its simplicity and effectiveness [6], [7].
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However, the vector space model loses a significant
amount of structural and semantic information that is use-
ful for text categorization. Recently, graph-based archi-
tecture has attracted increasing research attention for use
in social networks and recommendation systems [8]–[10].
It utilizes graphs to organize different types of data, which
better reflects real-world situations, and has achieved sat-
isfactory results. In contrast, there is limited research on
graph-based documentation representation [11]. Compared to
bag of words/phrases representation, graph-based document
modeling can preserve local sequential, non-consecutive,
and long-distance semantics, and consequently provides
improved classification accuracy [12], [13].

In recent years, deep learning models have achieved
state-of-the-art results across many domains, including a
wide variety of natural language processing (NLP) appli-
cations [14], [15]. These models can combine feature
extraction with a classifier to perform end-to-end learn-
ing of text classification. Examples include recurrent neu-
ral networks (RNNs) [16]–[19] and convolutional neural
networks (CNNs) [20]–[22]. RNNs can effectively process
the semantics of short text but are less able to capture seman-
tic features of longer text. Although bidirectional RNNs were
proposed to solve the aforementioned problem and perform
efficiently in many NLP tasks, the problem of training effi-
ciency is still unsolved. Unlike RNNs, CNNs use differ-
ent window sizes to perform one-dimensional convolution
of word vectors for all words in a sentence (available for
some information before and after, similar to an implicit n-
gram), and then use the maximum pool to obtain the most
important impact factor for processing downstream tasks.
However, owing to their n-gram-like mechanisms, the long-
distance semantic dependency among the words can be lost.
In summary, the existing deep learning methods cannot
simultaneously capture the non-consecutive, long-distance,
and sequential semantics of text.

Furthermore, unlike general single label or multi-class
tasks [23], an MLHTC must consider the independence and
hierarchies of distinct labels and imbalanced label space.
However, general NLP models based on deep learning can
only learn the features of the text, and have difficulty learn-
ing the intrinsic relationships between discrete labels. While
some proposed transfer learning methods consider the rela-
tions between hierarchical labels by sharing the weights from
different local models, one critical issue is that the number of
local classifiers depends on the depth of the label hierarchy.
This makes transfer learning impracticable for large-scale
text [24].

Inspired by recent work on graph representation learning
and attention neural networks [25]–[27], we propose a novel
Hierarchical Graph Transformer based deep learning model
called HG-Transformer for large-scale multi-label text clas-
sification. Our framework is composed of three substantial
components: graph-based document modeling, hierarchical
transformer encoder architecture for features extraction, and
weight-directed loss for label classification. The remainder of

FIGURE 1. Transformer - model architecture.

this paper is organized as follows: preliminaries are described
in Section 2, the architecture of our model is described in
Section 3, and the effectiveness of the proposed model is
demonstrated in Section 4, using tests on benchmark datasets
and comparisons with the state-of-the-art methods.

II. PRELIMINARIES
Attention: The attention mechanism was first introduced by
Bahdanau to resolve long source sentences in neural machine
translation (NMT). More recently, Google redefined the
attention mechanism known as ‘‘Scaled Dot-Product Atten-
tion.’’ First, they use a neural network to map the original
input into three matrices: query, key, and value. They then
compute the dot products of the query with all keys, divide
each by

√
dk , and adopt a softmax function to obtain the

weights (attention) on the values. Next, they use the weighted
value as the representation of each word. The complete cal-
culation formula is as follows:

Q,K ,V = ([WQ,WK ,WV ])h (1)

Attention(Q,K ,V ) = softmax(
QKT
√
dk

)V (2)

Transformer: This method was proposed by Google
for seq2seq tasks (such as language translation) in which
architectures forgo deep neural networks such as recur-
rent models and convolution models and instead rely com-
pletely on attention mechanisms to obtain global dependen-
cies [28]. The main point of the model is to compute the
self-attention between the different words in a sequence and
then re-represent the words in a sensible manner. It proved to
be extremely efficient compared with traditional deep neural
networks. The overall structure of the transformer consists
of an encoder and a decoder, as shown in the left and right
halves of Fig. 1, respectively. The encoder is composed of
a stack of six identical layers, and each layer contains two
sublayers, namely amulti-head self-attention layer and a sam-
ple feed-forward network. In contrast, the decoder introduces
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FIGURE 2. Graph-based document modeling.

multi-head attention over the output of the encoder in addition
to the two sublayers. We note that the author also employs
residual connections and layer normalization to avoid losing
original information. Readers can refer to [28] and [29] for a
more detailed description of the original architecture.

