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ABSTRACT Multi-objective optimization problems (MOPs) have received much attention in recent years.
To deal with these problems, many multi-objective optimization algorithms have been proposed, especially
the heuristic algorithms. In this paper, we proposed a multi-objective optimization algorithm called vascular
invasive tumor growth optimization (VITGO), which based on the invasive tumor growth optimization and
utilized a vascular mechanism to solve the MOPs. The newly proposed algorithm contains two parts: the
vascular units and tumor cells. The former ones are utilized to record the Pareto solutions of the MOPs and
define the search direction, and the latter ones are utilized to co-operate with vascular units to search deeper
and wider. The mechanisms in the VITGO algorithm includes: endpoint generation, approximate Pareto
front guidance, opposite searching, and adaptively detailed searching. Experiments showed that compared
with other state-of-the-art multi-objective optimization algorithms, VITGO performs better in convergence
and diversity.

INDEX TERMS Evolutionary computation, swarm intelligence, multi-objective optimization, endpoint
generation, vascular mechanism.

I. INTRODUCTION
Multi-objective optimization problems (MOPs) are deci-
sion problems with multiple criteria. These criteria will
appear as objective functions and constrained functions.
Recently, many multi-objective optimization algorithms such
as U-NSGA-III [1] and B-NSGA-III [2] have been proposed
to solve these problems. The objective functions of a MOP
conflicts with each other such that there is not a global best
solution of the whole problem. It means, if one of the objec-
tive functions achieves its global best, the others may not.
Constrained functions are mostly provided by users. There
are two technical ways to solve the MOPs: 1) transforming a
MOP into a single-objective optimization problem and solv-
ing the latter problem; 2) solving a MOP by determining its
Pareto solutions directly. A Pareto solution [3] is a ‘‘not-bad
solution’’ of a multi-objective optimization problem, which
was introduced more than 100 years ago. Whether an algo-
rithm can determine all of the Pareto solutions of a MOP and
how good the Pareto front [3] it can establishes, are the criteria
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to evaluate the performance of it. They will be discussed in
the next section.

The invasive tumor growth optimization algorithm/
ITGO [4] is an algorithm that imitates the behaviour of
tumor cells to solve single-objective optimization problems
by searching out their global best solutions. In this paper,
we introduced the vascular mechanism into ITGO and pro-
posed a multi-objective vascular invasive tumor growth opti-
mization, which both imitates the behaviour of vascular
units and tumor cells to solve multi-objective optimization
problems. The main innovation and benefit of the proposed
VITGO algorithm includes the following:

1) First proposal of a search model that based on the
behaviour of vascular units and tumor cells, including the
growth, update and pruning operations of vascular tis-
sues, the invasion, growth, dormancy, death of tumor cells,
the interactions between different types of tumor cells, and
the interactions between vascular units and tumor cells.

2) Specific proposal of a series of search schemes to solve
multi-objective optimization problems. i) Endpoint detec-
tion and generation. During the process of solving multi-
objective optimization problems, there may appear some
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discrete or discontinuous parts of the approximate Pareto
front in the intermediate results. The endpoints of these
discrete or discontinuous structure are more likely to help
search wider and farther. VITGO has an endpoints detection
scheme to identify these discrete or discontinuous parts to
generate new vascular units and help search. ii) Approx-
imate PF guidance. Since the current approximate Pareto
front is the most effective part of the whole population in
the current generation, especially the endpoints located on
the approximate Pareto front, it can be utilized to guide the
movement of other individuals. VITGO has three different
ways for the approximate PF guidance: invasion from the
guiders to enter into the un-searched areas, moving around
the guiders and retain the better ones to search wider, and
tiny search around the guiders to search deeper and maintain
the diversity. iii) Pruning schemes. In the VITGO algorithm,
the amount of valid individuals will expands as time goes by,
and the density of these individuals will be too large to avoid
the computational redundancy. Therefore, a pruning scheme
based on a threshold δ is provided to maintain proper density.
iv) Opposite search steps. To be more effective, opposite
search steps will be utilized by invasive cells and the better
one will be retained.

