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ABSTRACT In this paper, a stochastic SIRS epidemic model with general awareness-induced and four
independent Brownian Motions is established. We verify the global existence of a unique positive solution
and find out the noise modified reproduction number RS0 which is a sharp threshold for the dynamics:
If RS0 < 1, the disease will die out; if RS0 > 1, the disease persists and there exists a global asymptotically
stable stationary distribution under parameter restrictive conditions. Numerical simulations are presented to
illustrate the theoretical results.

INDEX TERMS Stochastic modeling, stability analysis, necessary and sufficient condition, stochastic
stabilization, stationary distribution.

I. INTRODUCTION
Compartmental epidemic models for infectious disease are
established to illustrate the transmission behaviour in a host
population. Classical SIR model partitions the host popula-
tion into the susceptible compartment S, the infectious com-
partment I and the recovered compartment R. At a time t, the
size of population in compartments S, I , and R are denoted by
S(t), I (t), and R(t), respectively. Ordinary differential equa-
tions that describe the changes of sizes in each compartment
can be written as

dS
dt
= 3− d1 S − (β1 − β2 f (I ))SI + δR

dI
dt
= (β1 − β2 f (I ))SI − (d2 + γ + α)I

dR
dt
= γ I − (d3 + δ)R. (1)

Parameter 3 denotes the influx of susceptible hosts, γ and
δ are the rate of transfers of hosts from compartment I to
R and from R to S, respectively. Accordingly, 1/γ is the
mean infectious period and 1/δ is the mean immune period.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

Parameter d1, d2, d3 are background mortality rates for com-
partment S, I and R [1]. Considering the effects of media cov-
erage though the transmission process, the incidence of the
disease in this model is given by a general awareness-induced
incidence bilinear expression (β1 − β2 f (I ))SI [2], where β1
is the direct contact rate, β2 is the maximum reduced
contact rate due to the effects of media coverage to
protected individuals. Based on biological considerations,
β1 ≥ β2 > 0, the function f (I ) satisfies the following basic
assumptions:

(H1) f (0) = 0, f ′(t) ≥ 0;
(H2) limI→∞ f (I ) = 1.
The total population N (t) = S(t)+ I (t)+R(t) satisfies the

equation

N ′(t) = A− d1S(t)− (d2 + α)I (t)− d3R(t),

so N (t) can vary with time. The basic reproduction number
of the deterministic model (1) is

R0 = β1/(γ + d2 + α),

which measures the average number of secondary infections
from a single infective host in an entirely susceptible popula-
tion during the host’s infectious period [3]. More specifically,
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if R0 ≤ 1, the disease-free equilibrium P0 = (A/d1, 0, 0)
is globally asymptotically stable which means the disease
will die out; if R0 > 1, P0 is unstable and there exist
an endemic equilibrium P∗ = (S∗, I∗,R∗) which is glob-
ally asymptotically stable, the endemic equilibrium P∗ =
(S∗, I∗,R∗) satisfies the following equations:

3− d1 S∗ − (β1 − β2 f (I∗))S∗I∗ + δR∗ = 0;

(β1 − β2 f (I∗))S∗I∗ − (d2 + γ + α)I∗ = 0;

γ I∗ − (d3 + δ)R∗ = 0.

To account for variability of the environment and stochastic-
ity in the disease transmission process, as well as uncertainty
in measurement of model parameters, various noise terms
have been introduced into model (1), an ODEmodel becomes
a system of stochastic differential equations (SDE). There are
generally two approaches to derive a SDEmodel. To describe
demographic stochasticity, Allen [4] discussed the approach
of deriving stochastic differential equations from the for-
ward Kolmogorov equation of continuous timeMarkov chain
models. Schramm and Dimitrov [5] describe threshold as a
random process, develop an extension to differential equation
models of dynamical systems. To incorporate stochasticity
in measurement and estimation of model parameters, noise
terms have been introduced into deterministic models as
perturbations to model parameters [6]–[13].

Some stochastic epidemic models exist disease-free equi-
librium, the stochastic threshold of the model has been
obtained [6]–[10]. Some stochastic epidemic models have no
disease-free equilibrium anymore, the asymptotic behavior
around the deterministic model’s disease-free equilibrium
and endemic equilibrium has been obtained [11]–[13].

It remains an open question find an appropriate form of
a sharp stochastic threshold(reproduction number) for the
dynamics of SDE epidemic models that plays the role of R0
for ODE models.