III. HIERARCHICAL GRAPH TRANSFORMER
We design a Hierarchical Graph Transformer for large-scale
multi-label text classification. Given a certain document,
we first covert sequence information to a graph of vectors.
We then use a three-layer transformer encoder to perform
self-attention at the word, sentence, and graph levels to obtain
a richer text representation that considers the logic and inter-
nal hierarchy of the text. Finally, we design a novel loss func-
tion based on label similarity in order to learn the hierarchy
and dependencies of the tags. Fig. 2 illustrates the overall
framework of the HG-Transformer.

A. GRAPH-BASED DOCUMENT MODELING
Unlike in traditional text representation, the graph is used to
model documents to better capture long-distance semantics
and the internal hierarchy of the text. Graph-based document
modeling consists of three components: the graph of word
co-occurrence relationships, an important word expanded
subgraph, and a regulation graph matrix.

1) GRAPH OF WORD CO-OCCURRENCE RELATIONSHIPS
Given a document, we first perform sentence tokenization
processing to split the document into several sentences. Then,
word tokenization is utilized to divide each sentence into its
component words. Simultaneously, lemmatization and stop
word removal processing standardize words to their base
form and remove words with no significant meaningful fea-
tures. For example, a sentence such as ‘‘My system keeps
crashing! His crashed yesterday, ours crashes daily’’ will be

transformed to ‘‘My system keep crash! his crash yesterday,
ours crash daily.’’ After we obtain the processed document,
we adopt a sliding window to obtain local co-occurrence rela-
tionships and build the word co-occurrence matrix. We then
regard the vertex and positional index of a word appearing
in the document as its attribute, and the co-occurrence rela-
tionships as its edge; as such, we obtain a graph of word
co-occurrence relationships, which can be denoted as G =
(V, E, N, P). V denotes the word set and |V | = n, E denotes
the co-occurrence set and |E| = m, N denotes the number
of co-occurrences, and P denotes the word position in the
document. For example, in the first section of Fig. 2 we obtain
a graph of word co-occurrence relationships.

2) IMPORTANT WORD EXPANDED SUBGRAPH
After we obtain the graph of word co-occurrence relation-
ships, we can select the top-N significant words accord-
ing to their contribution ranking. Here, we adopt TF-IDF
(term frequency-inverse document frequency) to calculate
word contributions. First, we can calculate the TF-IDF fea-
ture for each word and rank them from large to small.
The top-N words are selected as the root of the subgraph.
We then expand each word into subgraphs using breadth-first
search (BFS) and depth-first search (DFS). The size of the
subgraphs is limited to K nodes. Finally, we obtain N sub-
graphs, and each subgraph contains both the non-consecutive
and long-distance information for the important words in the
text, as shown in step 2 and step 3 of Fig. 2. Next, we discuss
how to build a regulationmatrix that is readable by our learner
model.

3) REGULATION GRAPH MATRIX
Although the subgraph can preserve both the non-consecutive
and long-distance information of an important word v in the
text, it loses the sequence information of the word in the
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original document. Thus, we must convert each subgraph
into a sequence of words by considering the vertex attribute.
For example, in a subgraph, we can use the node attribute
that indicates the word’s position in the original document
to order the node. In this manner, we can generate recon-
structed text that contains the non-consecutive, long-distance,
and sequence information of the subgraph. As shown in the
first line of the regulation graph matrix in step 4 of Fig. 2,
we convert the first subgraph G(v) into a sequence such as
‘‘Chrysler million new investments South America. Including
plants pickup trucks.’’ We note that the word sequence may
not match that of the sentence in the original document; thus,
we split each word sequence into several sentence blocks by
utilizing punctuation information.