3) Associative proposal of a series of search schemes to
make the algorithm work more in-depth and exhibit stability.
i) The adaptively detailed search by dormant cells. These
individuals only search by 1 dimension in the decision space
at a time to avoid missing any feasible search direction, and
eliminate the invalid search directions. ii) If an individual
reaches the boundary, it will random walk with the corre-
sponding dimension that exceeds the boundary and other
variables remain unchanged.

These search schemes can both help for the convergence
and diversity of the VITGO algorithm.

The remainder of this paper is described as follows:
Section 2 introduces the multi-objective optimization algo-
rithms in detail. Section 3 is the definition of multi-objective
optimization problems. Section 4 introduces the proposed
VITGO algorithm in detail. Section 5 discusses the experi-
ments and analysis. Section 6 presents the conclusion.

II. RELATED WORK
In recent years, many multi-objective optimization algo-
rithms have been proposed to deal with MOPs. According to
paper [5], these algorithms can be divided into four types: no-
preference methods, priori methods, posteriori methods and
interactive methods. The main difference between these four
types of methods is whether there is prior knowledge or not,
and whether there is a user’s preference or not. Jurgen et al.
put forward similar views in paper [6]. The first type is to
solve MOPs without user’s preference, such as the simplex
method, the integer programming and most of the evolution-
ary multi-objective optimization algorithms. The second type
is to solve MOPs with prior knowledge (mostly appearing
as weights), such as the multi-objective ant colony opti-
mization [7], the variable length brain storm optimization

algorithm [8], and the interactive preference-based multi-
objective evolutionary algorithm [9]. The third type is to solve
MOPs with some posteriori knowledge (mostly appearing as
weights), such as the multi-objective virtual machine consol-
idation algorithm in paper [10]. The fourth type is to solve
MOPs with interactive operations, such as the expert system
set up online.

To analyze these algorithms more, we further divided them
into two categories based on the technical skills. The first cat-
egory is to transform a multi-objective optimization problem
into a single-objective problem (mostly with weights) and
solve the latter problem. The second category is to determine
the Pareto solutions of a MOP directly. Since there is not a
global best solution in a multi-objective optimization prob-
lem, the first category can only determine a point located on
the true Pareto front (mostly with weights as priori knowl-
edge), and ignores the other Pareto solutions. A typical exam-
ple is the multi-objective ant colony optimizaton [7], which
utilizes the user-preference asweights to identify a global best
solution. Other algorithms such as the multi-objective lazy
ant colony optimization [11], the weight-aggregation multi-
objective particle swarm optimization [12] and the user-
preference multi-objective optimization [13], all utilizes the
user preference as weights to search for a global optima.
The second category searches out the complete Pareto solu-
tions directly, without utilizing the user preferences, priori
knowledge or posteriorior knowledge. A typical example is
the vector evaluated genetic algorithm [14], which utilizes the
search schemes of genetic algorithm to solve MOPs. Other
similar algorithms include: the nondominated sorting genetic
algorithm [15], which is based on the genetic algorithm and
utilizes the nondominated sorting scheme to determine the
Pareto front of MOPs; the nondominated sorting genetic
algorithm - II [16], which proposes a nondominated fast
sorting scheme and a selection operator to solve MOPs; the
nondominated sorting genetic algorithm - III [17], which fur-
ther proposes a reference-point-based scheme to solve more
complexMOPs; the multi-objective particle swarm optimiza-
tion [18], which imitates the behaviours of a real swami,
selects elite particles by a probabilistic crowding radius-based
scheme and a multilevel sieve, to determine a significant
Pareto front; there is another version of MOPSO [19], which
utilizes a secondary repository for storage and guidance,
as well as a crossover operator, to solve the MOPs; the multi-
objective artificial bee colony (MOABC) [20], [21], which
imitates the behaviour of artificial bee colony to determine
the Pareto front; the multi-objective gravitational search algo-
rithm [22], which solves the MOPs with the mechanism of
gravity acceleration and searches out for Pareto solutions; the
multi-objective teaching-learning based optimization algo-
rithm [23], which is based on the evolutionary mechanisms
of teaching-learning-based-optimization and a nondominated
sorting to search out for a significant Pareto front; the multi-
objective shuffled frog-leaping algorithm [24], which utilizes
the memetic schemes of shuffled frog-leaping algorithm and
the scheme of crowding distance to determine a significant
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Pareto front; the multi-objective bacterial foraging optimiza-
tion [25], which is based on the mechanisms of bacterial for-
aging optimization and a new novel health sorting approach
to determine the Pareto optima; the multi-objective immune
algorithm [26], which is based on the features of biolog-
ical immune system, and utilizes a novel gene fragment
recombination and several antibody diversification schemes,
to determine a significant Pareto front; the hybrid evolu-
tionary immune algorithm [27], which is an enhancement
of MOIA with hybrid approaches; the multi-objective sine-
cosine algorithm [28], which is based on the mechanism of
sine-cosine algorithm and utilized an elitist non-dominated
sorting method to deal with MOPs; the multi-objective grey
wolf optimizer [29], which is based on the characteristics of
grey wolf optimizers, and utilizes a nondominated storing
method and a series of leader selection schemes, to deter-
mine a significant Pareto front; the multi-objective dragonfly
algorithm [30], which imitates the habitats of dragonflies,
utilizes a series of schemes to store and retrieve archives,
and employees a roulette-wheel mechanism, to deal with
MOPs; the interval multi-objective quantum-inspired cultural
algorithm [31], which is based on the mechanisms of cultural
algorithm and utilizes a novel quantum-inspired strategy to
search for a significant Pareto front; the multi-objective opti-
mization algorithm based on artificial algae [32], which is
based on the search technique of artificial algae algorithm
and applies an elitist nondominated sorting scheme and a
crowding distance scheme to obtain the Pareto optima. Most
of these multi-objective optimization algorithms belong to
evolutionary algorithms that 1) imitates biological charac-
teristics to design a search model and proposes a series of
novel schemes; 2) utilizes a whole population to get better
solutions by iterations; and 3) considers both the convergence
and diversity. They belong to the second category that search
for a significant Pareto front.