In the present paper, we add four different white noises
into the deterministic system (1) by perturbing model
parameters β1, d1, d2 + α and d3 to β1 + σ4Ḃ4(t), d1 +
σ1Ḃ1(t), d2+α+σ2Ḃ2(t) and d3+σ3Ḃ3(t), where σ1, σ2, σ3
are perturb intensities, then the deterministic model becomes
to

dS = [3− d1 S − (β1 − β2 f (I ))SI + δR]dt

+ σ1SdB1(t)− σ4SIdB4(t),

dI = [(β1 − β2 f (I ))SI − (d2 + γ + α)I ]dt

+ σ4SIdB4(t)+ σ2IdB2(t),

dR = [γ I − (d3 + δ)R]dt

+ σ3RdB3(t), (2)

We found out an improved stochastic noise reproduction
number RS0 which determine the extinction and persistence

of the disease.

RS0 =

β13
d1
−

σ 22
2 −

σ 243
2

2d21−d1σ
2
1

γ + d2 + α

= R0 −
σ 2
2

2
1

γ + d1 + α

−
σ 2
4

2
32

(d21 −
d1σ 21
2 )(γ + d1 + α)

. (3)

More specifically, if RS0 < 1, the disease dies out almost
surely; if RS0 > 1, the disease will weakly persistence and
there exist a stationary distribution. The main contributions
of this paper are summarized as follows:

• Compared with the previous works on stochastic mod-
eling of epidemic models, the general SIRS model(2) is
stochastic perturbed by four independent noises which
enable the non-existence of disease-free equilibrium.
It expends the adding method of parameter perturbation,
contain previous works as special cases.

• The stability necessary and sufficient condition of the
general SIRS model is obtained which is a sharp thresh-
old for the disease dynamics. Our definition of RS0 con-
tains the deterministic model’s RD0 ,some stochastic SIS
models’ stochastic reproduction number and SIRS mod-
els’s stochastic reproduction number as special cases.

• Stochastic perturbations paly a positive role in disease
extinction as they lower the reproduction number RS0 .
This agrees with control strategies on stochastic sta-
bilization of a given unstable system [14]–[19], and
provide a new thinking of disease Control.

In section 2, we prove the global existence of positive
solutions. Stability analysis of the disease-free equilibrium
is carried out in Section 3. In section 4, we give the per-
sistence results in two versions: weak stochastic persistence,
the existence of a globally stable stationary distribution under
the condition RS0 > 1. In section 5, An example and numer-
ical simulations are provided to substantiate our theoretical
results.

II. EXISTENCE OF THE GLOBAL POSITIVE SOLUTION
Let (�,F , {Ft }t≥0,P) be a complete probability space with
a filtration{Ft }t≥0. We use (B1(t),B2(t),B3(t) and (B4(t)
to denote independent Brownian motions defined on the
probability space. To establish that model (2) is well-posed,
we show that the model has a unique global positive solu-
tion. Uniqueness of the solution follows from the Lipschitz
properties of the coefficients of drift term and diffusion term.
Global existence of solutions typically requires linear growth
condition [14], which does not hold in model (2) because of
the bilinear incidence. In this section, we first show that there
exist a unique maximal positive solution, and then prove that
this solution is global.
Theorem 2.1: For any initial data (S(0), I (0),R(0)) ∈ R3+,

the stochastic SIRS epidemic model (2) has a unique positive
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solution (S(t), I (t),R(t)) ∈ R3+ that exists for all t ≥ 0 with
probability one.

Proof: For any given initial data (S(0), I (0),R(0)) ∈ R3+,
Lipschitz property of the right-hand-side functions implies
that a unique local positive solution (S(t), I (t),R(t)) ∈ R3+
exists in a maximal interval [0, τe), where τe ≤ +∞ is the
escape time from R3

+ [14]. For t ∈ [0, τe), a solution can be
expressed as

S(t) = ϕ1(t)
[
S0 +

∫ t

0
(3+ δR(s))ϕ−11 (s)ds

]
,

I (t) = I0ϕ2(t),

R(t) = ϕ3(t)[R0 + γ
∫ t

0
I (s)ϕ−13 (s)ds],

where

ϕ1(t) = exp
{ ∫ t

0

[
− (β1 − β2f (I (u))I (u)− d1 −

σ 2
1

2

−
σ 2
4 I

2(u)

2

]
du+ σ1B1(t)−

∫ t

0
σ4I (u)dB4(u)

}
,

ϕ2(t) = exp
{ ∫ t

0

[
(β1 − β2f (I (u))S(u)− d2 − α − γ

−
σ 2
4 S

2(u)+ σ 2
2

2

]
du+ σ2B2(t)

+

∫ t

0
σ4S(u)dB4(u)

}
,

ϕ3(t) = exp
[
(−d3 − δ −

σ 2
3

2
)t

+ σ3B3(t)
]
.

