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ABSTRACT In this paper, the problem of deep-stall recovery will be studied for the aircraft without
longitudinal static stability. A new longitudinal short-period deep-stall model is established in the presence
of time-varying distributed delays. Based on bifurcation analysis method, the effects of actuator fault on
deep stall are analyzed in depth. Considering the system uncertainty, actuator fault, input saturation and
unsteady disturbance, a finite-time prescribed performance deep-stall recovery law is designed according to
the bifurcation analysis results. Further, to avoid the singularity problem in traditional finite-time control,
an improved finite-time control law is developed. Stability of the closed-loop system is proved by common
Lyapunov functional method. And simulations are given to illustrate the validity of the proposed deep-stall
recovery control scheme.

INDEX TERMS Deep stall, finite-time control, prescribed performance, bifurcation analysis.

I. INTRODUCTION
Deep stall is an uncontrollable state. When a fighter enters
deep stall, the angle of attack (AOA) increases automatically
and will be locked at a certain AOA far beyond the stall
AOA [1]. Deep stall widely exists in aircrafts with longitudi-
nal torque characteristics that have a ‘‘spoon-like’’ structure,
such as the F-16 fighter. Hence, many scholars have deeply
studied the deep-stall phenomenon [2]–[4]. In [5], a static
deep-stall recovery control law and a dynamic deep-stall
recovery control law were discussed for a class of aircrafts
with relaxed static stability. In [6], a deep-stall recovery
control law was designed based on the bang-bang control
method. In addition, the sliding mode control method has
also been considered to achieve the deep-stall recovery in [7].
According to [2]–[7], it can be concluded that traditional
deep-stall recovery mechanisms are to achieve instability in
the deep-stall area and rock the aircraft to overcome the
deep-stall attraction.

Different from above studies on deep stall, aircrafts without
‘‘spoon-like’’ longitudinal torque characteristics will be stud-
ied in this paper. The longitudinal flight dynamics of these
aircrafts is statically unstable, and has no stable high AOA

The associate editor coordinating the review of this manuscript and

approving it for publication was Sing Kiong Nguang .

open-loop equilibrium area [8]. Hence, the existing deep-stall
recovery methods can not be directly adopted in this paper.
To analyze the deep-stall phenomenon induced by actuator
fault, the bifurcation analysis method will be adopted in this
paper. Bifurcation analysis technology has been widely used
in the analysis of aircraft dynamic characteristics, and was
applied to the design of flight control laws [9]–[11]. In [12],
bifurcation analysis method was used to analyze the high
AOA characteristics of aircrafts, and some dangerous phe-
nomena can be predicted based on the analysis results, such
as departure, deep stall, wing rock, etc. In [13], bifurcation
analysis method was used to analyze the maneuverability
of the F-18 aircraft, and the analysis results were taken to
guide the design of the sliding mode flight controller. In [14],
through the bifurcation method, the effects of flexibility on
the stability of the aircraft were evaluated. In this paper,
the effects of actuator fault on the aircraft stability at high
angles of attack will be discussed. And the analysis results
show that actuator fault may induce a phenomenon similar to
deep stall in the statically unstable aircraft, which has rarely
been studied.

For statically unstable aircrafts, a novel finite-time adap-
tive prescribed performance deep-stall recovery control law
will be designed in this paper. In addition to the characteristic
of finite-time convergence, the finite-time control system
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has better robust performance and anti-disturbance perfor-
mance because of the fractional power term in finite-time
controllers. Meanwhile, the prescribed performance control
has a satisfactory effect on improving the transient perfor-
mance and steady-state performance of the system. In [15],
the prescribed performancemethodwas first proposed, which
can ensure that the constrained variables remain within
the preset range. In recent years, the prescribed perfor-
mance method has been widely studied [16]–[18]. In [19],
the prescribed performance method was adopted to design
a switched non-strict-feedback nonlinear system control.
In [20], the prescribed performance method and fuzzy control
were combined. Meanwhile, finite-time control has also been
greatly developed [21]–[24]. In [25], a finite-time control was
applied in the control of linear parameter-varying systems.
In [26], a finite-time trajectory tracking control law was
designed for a marine surface vehicle. However, finite-time
prescribed performance control has rarely been considered.

Based on the above discussion, a longitudinal attitude
model of an aircraft will be established according to the
dynamic characteristics of deep stall. Further, the effects of
actuator fault on aircraft stability at high angles of attack will
be evaluated through the bifurcation analysis method. Then,
considering the effects of system uncertainties, unsteady
disturbances, actuator fault and input saturation, a finite-
time prescribed performance deep-stall recovery law will be
designed. Finally, a simulation study is carried out to illus-
trate the feasibility of the post-stall recovery control scheme,
followed by the conclusion. And the main contributions of
this paper are as follows:
(1) To describe aerodynamic characteristics of aircrafts at

high AOA more accurately, a new deep-stall model is
proposed for the first time, which is a non-strict feedback
nonlinear system with time-varying distributed delays.
The mechanism of deep-stall induced by actuator fault
is analyzed in detail, and the corresponding deep-stall
recovery scheme is designed according to the analysis
results.

(2) To improve the performance of deep-stall recovery,
finite-time control and prescribed performance con-
trol are combined to realize the deep-stall recovery
law. It has rarely been studied that finite-time control
and prescribed performance control are combined and
applied to non-strict feedback nonlinear systems with
time-varying distributed delays.

(3) To handle controller singularity problem in traditional
finite-time control, an improved finite-time control
law is developed by introducing a non-smooth term,
which changes the closed-loop system into a switched
system. Then, finite-time stability of the closed-loop
system is proved by common Lyapunov functional
method.

(4) The non-strict feedback time-varying distributed delay
term is introduced into the post stall model, in which
some complicated and challenging issues including sys-
tem uncertainties, actuator fault and input saturation

are addressed. Based on the neural network technology
and a variable separation method, a robust finite-time
prescribed performance deep-stall recovery law is
developed.

II. PROBLEM FORMULATION
A. PROBLEM STATEMENT
In the deep-stall region, the flight speed and trajectory angle
do not change much. Therefore, the longitudinal short-period
motion equation can be used to describe the deep-stall
characteristics [27]:

α̇ = f1(α)+1f1 (α)+ q+ H1 (α, q, t)

q̇ =
1
Iy
QairSc̄Cm (α, q, δc)+1f2 (α, q)

+ ρg′2δz (uz)+ H2 (α, q, t) (1)

where α is the AOA. q is the pitching rate. f1(α) is the
known nonlinear function of α. Cm (α, q, δc) is the pitch-
ing moment aerodynamic coefficient. Qair is the dynamic
pressure. S is the reference surface area of the wing. Iy is
the moment of inertia. c̄ is the mean aerodynamic chord, and
δc is the defection of canard.1f1 (α),1f2 (α, q) are unknown
nonlinear functions. g′2 > 0 is the control gain, which is
a known constant. H1 (α, q, t) and H2 (α, q, t) are unsteady
disturbances, andwill be described later. ρ is the actuator fault
signal, which can be written as [28]

ρ =

{
1, t < Tρ
ερ, t ≥ Tρ

(2)

where 0 < ερ < 1 is an unknown constant, Tρ is the occur-
ring time of actuator fault. It is worth noting that the smaller
the value of ρ is, the more serious the actuator failure is.
At high AOA, the control performance of the canard is

almost lost. Hence, the canard is generally fixed, and only the
thrust vectoring angle δz (uz) will be used as the controller,
which is subject to saturation constraint described as (3).

δz (uz) = sat (uz) =

{
sign (uz)Mδz, |uz| > Mδz

uz, |uz| ≤ Mδz
(3)

where uz(t) ∈ R is the designed control input. Mδz = 15◦

represents the maximum deflection angle of the normal thrust
vector.

Due to the complex aerodynamic mechanism of unsteady
disturbance, the influence of unsteady disturbance on the
deep-stall recovery is seldom considered in the existing
research [2]–[4]. Different from previous studies, the concept
of time-varying distributed delay is adopted to analyze the
effect of unsteady disturbance on aircraft motion [29]:

H1 (α, q, t) =

t∫
t−τ1(t)

h1 (α (s) , q (s)) ds

H2 (α, q, t) =

t∫
t−τ2(t)

h2 (α (s) , q (s)) ds (4)
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where hi (α, β) is an unknown smooth function of α and q,
τi (t) denotes the unknown time-varying delay, i = 1, 2.