We also rank sentence blocks by their length and select the
top-M sentence blocks. Meanwhile, we limit the number of
sentence blocks in each subgraph to S and limit the number
of words in each sentence block to W, which guarantees the
consistency and regularity of text data. For example, we can
choose the top 10 sentences as a candidate sentence block
and choose the average length of each sentence block as its
final length. If the number of sentences blocks in a sub-graph
less than 10, we use zero to pad it and if the number of
words less than average length, we also use zero to pad
it. Finally, for each document, we obtain an N × M × W
three-dimensional matrix, where N denotes the top-N impor-
tant words, M denotes the number of sentence blocks in
each subgraph, and W denotes the number of words in a
sentence block. To further improve the validity of the text
representation, we use word2vec to represent each word as
a dense vector of real numbers [30], [31]. Specifically, we set
the dimension of the word vector to D. Through this step,
we can finally obtain an N ×M ×W × D four-dimensional
matrix, where D denotes the dimension of the word vector,
as shown in Fig. 2.

B. HIERARCHICAL TRANSFORMER ENCODER
ARCHITECTURE
In this section, we introduce the hierarchical transformer
encoder model. After converting each document into a 4-
D matrix representation, we utilize a three-layer transformer
encoder model to learn both the hierarchy and logic features
of the text. Unlike the standard transformer, we only use the
encoder component, because we require the text extraction
feature for the classification task. The overall framework of
our model is shown in Fig. 3.
Let D denote a document comprised of a sequence of

Nd subgraphs. D = {g1, g2, . . . , gNd }. Each subgraph
g is comprised of a sequence of sentence blocks G =

{s1, s2, . . . , sNg}, where Ng denotes the number of sentences
blocks. Each sentence block is comprised of a sequence of
tokens S = {w1,w2, . . . ,wNs}, where Ns denotes the length
of the sentence. Additionally, each word w is represented by
an embedding vector.

We first employ the transformer encoder over the word
level, in order to take into account the relationships between

FIGURE 3. Hierarchical transformer model.

words in the same sentence. The words in a sentence have
a common context, and each word is a unit of expression
for the semantics of the sentence; thus, it is wise to limit
the focus of words to the scope of the sentence. In fact,
the transformer encoder maps an input sequence of word rep-
resentations (w1,w2, . . . ,wNs) to a sequence of continuous
representations z = (z1, z2, . . . zNs). The procedure can be
summarized as follows:

Attention(S) = softmax(
SST
√
dk

)S (3)

Z1
= Norm(S + Attention(S)) (4)

Z2
= Norm(Z1

+ FFN (Z1)) (5)

where S ∈ R(Ns,dw), Z2
∈ R(Ns,dz). We simply set dw = dz

After the transformer encoder process, each word captures
the semantics of the other words in the sentence. How-
ever, because we do not encode the position of the word,
we will lose some of the position information. To alleviate
this disadvantage, we introduced LSTM (long short-term
memory networks) to sequence-model the re-encoded words.
Note that although ordinary LSTM will lose the seman-
tic information of the previous text because of the length
of the sentence, the words re-encoded by the transformer
will retain the context information, thus solving the inher-
ent shortcomings of LSTM. The process of LSTM is as
follows:

hzt (enc) = LSTMword
encode(zt , h(t−1)(enc)) (6)

As Fig.4 (a) shows, the vector output at the ending
time-step is used to represent the entire sentence.

After we obtain the sentence encoder, we use the trans-
former encoder at the sentence level. Unlike the word-level
transformer, we consider the position of a sentence in a
subgraph and combine it with the sentence semantic vector
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FIGURE 4. Hierarchical transformer encoder architecture.

to represent the sentence. In this manner, the transformer
can capture the relationship between different sentences and
the position information of the sentences. The sentence-level
transformer can map a sequence of sentence block
representations(s1, s2, . . . , sNg) to a sequence of continuous
representations t = (t1, t2, . . . tNg).
Unlike the word-level transformer, we do not use LSTM to

process the transformer-recoded sentences, but use a simple
addition operation to represent the final subgraph encod-
ing. This not only saves a substantial amount of computing
resources, but also generates the ideal subgraph encoding.
The model is shown in Fig.4 (b)