However, weights cannot be utilized as the criteria to dis-
tinguish the first category from the second category, since
a series of multi-objective algorithms also utilize weights
to determine a complete Pareto front, such as: the multi-
objective bat algorithm [33], which utilizes K randomly
chosen weights to solve K-objective problems; the multi-
objective evolutionary algorithm based on decomposition
[34], [35], which decomposes a MOP into several sub-
problems and solve them by aggregation, including the
weighted sum approach, the Tchebycheff approach and the
boundary intersection approach; the multi-objective evolu-
tionary algorithm based on decomposition with adaptive
replacement strategies [36], which utilizes a sigmoid func-
tion to adaptively adjust replaced neighbors of individuals in
MOEA/D; the multi-objective evolutionary algorithm based
on decomposition with composite operator selection [35],
which introduces four types of cross-mutate operations for
evolutionary computations; the multi-objective crow search
algorithm [37], which utilizes a set of determined weight
vectors and employees the max-min strategy; All of them
are trying to search for a significant Pareto front while

applying weights. To guarantee the robustness of differ-
ent multi-objective optimization algorithms and solve the
dynamic multi-objective optimization problems [38], predic-
tion models such as moving average, autoregressive and sin-
gle exponential smoothing can also be aggregate with weights
to achieve this goal. Since these multi-objective optimization
algorithms do not aggregate the MOPs into single-objective
optimization problems to find out a global best solution, they
all belong to the second category.

In this paper, we focused on the multi-objective optimiza-
tion algorithms that search for a significant Pareto front with
evolutionary schemes. A multi-objective vascular invasive
tumor growth optimization algorithm was proposed based
on the behaviours of vascular units and tumor cells, and the
interactions between these individuals. A series of schemes
were proposed to deal with MOPs. It will be discussed in
detail in the next section.

III. PROBLEM DEFINITION
A multi-objective optimization problem refers to a problem
that contains multiple conflicting objective-functions and the
corresponding constraint functions. During the processing,
these functions should be considered at the same time. In this
paper, we utilize f1, f2, . . ., fn to represent the 1th, 2th, . . ., and
the nth objective functions of a multi-objective optimization
problem. g and h are different types of constraint functions.
A MOP can be defined as:

min z = F(x) = {f1(x), f2(x), . . . fn(x)}

s.t. gi(x) ≤ 0

hj(x) = 0

x = {x1, x2, x3, . . . , xm} (1)