The pitchingmoment aerodynamic coefficientCm (α, q, δc)
can be expressed as [8]:

Cm=Cm0 (α)+Cmq (α)
qc̄
2V
+Cmδc (α) (δc − δc0 (α)) (5)

where Cm0 (α) is the static pitching moment coefficient,
Cmq (α) and Cmδc (α) are the pitching moment coefficients
due to the pitching rate and the elevator deflection. V is the
airspeed, and δc0 (α) is a nonlinear function of α.
Remark 1: It is noteworthy that the existence of unsteady

disturbances H1 (α, q, t), H2 (α, q, t) transforms system (1)
into a nonstrict-feedback system. Therefore, the deep stall
recovery considered in this paper will be faced with greater
challenges.

B. PRESCRIBED PERFORMANCE
In [15], the prescribed performance method was proposed,
which ensures that the constrained output tracking error
e(t) ∈ R remains within a predetermined range. And the idea
of prescribed performance method can be expressed by the
following inequality:

el (t) < e (t) < eu (t) (6)

where el (t), eu (t) are the designed lower boundary and upper
boundary of the tracking error e(t), respectively. And el (t),
eu (t) can be designed based on the following definition:
Definition 1 [15], [30]:A smooth bounded function b(t) :

R++{0} → R+ will be called a performance function, if b(t)
is decreasing, |e(0)| < b(0) and lim

t→∞
b(t) = b∞ > 0.

According to Definition 1, the performance function is
usually designed as

b(t) = (b(0)−b(∞))e−lt + b(∞) (7)

where b(0) and b(∞) are design constants, and satisfy b(0) >
b(∞). l > 0 is a constant to be designed.

Hence, according to (7), el (t), eu (t) can be chosen as
follows:

el (t) = −Qb (t) , eu (t) = b (t) , when e (0) ≥ 0

el (t) = −b (t) , eu (t) = Qb (t) , when e (0) < 0 (8)

where 0 < Q ≤ 1 is a design constant.
Thus, invoking (7) and (8), it is obvious that we can adjust

the steady-state value and the maximum overshoot of the
tracking error e(t) by selecting appropriate values of parame-
ters b (∞) and b (0). Meanwhile, the parameter l decides the
slowest convergence rate of the tracking error.

To achieve the prescribed performance control, we do the
following variable transformation:

e (t) = ST ($, el (t) , eu (t))

$ = ST−1 (e (t) , el (t) , eu (t)) (9)

where $ is a new unconstrained error signal. The function
ST ($, el (t) , eu (t)) is a strictly increasing function of the

FIGURE 1. The static pitching momentcoefficient of F-16 aircraft.

error signal$ , and satisfies the following equations:

lim
$→+∞

ST ($, el (t) , eu (t)) = eu (t)

lim
$→−∞

ST ($, el (t) , eu (t)) = el (t) (10)

III. BIFURCATION ANALYSIS OF DEEP STALL
Bifurcation analysis is a powerful analysis method of com-
plex nonlinear system, which can predict the global dynamic
characteristics of nonlinear dynamic systems [12]. In this
section, the mechanism of deep stall induced by actuator
failure will be analyzed in detail through bifurcation analysis
method.

Static pitching moment coefficient Cm0 (α) determines
the longitudinal aerodynamic characteristics of an aircraft.
The deep-stall phenomenon is widespread in aircrafts with
static pitching moment coefficient that has a ‘‘spoon-like’’
structure [7]. Taking the F-16 aircraft as an example, its
static pitching moment coefficient is shown in Fig. 1. When
α ≤ 44◦, the aircraft is statically unstable. However, when
α > 44◦, the aircraft is statically stable. It is worth noting
that this aircraft has a stable equilibrium at high AOA. As a
result, the aircraft is very easy to be locked at this point, which
forms deep stall.

In this paper, another type of aircrafts will be studied,
whose longitudinal moment characteristics have no ‘‘spoon-
like’’ structure. Taking the X-31 aircraft as an example, its
static pitching moment coefficient is shown in Fig. 2. It is
worth noting that this aircraft is statically unstable and has no
stable high AOA area. Hence, traditional open-loop bifurca-
tion analysis is not suitable for this aircraft. Then, the closed-
loop bifurcation analysis will be adopted in this paper, and the
effects of actuator fault on the aircraft stability at high angles
of attack will be evaluated.

To perform closed-loop bifurcation analysis on system (1),
the unsteady disturbances H1 (α, q, t) and H2 (α, q, t) can be
ignored. Because the unsteady disturbances H1 (α, q, t) and
H2 (α, q, t) will not affect the steady-state solution of the
closed-loop system, and ignoring unsteady disturbances does
not affect the bifurcation analysis results. Hence, the nominal
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FIGURE 2. The static pitching momentcoefficient of X-31 aircraft.

analytical model of (1) can be written as

α̇ = f1(α)+ q

q̇ =
1
Iy
QSc̄Cm (α, q, δc)+ ρg′2δz (uz) (11)

For the closed-loop bifurcation analysis, the traditional
backstepping method is adopted, which has been widely used
in the flight control law design [46]–[48]. Based on (11),
the backstepping flight control law is designed as

qc = −f1(α)+ αc − k1be1b

uz = −g
′
−1
2

 QSc̄(Cm0(α)
Iy

+
qc̄Cmq(α)

2V
+k2be2b − q̇c + e1b
+Cmδc (α) (δc − δc0 (α)))

 (12)

where αc is a designed AOA command. e1b = α − αc,
e2b = q − qc. k1b > 0 and k2b > 0 are design constants.
Stability of the closed-loop system (11) and (12) can be easily
verified. It will not be repeated here. It is worth noting that,
in the design of controller (12), the input saturation is not
considered. The input saturation will be treated as an input
constraint in the bifurcation analysis program.

In general, an aircraft equipped with the thrust vector is
difficult to enter deep stall. However, if the aircraft is sub-
jected to strong gust disturbances and the engine thrust is
reduced, the aircraft may enter the following dangerous state:
V = 34.9912 m/s, γ= −13.6536◦, α = 50.0364◦, q = 0◦/s,
and T = 51815 N . In this case, if the engine’s performance
deteriorates, the aircraft will enter a more dangerous state.
Hence, in this section, we will take the above state as the
initial flight state, the AOA command αc will be treated as
the bifurcation parameter, and the influence of the actuator
fault ρ on the the steady-state solution of (11) and (12) will be
studied based on the bifurcation method. The analysis results
are given in Fig. 3 - Fig. 6.

In Fig. 3 - Fig. 6, the solid blue line indicates the stable
equilibrium solution, and the red dashed line represents an
unstable equilibrium solution. Fig. 3 shows that the aircraft
can achieve a good AOA tracking performance in the absence
of actuator fault (ρ = 1). When 0.5 < ρ < 1, the aircraft still

FIGURE 3. ρ = 1.

FIGURE 4. ρ = 0.44.

FIGURE 5. ρ = 0.4.

has enough control energy to achieve better AOA tracking
performance, and the closed-loop bifurcation analysis result
is similar to Fig. 3.When ρ ≤ 0.5, the closed-loop bifurcation
analysis results are given in Fig. 4 - Fig. 6. In Fig. 4, when
ρ = 0.44, the aircraft can achieve small AOA tracking
(0 ≤ αc ≤ 48◦). Once the AOA of the aircraft is slightly
greater than 48◦, the AOA will deviate uncontrollably to
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FIGURE 6. ρ = 0.3.

a higher AOA (about 58◦), and we call this AOA as the
deep-stall AOA. It is noteworthy that in this case, even if the
AOA command (αc) is reduced, the aircraft’s AOA cannot
be restored to a small AOA. However, it is worth noting that
if the AOA command αc is increased, the aircraft can still
achieve high AOA tracking. Fig. 5 is similar to Fig. 4, but the
deep-stall AOA increases to 68◦. Fig. 6 indicates that when
control efficiency is further reduced, the aircraft can only
achieve small AOA tracking.

Inspired by the analysis results in Fig. 4 and Fig. 5,
although the aircraft does not have enough nose down pitch-
ing moment, it can still track the high AOA command. Hence,
the deep-stall recovery plan is designed as:
(1) First, when the deep stall occurs, a high AOA tracking

controller will be activated to increase the AOA of the
aircraft.