Similar to the previous process, after obtaining the graph
encoder we employ the transformer encoder over the sub-
graph level to take into account the relationships between
the subgraphs in a document. Unlike at the word level and
sentence level, we do not consider location information at the
graph level. Because the subgraph is extended from important
words, we assume that each important word has equal status
in terms of position. The graph level transformer can map a
set of subgraph representations (g1, g2, . . . , gNg) to a set of
continuous representations l = (l1, l2, . . . lNl). Unlike the
sequential structure of the words in the previous sentence,
the sentence and word information in the subgraph do not
have sequence characteristics. Therefore, we introduce con-
volutional neural networks (CNNs) for feature extraction in
subgraphs. The model is shown in Fig.4 (c)

The final result sequentially extracts the features of the text
at the word, sentence, and subgraph levels, which can further
capture the hierarchy and logic information of the document.
We note that a word will not only pay attention to other words
in a sentence but also generate attention for words in other
sentences through the sentence-level transformer. Similarly,
a sentence can obtain information from the sentences in
other graphs through the graph-level transformer. Traditional
transformers treat words as the fundamental elements of a
document. Each word will pay attention to all the words in
the document, and ignore the context in which the word is
located. Hierarchical transformers are different from tradi-
tional flat transformers. We believe that a word should pay
more attention to the words in the sentence it belongs to
than to the words in other sentences. Similarly, the attention
between sentences in one sense-group will be greater than
their attention to sentences in other sense-groups (we can
think of a subgraph as a sense-group). Therefore, the hierar-
chical transformer can obtain the semantic information of the
document in a more reasonable and efficient manner. After
obtaining the encoding of the document, we can use it for
various tasks downstream.

C. HIERARCHICAL SIMILARITY-BASED WEIGHTED CROSS
ENTROPY LOSS
The traditional classification method treats a label as an
independent individual, without considering the relationships
between labels. This can result in a significant loss of tag
information, which will affect classification accuracy. More-
over, the unbalanced distribution of labels (that is, fewer
instances of most leaf labels will appear) will cause the train-
ing process to be insufficient, and no corresponding features
will be learned for a small number of labels. Therefore,
we propose a weight-directed loss function based on label
similarity. It considers the similarity between tags and can
solve the problem of uneven distribution of labels.

First, we define the hierarchical structure of the label as
L = (L,E). L represents the label, and E represents the
parent-child relationship between the labels. We must choose
the label representation to calculate the similarity of the
labels. Naturally, we can use the word vector of the label
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TABLE 1. Dataset statistics.

to represent the label, because the semantic information of
the label specifying the parent-child relationship is similar.
However, the simple semantic word vector only considers
the meaning of the labels literally and does not consider the
hierarchical relationship between the labels. In this manner,
the representation of the label will lose the most important
structured information, which is not conducive to the mea-
surement of similarity.

Inspired by the recent work on node embedding, we use
random walks to generate label sequences as corpus informa-
tion, and then use skip-gram to train the label sequences to
convert label representations into a continuous vector space
Vl ∈ RD. D denotes the embedded dimension of the label.

After obtaining the representation of the label, we use the
Euclidean distance to calculate the similarity between the
different labels:

Dis(i, j) =

√√√√ D∑
k=1

(V li
k − V

lj
k )

2 (7)

Then, the similarity can be defined as:

Simi,j = 1−
Dis(i, j)
|L|∑
k=1

Dis(i, k)

(8)

Next, in order to explore the relevance and hierarchy of
labels, we designed a similarity-based weight loss function
based on label similarity:

L = −
n∑
i=1

L∑
k=1

[yik log ŷ
i
k + λα

i
k (1− y

i
k ) log(1− ŷ

i
k )] (9)

where yk = 1 if and only if a digit of class k is present. λ is a
hyperparameter to control the weight of similarity. N denotes
the number of documents and L denotes the number of labels.
ŷ ∈ [0, 1] denotes the positive probability. αk ∈ [0, 1] is the
minimum distance from negative label k to the positive labels
set. Specifically, for a text ts, the positive label set is Ps ⊂ S.
Additionally, for any negative label k, the αk is:

αk = max
l∈Ps

(Siml,k ) (10)

IV. EXPERIMENTS
A. EXPERIMENT SETUP
Datasets: We conducted extensive experiments using three
publicly available datasets from various domains (sum-
marized in Table 1). The first two datasets, RCV1 and

RCV 1-2K, are related to news categorization. The third
dataset is AmazonCat-13K, which is related to product cat-
egorization. The detailed descriptions of each dataset are as
follows:

• Reuters Corpus Volume I (RCV1) [32]. RCV1 dataset
is a manually labeled newswire collection of Reuters
News from 1996 - 1997. The news documents are cat-
egorized with respect to three controlled vocabularies:
industries, topics, and regions. We use the topic-based
hierarchical classification as it has been the most pop-
ular in previous evaluations. There are 103 categories,
including all classes in the hierarchy (except for root).

• RCV1-2K. The RCV1-2K dataset has the same features
as the original RCV1 dataset but its label set has been
expanded by forming new labels from pairs of original
labels. There are 2456 labels in the RCV1-2K dataset.

• AmazonCat-13K. This dataset includes reviews (rat-
ings, text, helpfulness votes), product metadata (descrip-
tions, category information, price, brand, and image
features), and links (also viewed/also bought graphs).
In this paper, we focus on category information.

• Evaluation Metrics. We use standard rank-based eval-
uation metrics P@K (precision at k) and NDCG@K
(normalized discounted cumulative gain at k) to measure
the performance of all the methods [33]. For P@K and
NDCG@K, each documentt has a set of |L| ground
truth labels Lt = {l0, l1, l2 . . . , l|L|−1} and a list of Q
predicted labels, in order of decreasing probability Pt =
[p0, p1, p2 . . . , pQ−1]. The precision at k is P@K =
1
k

∑min(|L|,k)−1
j=0 relLi (Pt (j)), where

relL(p) =

{
1 if p ∈ L,
0 otherwise.

The NDCG at k is NDCG@K =
1

IDCG(Li,k)∑n−1
j=0

relLi (Pt (j))
ln(j+1) , where n = min(max(|Pi|, |Li|), k)

B. COMPARED METHODS
Flat baselines: These methods generally extract discrete fea-
tures such as the TF-IDF of the document and utilize them to
train a classificationmodel. The typical representatives of this
method are LR (logistic regression) and SVMs (support vec-
tor machines). We define them as ïĆat baselines because they
ignore both the relations among the words and the relations
among the labels and simply train a multi-class classifier.
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Neural Network Models: Many neural network models
have been proposed for multi-label text classification prob-
lems. For comparisons, we mainly use improved CNN- and
RNN-based models such as XML-CNN [3], Deep CNN [34],
HLSTM [35], HMCN-F [36], and HAN [37]. XML-CNN
introduces the CNN structure to handle multi-label text clas-
sification problems. RNN models such as Hierarchical Long
Short-term Memory Network (HLSTM) and Hierarchical
Attention Network (HAN) both utilize a two-layer RNN
structure to extract text features at the word level and sentence
level, respectively; HAN also introduces attention weights
to account for the effects of different locations. HMCN-F
fits its CNN layers to the label hierarchy, and each CNN
layer focuses on predicting the labels at the corresponding
hierarchical level.
Hierarchical Models: These methods employ hierarchical

or graphical label networks to build hierarchical classifi-
cation classifiers. Examples of hierarchical models include
Hierarchically Regularized Logistic Regression (HR-LR),
Hierarchically Regularized Support Vector Machines (HR-
SVM) [38], and Hierarchically Regularized Deep Graph
CNN (HR-DGCNN-3) [11]. For example, HR-DGCNN uses
graph structures to extract text features and utilizes regulars
to consider label relationships.
Tree and Embedding Based Methods: These methods

mainly focus on large-scale multi-label classification. Exam-
ples of such methods include FastXML [39], SLEEC [40],
and Parabel [41]. SLEEC (Sparse Local Embeddings for
Extreme Classification) projects labels into low-dimensional
vectors that can capture label relations and uses the k-nearest
neighbors when predicting. FastXML builds a tree-based
extreme multi-label classifier to handle MLHTC problems,
and includes a novel node partitioning formulation to speed
up the training process. Parabel [41] learns a balanced tag
hierarchy and generalizes the hierarchical softmax model to
save computing resources.
Variations of HG-Transformer: The Transformer model