In this representation, z is the set of the conflicting objective
functions. x is a solution of the MOP, and it is constructed
by x1, x2, . . . , xm. m is the dimension of the decision space.
Therefore, m is equal to the length of x.
Since there is not a global best solution in a MOP, we can

only find out some Pareto solutions of it. If a solution x is not
worse than the others, then the solution x can be identified
as a Pareto solution. A Pareto solution is determined by a
dominance relationship [3]. The dominance relationship can
be described as follows: if there are a solution x and a solution
y that satisfy:

∀i ∈ {1, . . . ,m} fi(x) ≤ fi(y) ∧ ∃fi(x) < fi(y) (2)

then the solution x is said to dominates the solution y, or the
solution y is dominated by the solution x. If there is not a
solution y that can dominates the solution x, then x is a Pareto
solution. Equation 2 is a strong dominance and it can be
represented by F(x) � F(y). If the second half of equation
2 does not exist, it is a weak dominance that represented by
F(x)< F(y). A solution x is Pareto optimal [3] if and only if:

¬∃F(y) � F(x), x, y ∈ � (3)
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� is the decision space of a MOP. If there is not a solution
y in the decision space � that y dominates x, x is a Pareto
optimal, or a Pareto solution. The collection of the Pareto
solutions is a Pareto set (PS), which can construct a Pareto
front (PF) in the objective space. The Pareto solution and the
Pareto front is defined as [3]:

PS = {x|¬∃F(y) � F(x)} x, y ∈ � (4)

PF = {F(x) = f1(x), f2(x), . . . , fn(x)} x ∈ PS (5)

The structure of Pareto front in the objective space can be
spots, lines, planes or other complex structures, determined
by the objective functions, constraint functions and the deci-
sion space of the corresponding MOP.

IV. MULTI-OBJECTIVE INVASIVE TUMOR
GROWTH OPTIMIZATION
A. INVASIVE TUMOR GROWTH OPTIMIZATION
Invasive tumor growth optimization (ITGO) is a recently
proposed algorithm of swarm intelligence [4]. It imitates the
behaviours of tumor cells to construct a tumor-cell model
to solve single-objective optimization problems. This kind
of tumor-cell model divides the population into four types:
invasive cells, growing cells, dormant cells and dead cells.
The concentration of the nutrients around the tumor cells refer
to their corresponding fitness value. All of these tumor cells
will approach a higher (or lower, determined by the fitness
function) concentration of the nutrients. They include:

1) Invasive cells, which are located at the outermost layer of
the whole population. They can jump out of the local optima
by Levy flight. Due to the effectiveness of invasive cells, they
can also guide part of the movement of growing cells. The
invasion of invasive cells is represented as:

Icelli(t + 1) = Icelli(t)+ α · Levy(s) (6)

α = rand · (
t
T
) (7)

Levy(s) ∼ |s|(−1−v), (1 < v ≤ 2) (8)

step =
u
|v|1/ω

(9)

u ∼ N (0, σ 2
u ), v ∼ N (0, σ 2

v ) (10)

σv = {
0(1+ ωsin(πω/2)

0[(1+ ω/2]ω2(ω−1)/2)
}
1/ω (11)

σu = 1 (12)

Icelli represents the ith invasive cell. Levy(s) is the function
for Levy flight. t is the current number of the iterations and T
is the total number of iterations. s is the step size of invasive
cells. u and v are used to calculate the step size. α is a control
parameter for the step size. ω is a constant and in paper [4]
the value of ω is 1.5. It is the value found in Paper [4] that
makes Levy flight have the best search results.

2) Growing cells, which are located at the second layer
of the whole population. They are guided by invasive cells
and their own historical trajectory. The outermost portion of
growing cells can be transformed into invasive cells and the
innermost portion of growing cells can be transformed into

dormant cells. They are the largest component of the entire
population, taking on major search tasks. More details of
growing cells are discussed in paper [4].

3) Dormant cells, which are located at the third layer of the
whole population and are transformed from growing cells.
Their step size is smaller than that of growing cells and
invasive cells. A dormant cell can return to being a grow-
ing cell if it encounters a better concentration of nutrients.
However, if the concentration of the surrounding nutrients
worsens, it will be transformed into a dead cell. More details
of dormant cells are discussed in paper [4].

4) Dead cells, which are located at the innermost layer of
the whole population and are transformed from dormant cells
due to insufficient searching. They will not perform searching
anymore. At the end of an iteration, dead cells will release
their computational resources and produce new invasive cells.
More details of dead cells are discussed in paper [4].