Therefore, with probability 1, a sample path of model (2)
starting in R3+ will remain in R3+ for as long as the solution is
defined. The escape time τe is then the blow-up time, and we
need to show that τe = ∞ almost surely. Let k0 be sufficiently
large such that S(0), I (0),R(0) all lie with the interval(0, k0),
For each integer k > k0, define the stopping time

τk = inf{t ∈ [0, τe) S(t)+ I (t)+ R(t) ≥ k},

where inf∅ = ∞. Set τ∞ = limk→∞ τk , then τ∞ ≤ τe.
It suffices to prove that τ∞ = ∞ a.s. for all t ≥ 0. Suppose on
the contrary that τ∞ <∞. Then there exists pair of constants
T > 0 and ε ∈ (0, 1) such that P{τ∞ ≤ T } > ε, and thus
there exists integer k1 ≥ k0 such that P{τk ≤ T } ≥ ε for all
k ≥ k1.

Consider function V (S, I ,R) = S + I + R. Using the Itȯ
formula, for any t ∈ [0,T ] and k ≥ k1

EV (S(t ∧ τk ), I (t ∧ τk ),R(t ∧ τk ))

= V (S(0), I (0),R(0))+ E
∫ t∧τk

0
LV (S(s), I (s),R(s))ds,

where LV satisfies

LV (S, I ,R) = A− d1 S − (d2 + α)I − d3 R ≤ A.

Therefore,

EV (S(t), I (t),R(t)) ≤ V (S(0), I (0),R(0))+ AT ,

here t ∈ [0,T ]. Set �k = {τk ≤ T } ⊂ �, then ω ∈ �k and
k ≥ k1 imply that S(τk )+ I (τk )+ R(τk ) ≥ k , hence

V (S(0), I (0),R(0))+ AT

≥ E[I�k (ω)V (S(τk ), I (τk ),R(τk ))]

≥ εk.

Letting k → ∞, we have V (S(0), I (0),R(0)) + AT > ∞,
a contradiction. �

III. THE BASIC REPRODUCTION NUMBER
AND THRESHOLD THEOREM
Let RS0 be given in (3). We establish in this section that RS0 is
a sharp threshold for the stability of the disease-free solution
P̄0 = (S̄, 0, 0), where S̄ is the solution of

dS(t) = (3− d1 S)dt + σ1 SdB1(t).

Before proving the main theorem we put forward a lemma.
Lemma 3.1: Considering the following stochastic

differential equation

dx(t) = (3− d1 x(t))dt + σ1 x(t)dB1(t). (4)

where A, d1, σ1 are constants. The solution is stable in
distribution, ergodic and satisfies

lim
T→∞

1
T

∫ T

0
x(t)dt =

3

d1
,

lim
T→∞

1
T

∫ T

0
x2(t)dt =

232

2d21 − d1σ
2
1

. (5)

Proof: The integral form of (4) can be written as

x(T ) = x(0)+3T − d1

∫ T

0
x(t)d+ σ1

∫ T

0
x(t)dB(t).

Dividing both sides by T and sending T →∞, applying the
ergodic property of the stationary distribution [20] and also
the large number theorem of martingales, we have the result
that

lim
T→∞

1
T

∫ T

0
x(t)dt =

3

d1
. (6)

Then we need to prove that

lim
T→∞

1
T

∫ T

0
x2(t)dt =

232

2d21 − d1σ
2
1

. (7)

To find the second moment of x(t),we use Itô’s formula

d(x2(t)) = (σ 2
1 − 2d1)x2(t)dt + 23x(t)dt + 2σ1x2(t)dB1(t).

Using the same method and combining the mean moment of
the stationary distribution, we obtain

lim
T→∞

1
T

∫ T

0
x2(t)dt =

232

2d21 − d1σ
2
1

.

We now prove the main theorem.
Theorem 3.2: The disease-free solution P̄0 = (S̄, 0, 0) is

almost surely asymptotically stable if RS0 < 1 and is almost
surely unstable if RS0 > 1.

29650 VOLUME 8, 2020



X. Zhong et al.: Sharp Threshold for the Dynamics of a SIRS Epidemic Model

Proof:We use the method of linearization for the stabil-
ity analysis. Consider the linearized system at P̄0:

dx(t) = [−d1 x(t)− β1S̄y(t)+ δz(t)]dt

+ σ1x(t)dB1(t)− σ4S̄y(t)dB4(t),

dy(t) = [β1S̄ − γ − d2 − α]y(t)dt

+ σ2y(t)dB2(t)+ σ4S̄y(t)dB4(t),

dz(t) = [γ y(t)− (d3 + δ)z(t)]dt

+ σ3z(t)dB3(t). (8)

The analytic solution of the second equation in (8) is

y(t) = y(0)exp
{ ∫ t

0

[
β1S̄(u)− γ − d2

− α −
σ 2
2

2
−
σ 2
4

2
S̄2(u)

]
du

+ σ1B1(t)+ σ4

∫ t

0
S̄(u)dB4(u)

}
. (9)

From lemma 3.1, S̄(t) satisfies

lim
t→∞

1
t

∫ t

0
S̄(u)du =

3

d1
; (10)

lim
t→∞

1
t

∫ t

0
S̄2(u)du =

232

2d21 − d1σ
2
1

; (11)

Combining with the fact that Bi(t) satisfy Bi(t)/t → 0 a.s.
as t →∞, we arrive at

lim sup
t→∞

1
t
log | y(t) | =

β13

d1
− γ − d2 − α

−
σ 2
2

2
−

σ 2
43

2

2d21 − d1σ
2
1

.