has achieved state-of-art performance in most NLP tasks.
The basic structure of our proposed model is inspired by
Transformer architecture. In order to distinguish the two,
we call the general Transformer a Flat Transformer, and
refer to our proposed model as the Hierarchical Transformer.
We implemented several variants of these two types of Trans-
formers as follows. Flat Transformer (F-Transformer): gen-
eral Transformer without graph-based document modeling
and hierarchical similarity-basedweighted cross entropy loss.
Flat Graph Transformer (FG-Transformer): without hierar-
chical similarity-based weighted cross entropy loss. Flat
Transformer with Weighted Loss (F-Transformer-W): with-
out graph-based document modeling. Hierarchical Graph
Transformer (HG-Transformer(No W)): without hierarchical
similarity-based weighted cross entropy loss.

C. EXPERIMENTAL SETTINGS
All our experiments were performed on a 64-core Intel Xeon
CPU E5-2680 v4@2.40GHz with 512GB RAM and eight

NVIDIA Tesla P100-PICE GPUs. The operating system and
software platforms were Ubuntu 5.4.0, Python 3.6.2, and
Pytorch 0.4.0. The training and testing datasets are shown
in Table1. In the document modeling part, the top-N number
of important words is set to 100 (RCV1). The maximum
number of nodes in each subgraph is set to 50. The max-
imum number of sentences per subgraph is set to 5, and
the maximum length of each sentence is set to 10. We use
GloVe [42] (Global Vectors for Word Representation) with
size 50 as word embeddings for last document representation.
For label representation, we use node2Vec technology to
generate vector representation of the labels, with a dimension
of 50. All models are trained using an Adam optimizer with
an initial learning rate of 1e-6 and a weight decay of 1e-6.

D. PERFORMANCE COMPARISON
We compare the performance of our proposed method
HG-Transformer to state-of-the-art MLHTC methods and
show the results in Tables 2.

On RCV1, we can see that for traditional methods,
HR-SVM performs better than LR, SVM, and HR-SVM. One
of the main reasons is that HR-SVM is more complex and can
capture the nonlinear space feature.

For deep neural networkmethods, we can see that HLSTM,
HAN, and RCNN even achieve worse performance than tra-
ditional methods. The results above illustrate that the tradi-
tional deep neural network model does not provide as much
of an advantage as it does in other tasks. These recurrent
models are not suitable for long text tasks. However, DCNN
achieves the best performance among deep neural network
methods and it illustrates that the CNN model is more suit-
able for text classification than the RNN model. Specifically,
HR-DGCNN achieves better performance than HMCN-F on
P@K metrics while HMCN-F outperforms HR-DGCNN on
NDCG@K metrics. They all take advantage of the label
hierarchy information.

For embedding and tree-based models, one can see that
SLEEC achieves better performance than FastXML. One of
the main reasons is that SLEEC can learn embeddings that
preserve pairwise distances between only the nearest label
vectors. Parabel achieves better performance than SLEEC on
all five metrics, which illustrates the significance of label
hierarchy information.

For the Transformer models, one can see that the
graph-based document modeling, hierarchical transformer
mechanism, and hierarchical similarity-based weighted cross
entropy loss are all instrumental to improving classifica-
tion performance. Specifically, F-Transformer outperforms
most traditional models and neural network models, and
demonstrates that the Transformer model is effective in
extracting text features in multi-label text classification.
Meanwhile, F-Transformer-W achieves better performance
than F-Transformer, which shows that the model benefits
from the hierarchical similarity-based weighted cross entropy
loss. Moreover, FG-Transformer achieves better performance
than F-Transformer, thus demonstrating that graph-based
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TABLE 2. Results in P@k and NDCG@k.

document modeling can preserve more text semantic infor-
mation than sequential text modeling. Compared to the
flat transformer, one can see that HG-Transformer(No W)
performs better. These improvements show that the combi-
nation of graph-based document modeling and the hierar-
chical transformer can better extract text features. Finally,
HG-Transformer achieves the best performance on the five
metrics, which again demonstrates that graph-based docu-
ment modeling, the hierarchical transformer mechanism, and
hierarchical similarity-based weighted cross entropy loss are
all useful in improving classification performance.