The process of ITGO can be described as follows: 1) ini-
tialize the population; 2) the four types of cells search step-
by-step according to the predefined rules; 3) when becoming
trapped in a local optima, invasive cells will escape by Levy
flight; and 4) at the end of an iteration, dead cells release
their computational resources, and new invasive cells can be
reproduced. During the whole movement, each type of cell
performs its own search strategy until the whole population
attains the global optimal solution. Figure 1 is the distribution
of individuals in ITGO [4].

FIGURE 1. Cell distribution in ITGO.

B. MULTI-OBJECTIVE INVASIVE TUMOR
GROWTH OPTIMIZATION
In this paper, we proposed a vascular invasive tumor
growth optimization algorithm VITGO, which imitates the
behaviours of vascular units and tumor cells to search for
a significant Pareto front of a MOP. The newly proposed
algorithm includes five types of individuals: vascular units,
which locate on the current approximate Pareto front during
the iteration; four types of tumor cells; which are inherited
from the ITGO. The search schemes of four types of tumor
cells are different from the original ones. An individual in
VITGO contains both a position in the decision space and
a corresponding position in the objective space. The former

29470 VOLUME 8, 2020



J. Zhou et al.: VITGO Algorithm for Multi-Objective Optimization

FIGURE 2. Distribution of vascular units and tumor cells in VITGO.

position is the center of an individual, and the latter position
is its fitness. Figure 2 demonstrates five types of individu-
als in the objective space. The red dendritic organization is
identified to be the vascular tissue, which is constructed by a
lot of vascular units. It is inserted into the whole tumor cell
population and partially guides the movement of tumor cells.
At the end of an iteration, the vascular tissue will update to
locate on the current approximate Pareto front. The outermost
blue dots are identified to be invasive cells, which approach
to the unsearched areas. The green dots located between the
invasive cells and the dendritic organization are identified to
be growing cells, which guarantee the whole solution space to
be completely searched. The individuals that collect together
(yellow dots) are identified to be dormant cells, which are
responsible for the farthest search. The black dots located
in the center of dormant cells’ clusters are identified bo be
dead cells, which are transformed from dormant cells due to
a terrible fitness value. Totally speaking, the identification
of different types of individuals is based on their positions
in the objective space, and the generation and movement of
an individual is applied in the decision space. At the end
of each iteration, these structures and distributions will be
reconstructed by some predefined rules, pushing the current
approximate Pareto front to become closer to the true Pareto
front.

1) VASCULAR UNIT GENERATION
Before introducing the generation of vascular units, some
preparations should first be introduced. During the processing
of a MOP, there may appear some incomplete or discontin-
uous structures in the approximate Pareto front, as showed
in Figure 3. Figure 3a is a continuous but incomplete approx-
imate Pareto front; Figure 3b is a discontinuous and incom-
plete approximate Pareto front.

In the incomplete parts or the discontinuous parts of the
approximate Pareto front, there may appear several endpoints
(circled in black in Figure 3). In total, there are two types
of endpoints: 1) endpoints without gaps (continuous but
incomplete), as shown in Figure 3a, and 2) endpoints with
gaps (discontinuous and incomplete), as shown in Figure 3b.
To obtain a better approximate Pareto front that can be closer
to the true PF, these kinds of endpoints need to be well used.
If we can generate some new individuals around the endpoints

FIGURE 3. Endpoints of an approximate Pareto front.

in Figure 3a, we may obtain a more complete approximate
Pareto front and can achieve better convergence. If we can
generate some new individuals in the gaps of endpoints
in Figure 3b, we may obtain a more complete approximate
Pareto front. As above, an endpoint is identified according
to its position in the objective space, and tries to induce
generating new individuals in the decision space. Since the
monotonicity of the objective functions cannot be guaranteed
useful, the position of the newly generated individuals cannot
be guaranteed to be useful in the objective space. Therefore,
only an individual should be generated in the gaps at a time:

vunitnew = 0.5 · p1 · (endpointi + endpointi+1),

i ∈ [1, ngaps] (13)

In equation 13, vunitnew is a newly generated vascular
unit. endpointi and endpointi+1 are two endpoints with a gap.
ngaps is the total number of the endpoints with gaps. p1 is
a perturbation parameter to prevent redundant computation.
The reason is that two endpoints may be repeatedly identified
in different generations. In order to avoid generating a new
individual in the same position, a small disturbance needs
to be added. If the vascular unit vunitnew is generated in the
gaps, it can guide other individuals to move farther in the
next generation. If not, the time lost encountered by this step
can be ignored since there is only one individual produced;
moreover, it is the first way to generate new individuals with
endpoints, which is named ‘‘gaps filling’’ here.