(2) Then, when the AOA is increased to a specified AOA,
the pilot will immediately push the longitudinal stick to
force the airplane to pitch down quickly.

To achieve the above deep-stall recovery mechanism,
the following assumptions and lemmas are required:
Assumption 1 [31]: For the unknown time-varying delays

τi (t) in (4), there are positive constants τ̄i and τ̄ ∗i , such that
τi (t) ≤ τ̄i, |τ̇i (t)| ≤ τ̄ ∗i < 1, i = 1, 2.
Assumption 2 [29]: For unknown function hi(α, β) in (4),

there exists a strictly increasing smooth function Ni (•) :
R+ → R+ with Ni (0) = 0 such that h2i (x) ≤ Ni (‖x‖), with
x = [α, β]T , i = 1, 2.
Lemma 1 [32], [33]: For Z ∈ �Z ⊂ Rp, any continuous

function f (Z ) : Rp → R can be approximated by the output
W T S(Z ) of a radial basis function neural network (RBFNN),
where�Z is an allowable set of the state vector Z ;W ∈ Rp1 is
the weight vector; S (Z ) =

[
s1 (Z ) , s2 (Z ) , · · · , sp1 (Z )

]T
∈

Rp1 is the basis function; p1 is the designed RBFNN node
number. Usually, the basis function is chosen as

si (Z ) = exp

[
−
(Z − µi)T (Z − µi)

η2

]
, i = 1, 2, . . . , p1

(13)

where µi =
[
µi1, µi2, · · · , µip1

]T and η are the center
of respective field and the width of the Gaussian function,
respectively.

Then, for any given small constant ¯̄ε, if p1 is large enough,
we can obtain

f (Z ) = W ∗T S (Z )+ ε̄∗∣∣ε̄∗∣∣ ≤ ¯̄ε (14)

where W ∗ is the optimal weight value, and ε̄∗ is the optimal
bounded approximation error.
Lemma 2 [34]: For x̄k = [x1, · · · , xk ]T ∈ Rk ,

S (x̄k) = [s1 (x̄k) , · · · , sl (x̄k)]T denotes the basic function
vector of an RBFNN. Then, for any two positive integers k
and k ′, if k ′ ≤ k , we have

‖S (x̄k)‖2 ≤ ‖S (x̄k ′)‖
2. (15)

Lemma 3 [35]: For any constant b > 0 and variable z,
the following inequation is guaranteed:

0 < |z| − z tanh
( z
b

)
≤ bξ (16)

where ξ = 0.2785 is a constant.
Lemma 4 [31]: If 9 > 0 is a constant matrix, c, d are

scalars and satisfy c < d , Then, for any vector functionω (s) :
[c, d]→ Rn, we have(∫ d

c
ωT (s) ds

)
9

(∫ d

c
ωT (s) ds

)
≤ (d − c)

∫ d

c
ωT (s)9ω (s) ds (17)

Lemma 5 [32]: For some class K functions π1 : R → R
and π2 : R → R, some positive constants κ and c, if we
can find a C1 continuous and positive-definite Lyapunov
function V (x) satisfying π1 (‖x‖) ≤ V (x) ≤ π2 (‖x‖) and
V̇ (x) ≤ −κV (x) + c, then the solution x(t) is uniformly
bounded under bounded initial conditions.
Lemma 6 [36]: For any real variable x1 and x2, the fol-

lowing inequality is guaranteed:

|x1|c1 |x2|c2 ≤
c1

c1+c2
c3|x1|c1+c2+

c2
c1+c2

c
−
c1
c2

3 |x2|c1+c2

(18)

where c1 > 0, c2 > 0 and c3 > 0 are constants.
Lemma 7 [37]: Consider a nonlinear system ẋ = f (x).

Suppose that there exist a smooth positive definite function
V (x) and some positive constants c4, c5 and 0 < λL < 1
such that

V̇ (x) ≤ −c4V λL (x)+ c5 (19)

then the nonlinear system is semiglobal practical finite-time
stable (SGPFS).
Remark 2 [38]–[40]: Ni (•) is a strictly increasing func-

tion, which makes Ni

(
n∑
i=1

ai

)
≤

n∑
i=1

Ni (nai) guaranteed if

ai ≥ 0, for i = 1 · · · n. Meanwhile, Ni (s) is a smooth
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function with Ni (0) = 0. Then, a smooth function N̄i (s)
can be found such that Ni (s) = sN̄i (s), which results in

Ni

(
n∑
i=1

ai

)
≤

n∑
i=1

Ni (nai) =
n∑
i=1

naiN̄i (nai).

Remark 3: In [41], [42], Interval Type-2 Fuzzy Neural
Network has been studied and applied to the uncertain pro-
cessing of hypersonic flight vehicle flight control. In [43],
the reentry vehicle control with actuator faults, control
delay, input saturation, time-varying parameter uncertain-
ties and external disturbances was studied, and the stabil-
ity of proposed controller was proved through the linear
matrix inequality method. There exists two main differences
between this paper and literatures [41]–[43]. On the one
hand, different control problem was considered in this paper.
According to the characteristics of deep stall, a non-strict
feedback nonlinear system is studied in the presence of sys-
tem uncertainty, actuator failure, distributed time delay and
input saturation. On the other hand, finite-time control and
prescribed performance control are combined, and the stabil-
ity was proved based on Lemma 5, Lemma 6, and Lemma 7.

IV. ATTITUDE CONTROLLER DESIGN
According to the deep-stall recovery mechanism, the core
of deep-stall recovery is the attitude control at high AOA.
Hence, in this section, finite-time control and prescribed
performance control will be combined to realize the high
AOA attitude controller design.Meanwhile, to solve the prob-
lem of controller singularity in traditional finite-time control,
an improved finite-time control law is developed by introduc-
ing non-smooth terms, which will transform the closed-loop
system into a switched system. At last, finite-time stability of
the closed-loop system will be proved by common Lyapunov
functional method.

Define the following error variables:

e1 = α − αc
e2 = q− qc (20)

where αc is the given AOA command. qc is the virtual control
law, and will be designed later.

To achieve prescribed performance control, a new
variable $1 will be introduced, which can be obtained from
the following equation:

e1 =
eu − el
π

arctan ($1)+
eu + el

2
(21)

Based on (21), we obtain the following fact:

g1=
∂$1

∂e1
=

π

eu−el
cos

(
π

2
×
2e1−eu−el
eu−el

)−2
>0 (22)

Invoking (1) and (22), we have

$̇1 =
∂$1

∂e1
ė1 +

∂$1

∂eu
ėu +

∂$1

∂el
ėl

= g1 (f1(α)+1f1(α)+ q+ H1 (α, q, t)− α̇c)

+N (e1, eu, el) (23)

where N (e1, eu, el) =
∂$1
∂eu

ėu +
∂$1
∂el

ėl .

According to [45], the following smooth function will be
used to handle the input saturation (3):

Ttanh (uz) = δM
e

uz
Mδz − e

−
uz
Mδz

e
uz
Mδz + e

−
uz
Mδz

=
∂T (uz)
∂uz

∣∣∣∣
uz=u′

uz (24)

where u′ = µuz, 0 < µ < 1.
Substituting (24) into (1), the angular rate equation can be

rewritten as

q̇ = f2 + ρg′2Ttanh (uz)+ ρg
′
2ζ (uz)+ H2 (α, q, t)

= f2 + g2uz + ρg′2ζ (uz)+ H2 (α, q, t) (25)

where g2 = ρg′2
∂Ttanh(uz)
∂uz

∣∣∣
uz=u′

> σ > 0, f2 =
1
Iy
QairSc̄Cm (α, q, δc), and σ is an unknown constant.