On RCV 1-2K and AmazonCat-14K, similar results are
observed: the graph-based text modeling method, Trans-
former model, and hierarchical label similarity methods per-
form well, and our proposed method HG-Transformer again
achieves the best performance on all metrics.

V. EVALUATION ON GRAPH-BASED DOCUMENT
MODELING
In order to better capture the semantic features of the text,
we explore the number of subgraphs in graph-based docu-
ment modeling. We tested with different numbers of sub-
graphs using the RCV1 dataset, and the results are shown
in Table3. One can see that the number of subgraphs has a sig-
nificant effect on classification performance. Subgraphs are
extended from important words and the number of subgraphs
is the same as important words. Additionally, the nodes in
each subgraph, that is, words, are directly or indirectly related
to important words. Therefore, the selection of the appro-
priate number of important words will affect classification
performance. If the number of selected important words is too
small, the semantic information in the text will be lost and

TABLE 3. Comparison of different numbers of subgraphs on RCV1.

the model cannot fully extract the semantics. If the number
of selected important words is too large, some redundant
information will be introduced and the model will learn
useless information. As the table shows, the model has the
lowest performance on all metrics at 20 subgraphs, and at
this time, the graph-based document will lose some semantic
information. When the number of subgraphs is set to 100,
the model performs best on all classification metrics. It can
be considered that the graph-based document at this time
can fully extract the original semantics of the text. When
the number of subgraphs is 120, the model will provide poor
classification accuracy owing to the introduction of redundant
information. It is vital to choose an appropriate number of
subgraphs at the graph-based document modeling process to
optimize classification performance.

VI. EVALUATING DIFFERENT NUMBERS OF HEADS
A significant hyperparameter of the Transformer model is
the number of heads. We compared results obtained with
different numbers of heads through tests on the three datasets.
The experimental results are shown in Fig. 5. Fig. 5 shows
that on the RCV1 dataset, when the number of heads is two,
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FIGURE 5. Comparing performance obtained with different numbers of
heads on three datasets.

HG-Transformer performs best on all five metrics. When
the number of heads is greater than two, the experimen-
tal effect will rapidly decline. Fig. 5 b shows that on the
RCV 1-2K dataset, when the number of heads is set to 5,
HG-Transformer performs best on P@K and NDCG@5, and
when the number of heads is set to 10, NDCG@3 exhibits the
highest performance. Fig. 5 c shows that on the AmazonCat-
13K dataset, when the number of heads equals 10, p@1,
p@5, and NDCG@5 reach their maximum scores. When the
number of heads is set to 5, P@3 and NDCG@3 achieve the
maximum scores. Overall, the number of heads is directly
proportional to themagnitude of labels in the dataset. Because
multi-head attention allows the model to jointly attend to
information from different representation subspaces at dif-
ferent positions, it can capture features in different dimen-
sions. Each head of the transformer’s multi-head mechanism
corresponds to a feature subspace. An appropriate number

FIGURE 6. Word-level self-attention visualizations for the 2287newsML
sample in RCV1.

of feature subspaces can fully learn the potential various
feature relationships of the text and its mapping to corre-
sponding labels. Under the premise of our experimental setup,
the labels of one hundred, one thousand, and ten thousand
levels correspond to 2, 5, and 10 heads, respectively.

VII. EVALUATION ON HIERARCHICAL
SIMILARITY-BASED WEIGHTED CROSS ENTROPY LOSS
In order to study whether the proposed hierarchical
similarity-based weighted cross entropy loss can obtain
better classification results, we utilize the hierarchical
similarity-based weighted cross entropy loss and traditional
cross entropy loss to train our model; the comparison results
are shown in Table4.