To precisely select the endpoints in Figure 3b to finish the
‘‘gaps filling’’ scheme, we need a sorting scheme based on
the difference of each objective function:

vesselsort j = qsort j(vunit), j ∈ [1,N ] (14)

1vesselsort ji = vesselsort ji+1 − vesselsort
j
i ,

i ∈ [1, nv − 1], j ∈ [1,N ] (15)

endpoint = {vuniti,i+1|1vesselsort
j
i > Tgaps} (16)

In equation 14, vunit is the set of vascular units. qsort j

is a Quicksort, which sorts the vunit by their jth-objective
value. vesselsort j is the result after Quicksort qsortj. N is
the total number of objective functions. It is employed to sort
the vascular units according to their jth-objective values and
finally obtain N arrays. In equation 15, vesselsort ji is the i

th

element in the array vesselsortj.1vesselsort
j
i is the difference
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between the ith vascular unit and the (i+ 1)th vascular unit in
the array vesselsort j. nv is the number of vascular units. This
step is to calculate the differences of sorted arrays vesselsort j.
In equation 16, endpoint is the endpoints with gaps that iden-
tified by a threshold Tgaps. vuniti,i+1 is the ith and the (i+1)th

vascular units on both sides of 1vesselsort ji . If 1vesselsort
j
i

is grater than the predefined threshold Tgaps, it is identified as
a gap, and the vascular units on both sides of the gaps will be
added into the endpoints with gaps. The value of Tgaps is set in
Section 5. By utilizing these formulas, the difference of each
objective function will be calculated several times, and then
the endpoints with larger gaps can be counted repeatedly to
generate more.Moreover, equations 13-16 are independent of
the space dimension, and then they can still be implemented
with N-objective problemswithout any extra settings to deter-
mine the corresponding (N-1)-dimensional structure. After
sorting and selection, endpoint 1 and endpoint 3 in Figure 3b
can be first selected, and then endpoint 4 and endpoint 5,
and so on. The reason for sorting the vascular units by their
jth-objective values instead of determining their neighbours
is that the former can reduce computational redundancies.
The way to select other endpoints will be discussed below.
All of the endpoints can be utilized as the guidance of other
tumor cells.

2) VASCULAR GUIDANCE
As mentioned above, the endpoints on the both sides of the
approximate Pareto front are effective for searching since
their search directions are wider and farther. They can also be
utilized as a significant base for invasive cells to jump into the
unsearched areas. We identified a vascular unit that is farthest
from the center of vascular tissue that:

disci =

∣∣∣∣vuniti − 1
nv

∑nv
i=1 vuniti,

∣∣∣∣ , i ∈ [1, nv] (17)

endpointnew = vunitidx(max(disc)) (18)

In equation 17, vuniti is the ith vascular unit. nv is the num-
ber of vascular units. disci is the distance between the geo-
metric center and vuniti. In equation 18, endpointnew is the
newly identified endpoint on one of the sides of the current
approximate Pareto front. idx(max(disc)) is the index of the
maximum disc.

Moreover, the individuals that far away from others should
also be identified as endpoints. As shown in Fig 3, this kind
of individuals can also be utilized to generate individuals to
improve the convergence. All of them should be utilized as
the guiders:

disvi = minvalue|2(|vuniti − vunit|), i ∈ [1, nv − 1]

(19)

endpointnew = {vuniti|disvi > Tgaps} (20)

guider = endpoint (21)

In equation 17, disvi is the Euclidean distance between the
ith vascular unit and vunit .minvalue|2 (A) is a method to deter-
mine the second minimum elements in array A and return

its value. Therefore, this step is to determine the individual
that is closest to vuniti (the minimum distance is 0 of vuniti
and itself). In equation 18, endpoint is the endpoints that
far away from the vascular units. vuniti is the ith vascular
unit. Tgaps is a predefined threshold in Section 5. This step
is to determine the individual that is farthest from the vunit .
After applying these formulas, endpoint 2 in Figure 3b can be
selected first since it is the farthest from the vascular units.
These endpoint will be utilized as the guider of other tumor
cells. More details will be discussed in the next subsections.