ζ (uz) = δz (uz) − Ttanh (uz). And it can be proved that there
exists a known positive constant Mξ such that |ζ (uz)| =
|δz (uz)− Ttanh (uz)| ≤ Mζ .
Combining (23) and (25), (1) can be transformed into the

following system:

$̇1 = g1 (f1 +1f1 + q+ H1 − α̇c)+ N

q̇ = f2 +1f2 + g2uz + ρg′2ζ (uz)+ H2 (26)

For (26), the controller will be designed in the following:

qc = −g
−1
1

 k11$1 + k12ψ11 ($1)+
ε11
2 $1 f̄ 21

+
1
2$1g21 + θ̂12 tanh

(
$1
b1

)
+
ε13
2 $1θ̂11ST1 (Z1) S1 (Z1)


uz = −k21e2 − k22|e2|λ2sign(e2)− ¯̄f 2

−
ε23

2
e2θ̂21ST2 (Z2) S2 (Z2)− θ̂22 tanh

(
e2
b2

)
(27)

where qc is the virtual control law, and uz is the control input.
k11, k12, ε11, ε13, b1, k21, k22 and ε23 are positive design
constants. 0 < λ2 < 1. θ̂11, θ̂12 are the estimations of
θ11, θ12, respectively. θ̂21, θ̂22 are the estimations of θ21, θ22,
respectively. θ11, θ12, θ21, θ22 are unknown constants and will

be specified later. f̄1 and ¯̄f2 are known functions and will

be specified in (42) and (52). Z1 =
[
α, eu, el,$1, θ̂12

]T
,

Z2 =
[
α, q, eu, el,$1, e2, θ̂11, θ̂12

]T
. And ψ11 ($1) is a

continuous but not smooth function, which is given by

ψ11 ($1) =

{
|$1|

λ1sign ($1) , |$1| > ε$1

ε
λ1−1
$1 $1, |$1| ≤ ε$1

(28)

where ε$1 > 0 is a designed constant. 0 < λ1 =
p1
p2
< 1.

And the adaptive laws are designed as

˙̂
θ11 = −kθ11θ̂11 +

k ′θ11ε13
2

$ 2
1 S

T
1 (Z1) SF (Z1)

˙̂
θ12 = −k ′θ12θ̂12 + kθ12$1 tanh

(
$1

b1

)
˙̂
θ21 = −kθ21θ̂21 +

k ′θ21ε23
2

e22S
T
2 (Z2) S2 (Z2)

˙̂
θ22 = −k ′θ22θ̂22 + kθ22e2 tanh

(
e2
b2

)
(29)
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where θ11 (0) ≥ 0, θ12 (0) ≥ 0, θ21 (0) ≥ 0, θ22 (0) ≥ 0, kθ11,
k ′θ11, kθ12, k ′θ12, kθ21, kθ22, k ′θ22, k ′θ21 are positive design
constants. It is worth noting that θ̂11 (t) ≥ 0, θ̂12 (t) ≥ 0,
θ̂21 (t) ≥ 0, θ̂22 (t) ≥ 0 can be guaranteed under non-negative
initial values.
Remark 4: In the traditional finite-time control, the deriva-

tive of the virtual control law is singular at the origin. To avoid
the singularity problem, the continuous function ψ11 ($1)

is introduced into the virtual control law qc in (27). How-
ever, the derivative of this function is not continuous, which
will bring a great challenge to the stability analysis. Hence,
the common Lyapunov functional method and Lemma 7 will
be combined to prove stability of the closed-loop system (26)
and (27).

To deal with non-strict feedback terms H1 (α, q, t) and
H2 (α, q, t), the following lemma is required:
Lemma 8: Defining x = [α, q]T , the following inequality

is guaranteed:

‖x‖ ≤ 8
(
eu, el,$1, θ̂11, θ̂12

)
|$1| + |e2| +Mαc (30)

where 8
(
eu, el,$1, θ̂11, θ̂12

)
is given in (35). MS1 > 0 is a

constant, and ST1 (Z1) S1 (Z1) ≤ MS1. Mαc > 0 and M ′αc > 0

are known constants, and |αc| < M ′αc, M
′
αc +

∣∣∣ 1−Q2 ∣∣∣ b (t) ≤
Mαc. ψ12 ($1) is a continuous function, which is given by

ψ12 ($1) =

{
|$1|

λ1−1, |$1| > ε$1

ε
λ1−1
$1 , |$1| ≤ ε$1

(31)

Proof: According to (21), we have

|e1| =

∣∣∣∣eu − elπ

∂ arctan ($1)

∂$1

∣∣∣∣ |$1| +

∣∣∣∣eu + el2

∣∣∣∣
≤

∣∣∣∣eu − elπ

∣∣∣∣ |$1| +

∣∣∣∣eu + el2

∣∣∣∣ (32)

Further, invoking (8) and Definition 1, (32) can be written
as

|e1| ≤

∣∣∣∣eu − elπ

∣∣∣∣ |$1| +

∣∣∣∣1− Q2
∣∣∣∣ b (t) (33)

where
∣∣∣ 1−Q2 ∣∣∣ b (t) is bounded.

Considering (27), (33) and the fact that ST1 (Z1) S1 (Z1) ≤
MS1, we obtain

‖x‖ ≤ |α| + |q| ≤ |e1| + |αc| + |e2| + |qc|

= |e1| + |αc| + |e2|

+

∣∣∣∣∣∣∣g−11

 k11$1 + k12ψ11 ($1)+
ε11
2 $1 f̄ 21

+
ε11
2 $1θ̂11ST1 (Z1) S1 (Z1)

+θ̂12 tanh
(
$1
b1

)
+

1
2$1g21


∣∣∣∣∣∣∣

≤

∣∣∣∣eu − elπ

∣∣∣∣ |$1| +

∣∣∣∣1− Q2
∣∣∣∣ b (t)+M ′αc + |e2|

+ g−11

(
k11 +

ε11

2
f̄ 21 +

1
2
g21

)
|$1| +

g−11

b1
θ̂12 |$1|

+ g−11 k12ψ12 ($1) |$1| + g
−1
1
ε11

2
$1θ̂11MS1 |$1|

≤ 8
(
eu, el,$1, θ̂11, θ̂12

)
|$1| + |e2| +Mαc (34)

where M ′αc +
∣∣∣ 1−Q2 ∣∣∣ b (t) ≤ Mαc, and

8
(
eu, el,$1, θ̂11, θ̂12

)
=

∣∣∣∣∣ eu − el
π
(
1+$ 2

1

) ∣∣∣∣∣
+ g−11

(
k11 +

ε11

2
f̄ 21 +

1
2
g21

)
+ g−11 k12ψ12 ($1)

+ g−11
ε11

2
$1θ̂11MS1 +

g−11

b1
θ̂12 (35)

This concludes the proof.♦
Next, a detailed stability analysis will be carried out for the

closed-loop system (26), (27), (29), and the whole analysis
process will be divided into the following three steps.

Step 1: The first subsystem of (26) can be written as

$̇1 = g1 (f1 +1f1 + q+ H1 − α̇c)+ N (36)

For subsystem (36), we choose the following Lyapunov
function:

V1 =
1
2
$ 2

1 +�1 (37)

where �1 =
e−λ1(t−τ̄1)
2(1−τ̄∗1 )

τ̄1

t∫
t−τ1(t)

t∫
ι

eλ1sh21 (α (s) , q (s)) dsdι;

λ1 > 0 is a design constant.
In (37), �1 can be written as

�1 =
e−λ1(t−τ̄1)

2
(
1− τ̄ ∗1

) τ̄1 t∫
t−τ1(t)

h̄1 (ι, t)dι (38)

where h̄1 (ι, t) =
t∫
ι

eλ1sh21 (α (s) , q (s)) ds.

Then, the time derivative of �1 can be obtained is given
in (39), as shown at the bottom of the next page.

Invoking Assumption 1 and the fact t−τ1 ≤ s ≤ t , we have

(1− τ̇1)(
1− τ̄ ∗1

) ≥ 1

e−λ1(t−τ̄1−s) ≥ e−λ1(−τ̄1+τ1) ≥ 1 (40)

Then, substituting (40) into (39) yields

�̇1 ≤ −λ1�1 −
1
2
τ̄1H ′1 +

τ̄ 21 e
τ̄1

2
(
1− τ̄ ∗1

)h21 (α, q) (41)

where H ′1 =
t∫

t−τ1(t)
h21 (α(s), q(s)) ds.