Let

λ1 =
β3

d1
− γ − d2 − α −

σ 2
2

2
−

σ 2
43

2

2d21 − d1σ
2
1

,

λ2 = −d3 − δ −
σ 2
3

2
. (12)

Then λ2 < 0. IfRS0 > 1, then λ1 > 0, and y(t) ≥ exp(λ1t) a.e.
for sufficiently large t. Therefore y(t) → ∞ exponentially,
and P̄0 is a.e. unstable.

Suppose that RS0 < 1. Then λ1 < 0. This implies that
y(t) → 0 exponentially a.s. as t → ∞. Hence for any
0 < ε1 < −λ1, there a ξ > 0 such that

|y(t)| ≤ ξ exp
[
(λ1 + ε1)t

]
. (13)

From the third equation of system (8) and by the Itȯ’s formula,
we can derive the following relation

z(t) = eλ2 t+σ3B3(t)
[
z(0)+

∫ t

0
γ y(s)e−λ2 s−σ3B3(s)ds

]
. (14)

Since Bi(t)/t →∞, i = 1, 2, 3, there exist T > 0 and ε2 > 0
such that

|Bi(t)| ≤ ε2 t, t ≥ T , a.s.

with

λ1 + ε1 + 2|σ3|ε2 < 0 (15)

λ2 + |σ3|ε2 < 0 (16)

Substituting (13) into (14) we obtain

|z(t)| ≤
[
|z(0)| +

∫ T

0
γ |y(s)|

×e−λ2 s−σ3B3(s)ds
]
eλ2t−σ3B3(t)

+eλ2t−σ3B3(t)
∫ t

T
γ ξe(λ1+ε1−λ2)s+|σ3|ε2 sds

≤

[
|z(0)| +

∫ T

0
γ |y(s)|

×e−λ2 s−σ3B3(s)ds
]
eλ2t−σ3B3(t)

+γ ξe(λ2+|σ3|ε2)t
∫ t

T
e(λ1+ε1−λ2+ε2|σ3|)sds

≤ (C1 + C2)e(λ2+|σ3|ε2)t + C3e(λ1+ε1+2|σ3|ε2)t ,

where

C1 = |z(0)| +
∫ T

0
γ |y(s)|e−λ2 s−σ3B3(s)ds,

C2 =
γ |ξ |

|λ1 − λ2λ+ ε1 + ε2σ3|
e(λ1−λ2λ+ε1+ε2σ3)T ,

C3 =
γ |ξ |

|λ1 − λ2λ+ ε1 + ε2σ3|
.

Therefore, |z(t)| → 0 exponentially a.s. as t →∞. A similar
argument can be used to show that |x(t)| → 0 exponentially
a.s. as t → ∞. Summarize all the three results, the largest
Lyapunov exponents of the linearized system (8) are nega-
tive. By the Oseledec Multiplicative Ergodic Theorem [21],
we conclude the disease-free solution (S̄, 0, 0) of system (2)
is almost sure exponentially stable if RS0 < 1. �
Remark 1: In theorem 2, we gain necessary and sufficient

conditions related to the basic reproduction number RS0 (3) for
the stochastic SIRS model’s stability behaviour. Our method
is different from Lyapunov function method which typi-
cally provides only sufficient conditions of the disease-free
equilibrium.
Remark 2: If d1 = d2 = d3 = µ and α = σ4 = 0,

our stochastic SIRS model(2) becomes to the model in ref-
erence [11]. They point out that RD0 does not exceed a critical
level, which has been proved theoretically in this paper. The
stochastic reproduction number is

RS0 =
β13

µ(µ+ γ )
−

σ 2
2

2(µ+ γ )
= RD0 −

σ 2
2

2(µ+ γ )
.