On the RCV-1 dataset, we can see that the model trained
using hierarchical similarity-based weighted cross entropy
loss improves the performance by 1% in terms of P@1 and
P@3 and 2% in terms of P@5, NDCG@3, and NDCG@5,
compared with the model trained using traditional cross
entropy loss. For RCV1 2-K andAmazonCat-13K,we can see
that our proposed loss function outperforms the traditional
cross entropy loss function and provides an improvement
of 1% on average. It can be concluded that our proposed loss
function can help improvemodel performance comparedwith
the traditional cross entropy loss function. One of the main
reasons is that the hierarchical similarity-based weighted
cross entropy loss function can solve the problem of uneven
distribution of categories in themulti-label classification task,
and those labels with a small number of samples can be fully
trained through the hierarchical structure between the labels.

VIII. CASE STUDY
To further explore the hierarchical transformer mechanism
captured in a document, we visualize portions of the word
level self-attention probability using heatmaps, as shown
in Fig. 6. Fig. 6 shows the self-attention between different
words in a sentence block, taking the sentence ‘‘Chrysler
million new investments South America. Including plants
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TABLE 4. Comparison of loss functions.

pickup trucks’’ as an example. We can see that each word
pays themost attention to itself. Theword Chrysler paysmore
attention to the words ‘‘American’’ and ‘‘million.’’ The word
‘‘millions’’ has a greater focus on words ‘‘investments’’ and
‘‘plans.’’ It can be found that allocation of the attentionweight
of each word to other words in the sentence is consistent with
real-world intuition. This proves that our model can capture
text features well and is interpretable.

IX. RELATED WORK
In this section, we review related work in the following two
aspects.

A. TEXT REPRESENTATION
Text representation is the basis of natural language pro-
cessing, and reasonable text representation can significantly
improve the efficiency of downstream tasks; e.g., text clas-
sification, machine translation, sentiment analysis, question
and answer systems [43]. In recent years, text represen-
tation approaches have been developed significantly for
various applications [44]. Many text classification studies
focus on the bag-of-words (BOW) approach [45], [46],
in which each feature corresponds to a single vocabulary
word. Term frequency-inverse document frequency (TF-IDF)
is a very common method for transforming text into a
meaningful representation of numbers and is widely used
for feature construction [47], [48]. Owing to advances in
deep learning, the vector representations of words learned
by word2vec models based on deep learning have been
shown to carry semantic meanings and perform effectively
in many NLP tasks [49]. In other instances, researchers have
attempted to transform texts into graphs by utilizing word
co-occurrence [50].

B. TEXT FEATURE EXTRACTING
Recently, deep learning has shown its powerful capability to
handle various NLP tasks [51], [52]. For example, recurrent
convolutional neural networks use different window sizes for
one-dimensional convolution of word vectors for all words
in a sentence to capture text semantic features [53]. Recur-
rent neural networks (RNNs) can remember some informa-
tion regarding a sequence by maintaining a hidden state,
and are better suited to processing NLP tasks [16]. Addi-
tionally, long short-term memory networks (LSTM) and
gated recurrent units (GRUs) were proposed to improve the

original RNN model, and achieved significant performance
improvements [54]–[56]. Recently, the Transformer archi-
tecture based on the self-attention mechanism has exhib-
ited state-of-the-art performance in most NLP tasks, which
inspired us to propose a hierarchical transformer encoder
model.

X. CONCLUSION AND FUTURE WORK
In this paper, we propose a novel Hierarchical Graph Trans-
former for large-scale multi-label text classification. We first
model the text into a graph structure that can embody the
different semantics of the text and the connections between
them. To fully capture textual information, we introduce a
multi-layer transformer structure with a multi-head attention
mechanism at the word, sentence, and graph levels to fully
capture the features of the text and observe the importance
of the different parts. To explore the hierarchical relationship
between tags, we utilize the hierarchical relationship of the
labels to generate the representation of the label and design
a weighted loss function based on the semantic distance of
the label. Extensive experiments conducted on three bench-
mark datasets demonstrated that the proposed model can
realistically capture the hierarchy and logic of the text and
hierarchical relationship of the labels.

In the future, we plan to upgrade our transformer model
by utilizing more powerful BERT (Bidirectional Encoder
Representations from Transformers) pre-trained models and
increment embedding [57], [58].
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