3) VASCULAR UNIT UPDATING
After the individuals’ generation and merging, there may be
some old and invalid vascular units that are located outside of
the current approximate Pareto front. Therefore, they should
be deleted by a dominance relationship to retain efficiency.
The vascular updating approach to remove these invalid vas-
cular units is defined as:

vunitj← ∅ if ∃ vuniti < vunitj (22)

vuniti and vunitj are two different vascular units such that
vuniti dominates vunitj. In this situation, vunitj should be
deleted immediately. After this operation, the old and invalid
vascular units could be removed to maintain a more effective
approximate Pareto front for the next generation.

4) VASCULAR UNIT PRUNING
In the proposed algorithm, the size of the whole population
is not fixed. Although invalid individuals can be deleted by
dominance above, the size of the whole population is still
inevitably increasing and lead to amassive density.Moreover,
similar individuals that have similar search directions will
cause excessive redundant calculations. Therefore, a parame-
ter delta is introduced to construct a vascular units pruning
scheme that trims out similar vascular units to indirectly
control the size of the whole population and avoid a mas-
sive population density. The counterintuitive operation of the
pruning scheme is that it is utilized to trim out similar valid
individuals (similar to other individuals) instead of invalid
individuals:

vuniti ← ∅, if
∣∣vuniti − vunitj∣∣ < delta,

i ∈ [1, nv], j ∈ [1, nv] (23)

In equation 23, vuniti and vunitj are both vascular units.
nv is the total number of vascular units. delta is the thresh-
old that triggers the pruning scheme. If the number of the
population increases, it means that the density of individuals
is also increasing to a certain degree. Then parameter delta
can play its role to make the VITGO algorithm maintain its
effectiveness. The value of delta will be tested in section 5.

5) BOUNDARY DETECTION AND RANDOM WALK WITH
CORRESPONDING DIMENSION
In the proposed VITGO algorithm, a partially random
walk scheme was utilized to enhance the performance.
If an individual touches the boundary, it will randomly move
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in the directions that exceed the boundary until other direc-
tions stay unchanged. Mathematically,

vuniti,m = rand · (ubm − lbm)+ lbm,m ∈ [1,Mexceed ]

(24)

In equation 24, rand is a uniformly distributed random
number. vuniti is the ith vascular unit. exceed is the subscripts
of the directions that exceed the boundary.M is the dimension
of the decision space. lb is the lower boundary and ub is
the upper boundary. Specifically, if an individual exceeds the
upper boundary or the lower boundary, only the variables
that exceed the boundary need a random walk while other
variables unchanged. Comparing with the fully randomwalk,
it is more stable.

The above methods constitute the entire vascular mech-
anism, which is the core of the whole VITGO algorithm.
To better cooperate with the proposed vascular mechanism,
we redesigned the growth, metastasis, and transformation
rules of four types of tumor cells.

6) THE OPPOSITE SEARCH OF INVASIVE CELLS
The role of invasive cells is to identify new regions that
have not been searched. Similar to ITGO, the invasive cells
also apply the Levy flight to get out of the current loca-
tion. However, different from the ITGO, invasive cells in the
VITGOwill utilized a second opposite step to identify a more
effective search direction:

icellnew = Dominance{guiderrandj · (step+ 1),

guiderrandj · (−step+ 1)}, randj ∈ [1, ne]

(25)

The parameter step in equation 25 is the just the same as
that in equation 9. As listed above, some randomly chosen
guiding individuals guiderrandj will guide the generation and
movement of invasive cells. Since the endpoints are located
exactly in the approximate Pareto front, it will be the best
guidance for invasion. To be more effective, for each end-
point, there are two new invasive cells generated by the step
and the opposite −step, and the nondominated one will be
retained for the next iteration. In general, one of these two
opposite step sizes determines a better search direction than
the other. If their performances are equal to each other, only
one of them can remain. If the Levy flight is not satisfactory,
a completely random walk will be utilized by invasive cells
to search for new regions.