Remark 3: If f (I ) = αβI
β2(1+αI )

, β1 = β, α = ε, d1 = d2 =
d3 = µ, σ4 = σ and σ1 = σ2 = σ3 = 0, our stochastic SIRS
model(2) becomes to the model in Jiang et al. [7]. They have
obtained a threshold of the stochastic system

R̃0 =
β13

µ(µ+ γ + ε)
−

σ 232

2µ2(µ+ γ + ε)
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If R̃0 < 1,I (t) tends to zero exponentially. This threshold R̃0
is equivalent to our RS0 .
Remark 4: If σ1 = σ2 = σ3 = σ4 = 0, our stochastic SIRS

model(2) becomes to the deterministic model(1). There is a
disease-free equilibrium ( 3d1 , 0, 0), the stochastic reproduc-
tion numberRS0 equals toR

D
0 . By theorem 3.1, the disease-free

equilibrium is asymptotically stable.
Regarding the global asymptotic stability of P̄0, we have

the following result.
Theorem 3.2: Assume that the stochastic reproduction

number RS0 < 1 and the direct contact transmission coef-

ficient satisfies β1 < σ4

√
2(γ + d2 + α +

σ 22
2 ), Then for

any given initial data (S(0), I (0),R(0)) ∈ R3
+, the solution

(S(t), I (t),R(t)) of model (2) has the property

lim sup
t→∞

1
t
log(I (t)) < 0, a.s.

which means the disease will die out globally.
Proof: By the Itô formula, we have

log(I (t)) = log(I (0))+
∫ t

0
[(β1 − β2 f (I (u)))S(u)

− γ − d2 − α −
σ 2
4 S(u)

2

2
−
σ 2
2

2
]du

− σ2B2(t)+ M̄ (t), (17)

where M̄ (t) =
∫ t
0 σ4S(u)dB4(u) is a continuous local martin-

gale. By the exponential martingale inequality (see Mao [14],
Theorem 7.4 on P44) and Borel-Cantelli’s Lemma, we get
that for almost all ω ∈ �, there exits a random integer k0(ω)
such that if k > k0,

M̄ (t) ≤
1
2
v
∫ t

0
σ 2
4 S

2(u)du+
2
v
ln k, (18)

for all t ∈ [0, k]. Combining (17) and (18) we obtain

log(I (t)) = log(I (0))+
∫ t

0
[(β1 − β2 f (I (u)))S(u)

− γ − d2 − α −
(1− v)σ 2

4 S(u)
2

2

−
σ 2
2

2
]du− σ2B2(t)+

2
v
ln k.

We define LV (x) as

LV (x) = (β1 − β2 f (x))S(u)− γ − d2 − α

−
(1− v)σ 2

4 S(u)
2

2
−
σ 2
2

2
,

Noting that

LV (I (u)) ≤ β1 S(u)− γ − d2 − α

−
(1− v)σ 2

4 S(u)
2

2
−
σ 2
2

2

≤
β21

2(1− v)σ 2
4

− γ − d2 − α −
σ 2
2

2
,

it follows that

log(I (t)) = log(I (0))+ [
β21

2(1− v)σ 2
4

− γ − d2 − α −
σ 2
2

2
]t

+
2
v
ln k − σ2B2(t).

Thus for k − 1 ≤ t ≤ k , we have

lim sup
t→∞

1
t
log(I (t)) ≤

β21

2(1− v)σ 2
4

− γ − d2 − α −
σ 2
2

2

− lim sup
t→∞

σ2B2(t)
t

.

By the low of large numbers to the Brownian motion and
sending v→ 0

lim sup
t→∞

1
t
log(I (t)) ≤

β21

2(1− v)σ 2
4

− γ − d2 − α −
σ 2
2

2
≤ 0,

which means I (t) is almost sure exponentially stable in the
large. Whence the proof is complete. �

IV. STOCHASTIC PERSISTENCE
In this section we establish that the disease persists in the
population if RS0 > 1. There are several concepts of stochastic
persistence [6], [10]. Firstly, We demonstrate weakly persis-
tence of our stochastic SIRS model.
Theorem 4.1: If RS0 > 1,then the disease will be weakly

persistent.
Proof: If it’s not true, there is a ε ∈ (0, 1),such that

p(�1) > ε.

�1 = {ω| lim sup
t→∞

I (t) = 0}

so for every ω ∈ �1, there is a T1 = T1(ω) > 0,such that

I (t) = 0, t > T1,

as we know

R(t, ω) = e−(d3+δ+
σ23
2 )t+σ3B3(t)[R(0, ω)

+

∫ t

0
γ I (s, ω)e(d3+δ+

σ23
2 )s−σ3B3(s)ds]

= e−(d3+δ+
σ23
2 )t+σ3B3(t)[R(0, ω)

+

∫ T1

0
γ I (s, ω)e(d3+δ+

σ23
2 )s−σ3B3(s)ds],

so for any ε > 0, there exist T2 = T2(ω) > 0, such that

R(t) ≤ ε, t > T2.

For t > T = max{T1,T2}, using Lemma 3.1 we know

lim
t→∞

1
t

∫ t

0
S(u)du =

3+ δε

d1
;

lim
t→∞

1
t

∫ t

0
S2(u)du =

2(3+ δε)2

2d21 − d1σ
2
1

; (19)
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Moreover by the large number of martingales, there is also a
set �2 such that for every ω ∈ �2,

lim
t→∞

[
1
t

∫ t

0
σ4S(s)dB4(s)+

σ2B2(t)
t

] = 0.