Based on (36) and (41), the time derivative of V1 is given
by

V̇1 = $1$̇1 + �̇1

= $1

(
g1f1(α)+ g11f1(α)+ g1q
+g1H1 − g1α̇c + N

)
+ �̇1
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≤ $1

(ε11
2
$1 f̄ 21 + g11f1(α)+ g1q+ g1H1

)
− λ1�1 −

1
2
τ̄1H ′1

+
τ̄ 21 e

τ̄1

2
(
1− τ̄ ∗1

)h21 (α, q)+ 1
2ε11

(42)

where f̄1 = g1f1(α)− g1α̇c + N (e1, eu, el).
Based on Lemma 4, we have

$1g1H1 = $1g1

t∫
t−τ1(t)

h1 (α, q) ds

≤
1
2
$ 2

1 g
2
1 +

1
2

 t∫
t−τ1(t)

h1 (α (s) , q (s)) ds


2

≤
1
2
$ 2

1 g
2
1 +

1
2
τ1 (t)

t∫
t−τ1(t)

h21 (α(s), q(s)) ds

≤
1
2
$ 2

1 g
2
1 +

1
2
τ̄1H ′1 (43)

Substituting (43) into (42) yields

V̇1 ≤ $1

(
ε11

2
$1 f̄ 21 + g11f1(α)+ g1q+

1
2
$1g21

)
+

1
2
τ̄1H1

′
− λ1�1 −

1
2
τ̄1H ′1

+
τ̄ 21 e

τ̄1

2
(
1− τ̄ ∗1

)h21 (α, q)+ 1
2ε11

≤ $1

(
ε11

2
$1 f̄ 21 + g11f1(α)+ g1q+

1
2
$1g21

)
− λ1�1 + c13N1 (‖x‖)+

1
2ε11

(44)

where c13 =
τ̄ 21 e

τ̄1

2(1−τ̄∗1 )
.

Step 2: The subsystem of (26) can be written as

q̇ = f2 +1f2 + g2uz + ρg′2ζ (uz)+ H2 (45)

Based on (27), the time derivative of qc can be written as

q̇c =
∂qc
∂α

(f1(α)+ q)+
∂qc
∂α

H1

+
∂qc
∂α
1f1(α)+

∂qc
∂α̇c

α̈c +
∂qc
∂eu

ėu

+
∂qc
∂el

ėl +
∂qc
∂θ̂11

˙̂
θ11 +

∂qc
∂θ̂12

˙̂
θ12 +

∂qc
∂αc

α̇c

+
∂qc
∂$1

(g1 (f1 +1f1 + q+ H1 − α̇c)+ N )

= Q11+Q12,δ(t) + Q13,δ(t)H1 (46)

where Q11 =
∂qc
∂α
(f1(α)+ q) +

∂qc
∂α̇c
α̈c +

∂qc
∂eu
ėu

+
∂qc
∂el
ėl +

∂qc
∂θ̂11

˙̂
θ11 +

∂qc
∂θ̂12

˙̂
θ12 +

∂qc
∂αc
α̇c, Q12,δ(t) =

∂qc
∂α
1f1(α)+

∂qc
∂$1

(g1 (f1 +1f1 + q− α̇c)+ N ), Q13,δ(t) =(
∂qc
∂$1

g1+
∂qc
∂α

)
.

It should be noted that δ (t) : [0,+∞) → 3 = {1, 2}
stands for a piecewise continuous switching signal, which is
caused by the discontinuity of ∂qc

∂$1
. Therefore, the derivative

of qc is divided into continuous part Q11, discontinuous part
Q12,δ(t), and the part related to distributed delay termQ13,δ(t).
And these three parts will be dealt with separately in the
following.

For subsystem (45), we choose the following Lyapunov
function:

V2 =
1
2
e22 +

1
σ
�1 +

1
σ
�2 (47)

where �2 =
e−λ2(t−τ̄2)
2(1−τ̄∗2 )

τ̄2

t∫
t−τ2(t)

t∫
ι

eλ2sh22 (α (s) , q (s)) dsdι.

λ2 > 0 is a design constant. And σ is an unknown constant,
which is defined in (25).

Similar to (41), the time derivative of �2 is given by

�̇2 ≤ −λ2�2 −
1
2
τ̄2H ′2 +

τ̄ 22 e
τ̄2

2
(
1− τ̄ ∗2

)h22 (α, q) (48)

where H ′2 =
t∫

t−τ2(t)
h22 (α(s), q(s)) ds.

Invoking (26), (41), (46) and (48), the time derivative of V2
is given by

V̇2 = e2ė2 +
1
σ
�̇1 +

1
σ
�̇2

= e2

(
f2(α, q)+1f2(α, q)+ g2uz + ρg′2ζ (uz)
+H2 − Q11 − Q12,δ(t) − Q13,δ(t)H1

)
+

1
σ
�̇1 +

1
σ
�̇2 (49)

Similar to (43), we have

−e2Q13,δ(t)H1 ≤
σ

2
e22Q

2
13,δ(t) +

1
2σ
τ̄1H ′1

e2H2 ≤
σ

2
e22 +

1
2σ
τ̄2H ′2 (50)

�̇1 = −λ1�1 +
e−λ1(t−τ̄1)

2
(
1− τ̄ ∗1

) τ̄1
h̄1 (t, t)− (1− τ̇1) h̄1 (t − τ1 (t) , t)+ t∫

t−τ1(t)

∂ h̄1 (ι, t)
∂t

dι


= −λ1�1 − τ̄1

(1− τ̇1)

2
(
1− τ̄ ∗1

) t∫
t−τ1(t)

e−λ1(t−τ̄1−s)h21 (α (s) , q (s)) ds+ τ̄1τ1
eτ̄1

2
(
1− τ̄ ∗1

)h21 (α, q) (39)
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Substituting (50) into (49) yields

V̇2 ≤ e2

(
f2(α, q)+1f2(α, q)+ g2uz + ρg′2ζ (uz)
−Q11 − Q12,δ(t) +

σ
2 e2 +

σ
2 e2Q

2
13,δ(t)

)
+

1
2σ
τ̄2H ′2 +

1
2σ
τ̄1H ′1 +

1
σ
�̇1 +

1
σ
�̇2

≤ e2

(
ε21σ
2 e2 f̄ 22 +1f2 + g2uz + ρg

′
2ζ (uz)

−Q12,δ(t) +
σ
2 e2 +

σ
2 e2Q

2
13,δ(t)

)

+
1

2ε21σ
+

1
2σ
τ̄2H ′2 +

1
2σ
τ̄1H ′1

+
1
σ

(
−λ1�1 −

1
2
τ̄1H ′1 +

τ̄ 21 e
τ̄1

2
(
1− τ̄ ∗1

)h21 (α, q)
)

+
1
σ

(
−λ2�2 −

1
2
τ̄2H ′2 +

τ̄ 22 e
τ̄2

2
(
1− τ̄ ∗2

)h22 (α, q)
)
(51)

where f̄2 = f2(α, q)− Q11.
Invoking Assumption 2, (51) can be written as

V̇2 ≤ e2

(
σ ¯̄f 2 +1f2 + g2uz + ρg

′
2ζ (uz)

−Q12,δ(t) +
σ
2 e2Q

2
13,δ(t)

)

+
1

2ε21σ
−
λ1

σ
�1 −

λ2

σ
�2

+
c13
σ
N1 (‖x‖)+

c23
σ
N2 (‖x‖) (52)

where ¯̄f 2 =
ε21
2 e2 f̄

2
2 +

1
2e2, c13 =

τ̄ 21 e
τ̄1

2(1−τ̄∗1 )
, c23 =

τ̄ 22 e
τ̄2

2(1−τ̄∗2 )
.

Step 3: So far, Lyapunov functions have been designed
for (36) and (45). Further, defineV ′ = V1+V2. Then, the time
derivative of V ′ is given by

V̇ ′ ≤ $1

(
ε11

2
$1 f̄ 21 + g11f1(α)+ g1q+

1
2
$1g21

)

− λ1�1 + e2

(
σ ¯̄f 2 +1f2 + g2uz + ρg

′
2ζ (uz)

−Q12,δ(t) +
σ
2 e2Q

2
13,δ(t)

)

−
λ1

σ
�1 −

λ2

σ
�2 +

(c13
σ
+ c13

)
N1 (‖x‖)

+
c23
σ
N2 (‖x‖)+

1
2τ11
+

1
2ε21σ

(53)

According to Lemma 8 and Remark 2, we have

N1 (‖x‖) ≤ N1 (8 |$1| + |e2| +Mαc)

≤ N1 (38 |$1|)+ N1 (3 |e2|)+ N1 (3Mαc)

≤ 38 |$1|N 1 (38 |$1|)+ 3 |e2|N 1 (3 |e2|)

+N1 (3Mαc)

≤
εN1

2
982N̄ 2

1 (38 |$1|)$
2
1 +

1
εN1

+
εN1

2
9N̄ 2

1 (3 |e2|) e
2
2 + N1 (3Mαc) (54)

where εN1 > 0 is a design constant.