Since p(�2) = 1, we can find some ω ∈ �1 ∩�2. Now fixed
any ω1 ∈ �1 ∩�2 for t > T (ω1),

f (I (t, ω)) = 0

log(I (t, ω)) = log(I (0))+
∫ t

0
[β1(S(s, ω)− γ − d2

−α −
σ 2
2

2
−
σ 2
4 S

2(s, ω)

2
]ds

+

∫ t

0
σ4S(s)dB4(s)+ σ2B2(t)

Using (19) and sending ε→ 0, the above equation yields

lim inf
t→∞

1
t
log(I (t, ω)) =

β13

d1
− γ − d2 − α

−
σ 2
1

2
−

σ 2
4A

2

2d21 − d1σ
2
1

> 0

which means limt→∞ I (t) = ∞, however this contradicts
I (t) = 0. The proof is complete. �
Next, we concentrate on the existence of stationary dis-

tribution. To prove the main results, we need Khasminskii’s
stationary distribution theorem [21]. let X (t) be a regular
time-homogeneousMarkov process described by the stochas-
tic differential equation

dX (t) = b(X )dt +
k∑

r=1

σr (X )dBr (t).

The diffusion matrix is defined as follows:

A(x) = (aij(x)), aij(x) =
k∑

r=1

σ ir (x)σ
j
r (x)

Lemma 4.2: The Markov process X (t) has a unique sta-
tionary distribution µ if there exists a open bounded domain
U ⊂ Rl ,and the condition are satisfied.

(A) In the domain U and some neighborhood thereof,
the smallest eigenvalue of the diffusion matrix A(x) is
bounded away from zero.

(B) If x ∈ Rl U , the mean time τ at which a path issuing
from x reaches the set U is finite, and supx∈K E

xτ < ∞

for every compact subset K ⊂ Rl . Let f (·) be a function
integrable with respect to the measure µ. Then

P(limT→∞
1
T

∫ T

0
f (X x(t))dt =

∫
Rl
f (x)µ((d)x)) = 1,

for all x ∈ Rl .

Before the main proving, Let us introduce five parameters
which will be used in Theorem 4.3

ω1 =
2d2(δ + d1 + d3)

δ
−
[2(d1 + d2 + α)

β
]

+
2(d1 + d3)(d1 + d2 + α + γ )

δ

+
2(d1 + d3 + δ)

δI∗
] I∗σ 2

1

2
,

ω2 =
2δ(d2 + α)+ 2(d1 + d3)(α + d2 + γ )

δ

−
δ + d1 + d3

δ
σ 2
2 ,

ω3 =
2[d3γ + (d2 + α − d1)(d3 + δ)]

γ

−
γ + d2 + α − d1

γ
σ 2
3 ,

$ =
a2I∗σ 2

2

2
+

(d1 + d3)2(S∗)2

ω1δ2
+
a22(S

∗)2

ω2

+
(d2 + α − d1)2(R∗)2

γ 2ω3
−

(d1 + d3)(S∗)2

δ

−a2(I∗)2 −
(d2 + α − d1)(R∗)2

γ

a2 =
2(d1 + d2 + α)

β

+
2(d1 + d3)(d1 + d2 + α + γ )

δ
.

Theorem 4.3: If RS0 > 1 and $ <
(d1+d3)2(S∗)2

δ2ω1
∧

a22(I
∗)2

ω2
∧

(d2+α−d1)2(R∗)2

γ 2ω3
, Then there exists a stationary distribution for

the stochastic system (2).
Proof: Since R0 ≥ RS0 > 1,then there exists a positive

equilibrium (S∗, I∗,R∗) of the deterministic SIRS model,
it satisfies

3 = d1S∗ + (β1 − β2f (I∗))S∗I∗ − δR∗,

(β1 − β2f (I∗))S∗ = γ + d2 + α,

γ I∗ = (d3 + δ)R∗. (20)

Define a positive function as follows

V (S, I ,R) = (S + I + R− S∗ − I∗ − R∗)2

+ a1(S + I − S∗ − I∗)2

+ a2(I − I∗ − I∗ln
I
I∗

)

+ a3(R− R∗)2

= V1 + a1V2 + a2V3 + a3V4.