Similar to (54), the following can easily be obtained:

N2 (‖x‖) ≤
εN2

2
982N̄ 2

2 (38 |$1|)$
2
1

+
εN2

2
9N̄ 2

2 (3 |e2|) e
2
2 +

1
εN2
+ N2 (3Mαc) (55)

where εN2 > 0 is a design constant.
Based on (54) and (55), we have

c13 + σc13
σ

N1 (‖x‖)+
c23
σ
N2 (‖x‖)

≤
c13 + σc13

σ

(
εN1
2 982N

2
1 (38 |$1|)$

2
1 +

1
εN1

+
εN1
2 9N

2
1 (3 |e2|) e

2
2 + N1 (3Mαc)

)

+
c23
σ

(
εN2
2 982N

2
2 (38 |$1|)$

2
1 +

1
εN2

+
εN2
2 9N

2
2 (3 |e2|) e

2
2 + N2 (3Mαc)

)
=
¯̄N$1$

2
1 +
¯̄N e2e22 + CN (56)

where ¯̄N$1 =
( c13
σ
+ c13

)
εN1
2 982N

2
1 (38 |$1|) +

c23
σ

εN2
2 982N

2
2 (38 |$1|), ¯̄N e2 =

( c13
σ
+ c13

)
εN1
2 9N

2
1 (3 |e2|) +

c23
σ
εN2
2 9N

2
2 (3 |e2|) + $1g1, CN =

( c13
σ
+ c13

)
N1 (3Mαc) +

c23
σ
N2 (3Mαc)+

( c13
σ
+ c13

) 1
εN1
+

c23
σ

1
εN2

.
Substituting (56) into (53) yields

V̇ ′ ≤ $1

(
ε11

2
$1 f̄ 21 +1f̄1 + g1qc +

1
2
$1g21

)
− λ1�1

+ e2
(
σ ¯̄f 2 +1f̄2,δ(t) + g2uz + ρg

′
2ζ (uz)

)
−
λ1

σ
�1 −

λ2

σ
�2 + C ′N (57)

where1f̄1 = g11f1(α)+ ¯̄N$1$1,1f̄2,δ(t) = 1f2+ ¯̄N e2e2−
Q12,δ(t) +

σ
2 e2Q

2
13,δ(t), C

′
N = CN + 1

2τ11
+

1
2ε21σ

.
According to Lemma1, there exist unknown RBFNNs,

which can approximate the unknown functions 1f̄1 and
1f̄2,δ(t), such that for any given constants MNN1 > 0 and
MNN2 > 0 we have

1f̄1 = W1
∗T S1

(
Z ′1
)
+ ε̄∗NN1

(
Z ′1
)

1f̄2,δ(t) = W2,δ(t)
∗T S2 (Z2)+ ε̄∗NN2,δ(t) (Z2) (58)

where
∣∣ε̄∗NN1

(
Z ′1
)∣∣ ≤ MNN1,

∣∣∣ε̄∗NN2,δ(t) (Z2)
∣∣∣ ≤ MNN2, and

Z ′1 =
[
α, eu, el,$1, θ̂11, θ̂12

]T
.

Based on (58), we have

$11f̄1 = $1W1
∗T S1

(
Z ′1
)
+$1ε̄

∗

NN1
(
Z ′1
)

≤
ε13

2
$ 2

1

∥∥W1
∗
∥∥2ST1 (Z ′1) S1 (Z ′1)

+
1

2ε13
+ |$1| θ12

≤
ε13

2
$ 2

1 θ11S
T
1
(
Z ′1
)
S1
(
Z ′1
)

+
1

2ε13
+ |$1| θ12 (59)

where ‖W1
∗‖

2
≤ θ11,

∣∣ε̄∗NN1 (Z1)
∣∣ ≤ MNN2 < θ12, θ12 > 0 is

an unknown constant.
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Invoking Lemma 2, (59) can be written as

$11f̄1≤
ε13

2
$ 2

1 θ11S
T
1 (Z1)S1(Z1)+

1
2ε13
+|$1| θ12 (60)

Similar to (59), we have

e2
(
1f̄2,δ(t) + ρg′2ζ (uz)

)
= e2

(
W2,δ(t)

∗T S2 (Z2)+ ε̄∗NN2,δ(t) (Z2)+ ρg
′
2ζ (uz)

)
≤
ε23

2
e22
∥∥W2,δ(t)

∗
∥∥2ST2 (Z2) S2 (Z2)+ 1

2ε23

+ |e2|
∣∣∣ε̄∗NN2,δ(t) (Z2)+ ρg

′
2ζ (uz)

∣∣∣
≤
σε23

2
e22θ21S

T
2 (Z2) S2 (Z2)+

1
2ε23
+ σ |e2| θ22 (61)

where ‖W2,δ(t)
∗‖

2

σ
≤ θ21,

∣∣∣ε̄∗NN2,δ(t)(Z2)+ρg
′
2ζ (uz)

∣∣∣
σ

≤ θ22.
Substituting (60) and (61) into (57) yields

V̇ ′ ≤ $1

(
ε11

2
$1 f̄ 21 + g1qc +

1
2
$1g21

)
+

1
2ε13
+

1
2ε23

+
ε13

2
$ 2

1 θ11S
T
1 (Z1) S1 (Z1)+ |$1| θ12 − λ1�1

+ e2
(
σ ¯̄f 2 + g2uz

)
+
σε23

2
e22θ21S

T
2 (Z2) S2 (Z2)

+ σ |e2| θ22 −
λ1

σ
�1 −

λ2

σ
�2 + C ′N (62)

Considering that θ11 (t) ≥ 0, θ12 (t) ≥ 0, θ21 (t) ≥
0, θ22 (t) ≥ 0, and ¯̄f 2 is an odd function of e2, we have that

e2g2uz,δ(t)

= −e2g2k21e2 − e2g2k22|e2|λ2sign(e2)− e2g2 ¯̄f 2

− e2g2
ε23

2
e2θ̂21ST2 (Z2) S2 (Z2)− e2g2θ̂22 tanh

(
e2
b2

)
≤ −e2σk21e2 − e2σk22|e2|λ2sign(e2)− e2σ ¯̄f 2

− e2σ
ε23

2
e2θ̂21ST2 (Z2) S2 (Z2)− e2σ θ̂22 tanh

(
e2
b2

)
(63)

Substituting (27) and (63) into (62) yields

V̇ ′ ≤ −k11$ 2
1 − k12$1ψ11 ($1)

−
ε13

2
$ 2

1 θ̃11S
T
1 (Z1) S1 (Z1)

+ |$1| θ12 −$1θ̂12 tanh
(
$1

b1

)
−

(
λ1 +

λ1

σ

)
�1

− σk21e22 − σk22|e2|
λ2+1 −

σε23

2
e22θ̃21S

T
2 (Z2) S2 (Z2)

− e2σ θ̂22 tanh
(
e2
b2

)
+ σ |e2| θ22 −

λ2

σ
�2

+C ′N +
1

2ε13
+

1
2ε23

(64)

where θ̃11 = θ̂11 − θ11, θ̃21 = θ̂21 − θ21.

Finally, we choose the following Lyapunov function:

V =V ′+
1

2k ′θ11
θ̃211+

1
2kθ12

θ̃212+
σ

2k ′θ21
θ̃221+

σ

2kθ22
θ̃222

(65)

where θ̃12 = θ̂12 − θ12, θ̃22 = θ̂22 − θ22.
According to (64), the time derivative of V is given by

V̇ ≤ −k11$ 2
1 − k12$1ψ11 ($1)+ |$1| θ12

−$1θ12 tanh
(
$1

b1

)
−

(
λ1 +

λ1

σ

)
�1

− σk21e22 − σk22|e2|
λ2+1 − e2σθ22 tanh

(
e2
b2

)
+ σ |e2| θ22 −

λ2

σ
�2 + C ′N +

1
2ε13
+

1
2ε23

−
kθ11
k ′θ11

θ̃11θ̂11 −
k ′θ12
kθ12

θ̃12θ̂12

−
kθ21σ
k ′θ21

θ̃21θ̂21 −
k ′θ22σ
kθ22

θ̃22θ̂22 (66)

According to Lemma 3, we have

|$1| θ12 −$1θ12 tanh
(
$1

b1

)
≤ b1θ12ξ

σ |e2| θ22 − e2σθ22 tanh
(
e2
b2

)
≤ σb2θ22ξ (67)

Substituting (67) into (66) yields

V̇ ≤ −k11$ 2
1 − k12$1ψ11 ($1)+ b1θ12ξ

−

(
λ1 +

λ1

σ

)
�1 − σk21e22 − σk22|e2|

λ2+1

+ σb2θ22ξ −
λ2

σ
�2 + C ′N +

1
2ε13
+

1
2ε23

−
kθ11
2k ′θ11

θ̃211 +
kθ11
2k ′θ11

θ211 −
k ′θ12
2kθ12

θ̃212 +
k ′θ12
2kθ12

θ212

−
kθ21σ
2k ′θ21

θ̃221 +
kθ21σ
2k ′θ21

θ221 −
k ′θ22σ
2kθ22

θ̃222 +
k ′θ22σ
2kθ22

θ222

≤ −k11$ 2
1 − k12$1ψ11 ($1)−

(
λ1 +

λ1

σ

)
�1

− σk21e22 − σk22|e2|
λ2+1 −

λ2

σ
�2 −

kθ11
2k ′θ11

θ̃211

−
k ′θ12
2kθ12

θ̃212 −
kθ21σ
2k ′θ21

θ̃221 −
k ′θ22σ
2kθ22

θ̃222 + C
′′
N (68)

where C ′′N = C ′N + b1θ12ξ + σb2θ22ξ + 1
2ε13
+

1
2ε23

+
kθ11
2k ′θ11

θ211 +
k ′θ12
2kθ12

θ212 +
kθ21σ
2k ′θ21

θ221 +
k ′θ22σ
2kθ22

θ222.

Theorem 1: Considering the longitudinal attitude motion
model (1) in the presence of system uncertainties, unsteady
disturbances, and input saturation, the controller is given
by (27), and the adaptive laws are proposed as (29). If the
parameters are selected properly, the desired signal can be
tracked within a small bounded error, and other signals in the
closed-loop system are bounded.
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Proof:According to (29), the value of functionψ11 ($1)

depends on $1. Hence, in the stability analysis, we need to
discuss the value of variable$1 in two cases.

Case 1: When |$1| > ε$1, we have that ψ11 ($1) =

|$1|
λ1sign ($1). Then, based on (68), the time derivative of

V can be written as

V̇ ≤ −k11$ 2
1 − k12|$1|

λ1+1 −

(
λ1 +

λ1

σ

)
�1

− σk21e22 − σk22|e2|
λ2+1 −

λ2

σ
�2 −

kθ11
2k ′θ11

θ̃211

−
k ′θ12
2kθ12

θ̃212 −
kθ21σ
2k ′θ21

θ̃221 −
k ′θ22σ
2kθ22

θ̃222 + C
′′
N (69)

Substituting x1 = θ̃2ij , x2 = 1, c1 = λij, c2 = 1 − λij and
c3 = λ

−1
ij into Lemma 6 yields

(
θ̃2ij

)λij
≤ θ̃2ij +

(
1− λij

)
λ

λij
1−λij
ij (70)

where 0 < λij < 1 is a design constant, i = 1, 2, j = 1, 2.
Similar to (70), we have

�
λ�1
1 ≤ �1 + (1− λ�1) λ

λ�1
1−λ�1
�1

�
λ�2
2 ≤ �2 + (1− λ�2) λ

λ�2
1−λ�2
�2 (71)

where 0 < λ�1 < 1, 0 < λ�2 < 1.
Based on (70) and (71), (69) can be written as

V̇ ≤ −k11$ 2
1 − k12|$1|

λ1+1 −

(
λ1 +

λ1

σ

)
�
λ�1
1

− σk21e22 − σk22|e2|
λ2+1 −

λ2

σ
�
λ�2
2

−
kθ11
2k ′θ11

(
θ̃211

)λ11
−
k ′θ12
2kθ12

(
θ̃212

)λ12
−
kθ21σ
2k ′θ21

(
θ̃221

)λ21
−
k ′θ22σ
2kθ22

(
θ̃222

)λ22
+ C1 (72)

where C1 = C ′′N +
(
λ1 +

λ1
σ

)
(1− λ�1) λ

λ�1
1−λ�1
�1

+
λ2
σ
(1− λ�2) λ

λ�2
1−λ�2
�2 +

kθ11
2k ′θ11

(1− λ11) λ
λ11

1−λ11
11

+
k ′θ12
2kθ12

(1− λ12) λ
λ12

1−λ12
12 +

kθ21σ
2k ′θ21

(1− λ21) λ
λ21

1−λ21
21

+
k ′θ22σ
2kθ22

(1− λ22) λ
λ22

1−λ22
22 .

If we choose appropriate parameter values, the following
equation is established:

λ1 + 1
2
=λ�1=

λ2 + 1
2
=λ�2=λ11=λ12 = λ21=λ22

(73)

Then, (72) can be written as

V̇ ≤ −k122
λ1+1
2

(
1
2
$ 2

1

) λ1+1
2

− λ1�
λ�1
1

− σk222
λ2+1
2

(
1
2
e22

) λ2+1
2

− λ1σ
λ�1−1

(
1
σ
�1

)λ�1

− λ2σ
λ�2−1

(
1
σ
�2

)λ�2
− kθ11

(
2k ′θ11

)λ11−1( 1
2k ′θ11

θ̃211

)λ11
− k ′θ12(2kθ12)λ12−1

(
1

2kθ12
θ̃212

)λ12
− kθ21

(
σ

2k ′θ21

)1−λ21( σ

2k ′θ21
θ̃221

)λ21
− k ′θ22

(
σ

2kθ22

)1−λ22( σ

2kθ22
θ̃222

)λ22
+ C1

≤ −K1V
λ1+1
2 + C1 (74)

where K1 = min{k122
λ1+1
2 , λ1, σk222

λ2+1
2 ,

kθ11
(
2k ′θ11

)λ11−1, k ′θ12(2kθ12)λ12−1, kθ21( σ
2k ′θ21

)1−λ21
,

k ′θ22
(

σ
2kθ22

)1−λ22
, λ1σ

λ�1−1, λ2σ
λ�2−1}.

Then, according to Lemma 6, the nonlinear closed-loop
system (1), (27) and (29) is SGPFS. And it is obvious that the
transformed error $1 is bounded. Then, according to (21),
it can be concluded that the tracking error e1 satisfies el <
e1 < eu. When V > 1, increasing the value of λ1 can improve
the convergence rate of the Lyapunov function V . When
V ≤ 1, reducing the value of λ1 can improve the convergence
rate of the Lyapunov function V . Therefore, the selection of
should be considered comprehensively.

Case 2:When |$1| ≤ ε$1, we haveψ11 ($1) = ε
λ1−1
$1 $1.

Then, based on (68), the time derivative of V can be written
as

V̇ ≤ −k11$ 2
1 − k12ε

λ1−1
$1 $ 2

1 −

(
λ1 +

λ1

σ

)
�1 − σk21e22

− σk22|e2|λ2+1 −
λ2

σ
�2 −

kθ11
2k ′θ11

θ̃211 −
k ′θ12
2kθ12

θ̃212

−
kθ21σ
2k ′θ21

θ̃221 −
k ′θ22σ
2kθ22

θ̃222 + C
′′
N

≤ −2k11
1
2
$ 2

1 − λ1�1 − 2σk21
1
2
e22 − λ1

1
σ
�1

− λ2
1
σ
�2 − kθ11

1
2k ′θ11

θ̃211 − k
′
θ12

1
2kθ12

θ̃212

− kθ21
σ

2k ′θ21
θ̃221 − k

′
θ22

σ

2kθ22
θ̃222 + C

′′
N

≤ −K2V + C ′′N (75)

whereK2 = min
{
2k11, λ1, 2σk21, λ1, λ2, kθ11, k ′θ12, kθ21, k ′θ22

}
.