Here a1, a2, a3 are constants to be specified later. By Itô’s
formula, we obtain

LV1 = 2(S − S∗ + I − I∗ + R− R∗)[A

− d1S − (d2 + α)I − d3 R]+ σ 2
1 S

2

+ σ 2
2 I

2
+ σ 2

3R
2.
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Adding the three equations in (20), we get A = d1S∗+ (d2+
α)I∗ + d3R∗, using this to replace A gives

LV1 = 2(S − S∗ + I − I∗ + R− R∗)[−d1(S − S∗)

−(d2 + α)(I − I∗)− d3(R− R∗)]

+σ 2
1 S

2
+ σ 2

2 I
2
+ σ 2

3R
2

= −2d1(S − S∗)2 − 2(d2 + α)(I − I∗)2

−2d3(R− R∗)2 + σ 2
1 S

2
+ σ 2

2 I
2
+ σ 2

3R
2

−2(d1 + d2 + α)(S − S∗)(I − I∗)

−2(d1 + d3)(S − S∗)(R− R∗)

−2(d2 + d3 + α)(I − I∗)(R− R∗).

To calculate V2

LV2 = 2(S − S∗ + I − I∗)[A− d1S − (γ + d2 + α)I

+ δR]+ σ 2
1 S

2
+ σ 2

2 I
2. (21)

Substituting (20) into (21) yield

LV2 = 2(S − S∗ + I − I∗)[A− d1S − (γ + d2 + α)I

+δR]+ σ 2
1 S

2
+ σ 2

2 I
2

= 2(S − S∗ + I − I∗)[−d1(S − S∗)

−(α + d2 + α)(I − I∗)

+δ(R− R∗)]+ σ 2
1 S

2
+ σ 2

2 I
2

= −2d1(S − S∗)2 − 2(α + d2 + γ )(I − I∗)2

+σ 2
1 S

2
+ σ 2

2 I
2

−2(d1 + d2 + α + γ )(S − S∗)(I − I∗)

+2δ(S − S∗)(R− R∗)+ 2δ(I − I∗)(R− R∗)

we calculate V3 and use (20) as above we get

LV3 = (1−
I∗

I
)(βS − γ − d2 − α)I +

I∗

2
(σ 2

4 S
2
+ σ 2

2 )

= β(S − S∗)(I − I∗)+
I∗

2
(σ 2

4 S
2
+ σ 2

2 ),

we calculateV4

LV4 = 2(R− R∗)[γ I − (d3 + δ)R]+ σ 2
3R

2

= 2γ (R− R∗)(I − I∗)− 2(d3 + δ)(R− R∗)2

+σ 2
3R

2.

Selecting coefficients a1 =
d1+d3
δ
, a2 =

2(d1+d2+α)
β

+

2(d1+d3)(d1+d2+α+γ )
δ

, a3 =
d2+α−d1

γ
,we obtain

LV = −
2d1(δ + d1 + d3)

δ
(S − S∗)2

−
2δ(d2 + α)+ 2(d1 + d3)(α + d2 + γ )

δ
(I − I∗)2

−
2[d3γ + (d2 + α − d1)(d3 + δ)]

γ
(R− R∗)2

+
[2(d1 + d2 + α)

β

+
2(d1 + d3)(d1 + d2 + α + γ )

δ

] I∗σ 2
2

2

+
[2(d1 + d2 + α)

β
+

2(d1 + d3)(d1 + d2 + α + γ )
δ

+
2(d1 + d3 + δ)

δI∗
] I∗σ 2

1

2
S2

+
δ + d1 + d3

δ
σ 2
2 I

2
+
γ + d2 + α − d1

γ
σ 2
3R

2.

Using the coefficients determined above, we obtain

LV = −ω1(S − S̄)2 − ω2(I − Ī )2 − ω3(R− R̄)2 +$.

If$ satisfies the following condition

$ < ω1S̄2 ∧ ω2 Ī2 ∧ ω3R̄2,

then we find out the ellipsoid U

ω1(S − S̄)2 + ω2(I − Ī )2 + ω3(R− R̄)2 = $

stay in R3+. Taking U to be a neighborhood of the ellipsoid
such that Ū ∈ R3+, then the inequality (S, I ,R) ∈ R+3 \
U ,LV < 0 holds, which implies the condition (B2) in
reference [21] is satisfied. On the other hand, it is to see
that the diffusion matrix is uniformly elliptic in U . Thus the
stochastic system (2) has a stationary distribution µ(·) and it
is ergodic. �

V. NUMERICAL SIMULATIONS ANALYSIS
In this section, we provide three numerical simulation results
for the stochastic model(2) to substantiate theoretical find-
ings: threshold theorem in section 3 and persistence theorem
in section 4. Using Milstein’s higher order method [22], [23],
the numerical equations are

Sk+1 = Sk + (3− d1Sk − (β1 − β2f (Ik ))Sk Ik + δRk )1t

+ σ1Sk
√
1tξ1,k +

1
2
σ 2
1 S

2
k (ξ

2
1,k − 1)1t

− σ4Sk Ik
√
1tξ4,k +

1
2
σ 2
4 S

2
k I

2
k (ξ

2
4,k − 1)1t,

Ik+1 = Ik + [(β1 − β2f (Ik ))Sk Ik − (d2 + γ + α)Ik ]1t

+ σ2Ik
√
1tξ2,k +

1
2
σ 2
2 I

2
k (ξ

2
2,k − 1)1t

+ σ4Sk Ik
√
1tξ4,k +

1
2
σ 2
4 S

2
k I

2
k (ξ

2
4,k − 1)1t,

Rk+1 = Rk + [γ Ik − (d3 + δ)Rk ]1t

+ σ3Rk
√
1tξ3,k +

1
2
σ 2
3R

2
k (ξ

2
3,k − 1)1t, (22)

where ξ1,k , ξ1,k , ξ1,k , ξ1,k , k = 1, 2, . . . , n are independent
stochastic variables N(0,1).