According to Lemma 5, the transformed error $1 is
bounded. Similarly, we have that the tracking error e1 satisfies
el < e1 < eu.
In summary, the whole state space is divided into two

parts: 41 = {X | |$1| ≤ ε$1} and 42 = {X | |$1| > ε$1},
X = [α, q]T . When X ∈ 42, the closed-loop system (1), (27)
and (29) is semiglobal practical finite-time stable. Once the
error signal$1 converges to the origin (X ∈ 41), the structure
of the controller (27), (29) will switch, and the closed-loop
system (1), (27) and (29) will satisfy Lemma 5. The common
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FIGURE 7. Tracking result of α (ρ = 0.4).

Lyapunov function (65) is designed to guarantee that the
closed-loop system (1), (27) and (29) is stable under arbitrary
switching. Hence, in the whole state space, the proposed
controller can guarantee all signals bounded, especially the
error signal$1. Then, according to (21), it can be concluded
that the tracking error e1 satisfies el < e1 < eu in the whole
state space.

V. SIMULATION STUDY
The aircraft model [8] and the unsteady disturbances
H1 (α, q, t) and H2 (α, q, t) in (76) are used to verify the
validity of the above designed controller (27).

CL,unsteady =

t∫
t−τ1(t)

e−bL (α(s))taL (α (s)) q (s) ds

Cm,unsteady =

t∫
t−τ2(t)

e−bm(α(s))tam (α (s)) q (s) ds (76)

where bL (α), aL (α), bm (α), am (α) are continuous bounded
functions of α, which can be easily obtained in [49].

A. DEEP STALL SIMULATION
To verify the results of the closed-loop bifurcation analysis,
we perform closed-loop simulation of the system (1) and (12).
We take the bifurcation analysis result in Fig. 4 as an example,
and the control efficiency of the aircraft will be reduced in
twentieth seconds (ρ = 0.4). The initial state of the aircraft
is set as α = 50.0364◦, q = 0◦/s, T = 51815 N , and ρ = 1.
The simulation results are given in Fig. 7 and Fig. 8.

In Fig. 7, α denotes the AOA response of the aircraft,
and αc is the AOA command. Fig. 7 shows that the aircraft
can track the AOA before the control efficiency is reduced
(t < 20s). Combinedwith Fig. 8, the control energy of the air-
craft is sufficient and there is no input saturation phenomenon
(t < 20). However, in twentieth seconds, the actuator fault
appears (ρ = 0.4). Then, the aircraft is out of control, and
the AOA of the aircraft quickly diverges to a higher AOA.
According to Fig. 8, it is obvious that the control input is sat-
urated, and the aircraft has no sufficient nose down pitching

FIGURE 8. Control input signal (ρ = 0.4).

moment, which means that the aircraft has been locked at the
high AOA, and deep stall appears.

As shown in Fig. 7 and Fig. 8, the aircraft does not
have enough control power to recover to a small AOA.
Hence, it is very urgent to design a viable deep-stall recovery
law.

B. DEEP STALL RECOVERY SIMULATION
The prescribed performance functions are chosen as

eu = 10e−1.2t + 2, el = −10e−0.8t − 2 (77)

The initial conditions of the aircraft are given as V (0) =
35.45m/s, h (0) = 3000m, γ (0) = −45.8◦. The parameters of
the controller (27) are k11 = 2, k12 = 2, ε$1 = 0.05, ε11 = 4,
ε13 = 4, b1 = 0.05, λ1 = 3

5 , k21 = 20, k22 = 20, λ2 = 3
5 ,

ε23 = 2, b2 = 0.01. And the parameters for the adaption
laws (29) are chosen as kθ11 = 5, k ′θ11 = 2, kθ12 = 5,
k ′θ12 = 2, kθ21 = 5, k ′θ21 = 2, kθ22 = 5, k ′θ22 = 2. And the
simulation results are presented in Fig. 9- Fig. 14.

Meanwhile, the high AOA control law proposed in [29]
will be adopted for simulation and comparison, which is given
by

x(i+1)d = −
(
ki +

ε′i

2

)
ei − 2̂ tanh

(
ei
bi

)
−
εi

2
eiθ̂STi (Zi) Si (Zi) , i = 1, 2 (78)

And the adaption laws are defined as

˙̂
θ =

n∑
i=1

εir
2
e2i S

T
i (Zi) Si (Zi)− kθ θ̂

˙̂
2 = β

n∑
i=1

ei tanh
(
ei
bi

)
− k22̂ (79)

where the definition and selection of the controller param-
eters are the same as those in [29]. And the AOA response
curve (α−ANFC) and AOA tracking error curve (e1−ANFC)
are given in Figures 9 and 12, respectively.

In Fig. 9, αc is the AOA command. α denotes the AOA
response of the aircraft, which is decided by the con-
trollers (12) and (27). The AOA response curve (α − ANFC)
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FIGURE 9. Tracking result of α.

FIGURE 10. Control input signal.

FIGURE 11. Pitching rate response.

FIGURE 12. Tracking error e1.

is decided by the controller (78). According to Fig. 9 and
Fig. 10, the entire simulation can be divided into three
phases:

FIGURE 13. Estimations of θ11 and θ12.

FIGURE 14. Estimations of θ21 and θ22.

(1) When t ∈ [0, 5), the actuator fault does not appear, and
ρ = 1. In the meantime, the aircraft can follow the AOA
command αc under the flight controller (12).

(2) When t ∈ [5, 20), the actuator fault occurs (ρ = 0.44).
Fig. 9 shows that the aircraft is out of control and
the angle of attack instantaneously deviates to a higher
AOA. Combined with Fig. 10, it can be found that the
control output is saturated, and the aircraft has no excess
control energy to reduce the AOA. Hence, the AOA of
the aircraft has been locked, and deep stall appeared.

(3) When t ∈ [20, 40), the deep-stall recovery control
scheme (27) has been activated. First, by analyzing
the deep-stall AOA and the bifurcation analysis results
in Fig. 3 - Fig. 6, the actuator fault is estimated. Further,
according to the bifurcation analysis results, the maxi-
mum stable AOA that the aircraft can track is analyzed.
Finally, according to the maximum stable AOA, a suit-
able high AOA tracking command is designed, which is
given in Fig. 9.

According to the AOA response curve (α) in Fig. 9,
the designed controller (27) can make the aircraft follow
the high AOA command (αc) according to the prescribed
performance (20 ≤ t < 40). However, the AOA response
curve (α−ANFC) in Fig. 9 show that the control law designed
in [29] can not guarantee the better transient performance in
the presence of actuator failure. And tracking error curves
in Fig. 12 can also confirm the above discussion.
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FIGURE 15. Complete AOA response process.

FIGURE 16. Complete control input.

According to Fig. 12, the tracking error e1 can meet the
preset performance requirements well. Fig. 13 and Fig. 14
show that estimated values of θ11, θ12, θ21, and θ22 converge
to a reasonable bound.

In Fig. 9, the aircraft has pitched up to the specified AOA at
the 40th second. At this time, the aircraft will be disconnected
from the controller (27) and the pilot will immediately put the
rod, so that the aircraft will achieve the deep-stall recovery.
And the complete process is given in Fig. 15 and Fig. 16.

Comparing the control methods in this paper with those
in [29], it can be concluded that the combination of finite-time
control and prescribed performance method can effectively
improve the transient performance of aircraft maneuvering at
high AOA, especially in the case of actuator failure. Mean-
while, according to Fig. 12 and Fig. 16, better control per-
formance requires higher control energy. Fig. 16 shows high
control performance leads to serious input saturation. Hence,
the balance between control performance and the effects of
actuator fault should be considered. In the design of deep-stall
recovery scheme, appropriate prescribed performance func-
tions should be selected according to the failure degree of the
actuator.

VI. CONCLUSION
In this paper, the problem of deep-stall recovery has been
studied for the aircraft without ‘‘spoon-like’’ longitudinal
torque characteristics.Meanwhile, the effects of actuator fault

on deep stall have been analyzed through the bifurcation
method. Considering that the studied aircraft is longitudinally
unstable, existing deep-stall recovery methods are difficult to
use directly. The bifurcation analysis method has been used
to assist in the design of a finite-time prescribed performance
deep-stall recovery law, and simulation results showed that
this method can achieve satisfactory deep-stall recovery per-
formance. In the future, we will consider further researches
in the following areas. First, actuator fault identification and
diagnostic technique will be studied for high AOA flight to
provide more information for deep-stall recovery. Secondly,
we will consider the control distribution of the canard and the
thrust vector, which can provide more control energy for the
deep-stall recovery.
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