Note that

RS0 =

β1 A
d1
−

σ 22
2 −

σ 24 A
2

2d21−d1σ
2
1

γ + d2 + α

= R0 −
σ 2
2

2
1

γ + d1 + α

−
σ 2
4

2
A2

(d21 −
d1σ 21
2 )(γ + d1 + α)

.
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TABLE 1. The fixed parameters of model (2).

TABLE 2. The variable parameters of model (2).

FIGURE 1. Extinction behaviour under the conditions: RS
0 < 1 and R0 < 1.

According to the structure of the reproduction number,
we assume some fixed parameters in table 1 and some vari-
able parameters in table 2. Modifications of the parameters in
table 2 will cause the fluctuation of R0 and RS0 around 1.

Firstly, we give two examples to support the threshold the-
orem 3.1: under the condition of RS0 < 1, disease will die out
no matter the value of R0 lower or bigger than 1. we assume
that f (I ) = I

I+1 and the initial values are (480,320,200).
In figure 1, we choose the first row’s parameters in table 2
which guarantee RS0 ≤ R0 < 1. Fig.1(a) and Fig.1(b)
present two different sample paths of S(t), I (t),R(t). Both of
the infective class go to 0. To illustrate the extinction situa-
tion in probability, we also statistics 40000 times simulation

FIGURE 2. Extinction behaviour under the conditions: RS
0 < 1 but R0 > 1.

results on S(10000),I (10000) and R(10000), the frequency
histogram show the extinction of disease.

In figure 2, we choose the second row’s parameters in
table 2 which guarantee RS0 < 1. Since R0 > 1, the deter-
ministic model(1) has an endemic equilibrium E∗ which is
globally asymptotical stable. By theorem 3.1, I(t) of sys-
tem(2) tends to 0. we can observe that the sample paths of the
solution converge to (S̄,0,0) in Fig.2(a) and Fig.2(b), where S̄
is the solution of dS = (3−d1 S)dt+σ1 SdB(t). 40000 times
stochastic simulations on S(10000),I (10000) and R(10000)
also be presented in Figure 2 (c), it clearly show the extinction
of disease.

To investigate the persistence behaviour, we use the third
row’s parameter in table 2 which satisfy the condition
in Theorem 4.1 and 4.2. We can compute the determin-
istic model’s endemic equilibrium is (687.2436, 86.8768,
43.4384). In figure 3(a), solution fluctuate around the
endemic equilibrium which means the disease persistence.
In figure 3(b), we present the frequency histograms based
on 200000 stochastic simulations for I (t) at time t = 10000.
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FIGURE 3. Trajectories and stationary distribution with the conditions:
RS

0 > 1 and R0 > 1.

In figure 3(c), we collect S(t), I (t),R(t) from t = 300001
to t = 500000 step on 1t = 1. Comparing the curves of
figure 3(b) and figure 3(c), we can conclude that there exists
a stationary distribution for the stochastic system(2).

VI. CONCLUSION
In this paper, we investigated the dynamics of a stochastic
SIRS model with general awareness-induced incidence and
four independent Brownian motions. Firstly, we have verified
the existence and uniqueness of the global positive solution.
Then we have derived the noise modified basic reproduction
number RS0 for the stochastic model and show that it is a

sharp threshold. More specifically, if RS0 < 1, the disease-free
solution P0 is asymptotically stable; if RS0 > 1, the disease is
weakly persistent and there is a stationary distribution under
a parameter restrictive condition. The sharp threshold is a
new result which gives a sufficient and necessary condition
about the stability of disease-free solution since there is
no disease-free equilibrium for the general stochastic SIRS
model(2). We have shown wide range numerical investiga-
tion results of the stochastic model to substantiate the sharp
threshold RS0 and the existence of the stationary distribution.
Our results provide a new thinking to disease preventive
strategy: stochastic perturbation, efforts should be made to
prevent the disease to spread widely in the population.

Some interesting topics deserve further investigations, it is
also interesting to consider the global stability behaviour of
the disease-free solution since simulation show the stability
property under different initial values. We leave these for
further investigations and look forward to solving them in the
near future.
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