7) THE WIDER SEARCH OF GROWING CELLS
As listed in Figure 3a, the endpoints (guiders) located at
the both sides of the approximate Pareto front will be more
effective than others to searchwider. Since these kinds of end-
points have become the guiders of tumor cells, the growing
cells will be generated by:

gcellnew = p2 · guiderrandj, randj ∈ [1, ne] (26)

guidernew = gcellnew, if gcellnew � guiderrandj (27)

In equation 26, gcellnew is a newly produced growing cell.
guiderrandj is a randomly chosen guidance individual. p2 is
a parameter to control the location of the newly produced
growing cells. If gcellnew dominates guiderrandj, it will be
added into the guider to guide the movement of dormant
cells. After applying formulas above, the newly generated
growing cell is actually located around its guider in the
decision space. If the monotonic of the objective functions is
smooth, the newly generated growing cell can actually locate
around its guider in the objective space. If not, it will locate
on some other position in the objective space according to the
objective functions. In other words, this scheme will succeed
in probability.

8) THE FARTHER SEARCH OF DORMANT CELLS
To make the population search farthest in each direction,
the movement of dormant cells is designed as follows: a
dormant cell only moves in 1 dimension of the decision space
at a time. From a numerical point of view, only 1 element in
the step-size vector of a dormant cell can be positive or neg-
ative, while other elements contain 0. In a real biological
environment, the movement of a dormant cell is very small
due to the lack of nutrients. The dormant cells in VITGO
follow this behavior to make themselves work better. This
scheme can help a dormant cell to search father in each
direction and stay stable in other directions. To better solve
themulti-objective optimization problems and cooperate with
vascular tissues, dormant cells will be guided by vascular
units instead of growing cells:

dorcellnew = p3 · guiderrandj, randj ∈ [1, ne], |p3| ∈ (
1
t
, 1)

(28)

dorcellnew,m = p4 · dorcellnew,m,m ∈ [1,M ],

|p4| ∈ (1−
1
t
, 1) (29)

In equation 28, dorcellnew is a newly generated dormant
cell. guider is the guiding individual. Obviously the genera-
tion and movement of dormant cells will be guided by both
the endpoints and growing cells with high quality. The size of
dormant cells is equal to ne. p3 is a uniformly distributed ran-
dom number which has an absolute value between 1/t and 1.
t is the t th iteration. In equation 29, dorcellnew is a newly
generated dormant cell. M is the dimension of the decision
space, and m is the mth dimension of the decision space. p4 is
a uniformly distributed random number that has an absolute
value between 1-1/t and 1.

Equation 28 indicates that the dormant cell is guided by a
randomly selected guider and generates nearby. The absolute
value of p3 decreases as the number of iterations increases
to ensure that when the dormant cells become closer to the
true Pareto front, the algorithm performs a more refined
search. The absolute value of p4 increases as the parameter p3
decreases to ensure the activity of the dormant cells to avoid
redundant computation.
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Equation 29 indicates that the dormant cells perform a far-
ther search in each dimension of the decision space to ensure
that no feasible search direction is missed. They can also
ensure the search accuracywhen the approximate Pareto front
is very close to the true Pareto front. As shown in Figure 2,
the newly formed dormant cells always generate a cell mass
due to their small step size.

9) RULE FOR RELEASING RESOURCES
To reduce the waste of computational resources, once a newly
produced dormant cell or its guider cannot perform well,
it immediately turns into a dead cell and releases its resources.
In contrast to the original ITGO, invasive cells cannot be
produced here.

deacellnew = ¬Dominance{dorcellnew1, dorcellnew2}

(30)

deacell ← ∅ (31)

In equation 30, dorcellnew1 and dorcellnew2 are both newly
generated dormant cells in equation 28-29.Dominance refers
to the dominance relationship. If the newly generated dor-
mant cell is dominated by others, it will be immediately
transferred to a dead cell because its search direction is
invalid. No more action is taken here without releasing the
computational resources. As shown in Figure.2, some dead
cells appear in the center of the dormant cell mass (the invalid
search direction). They will be deleted immediately. The
purpose of this step is to eliminate the invalid individuals
before entering the vascular renewal process to avoid invalid
calculations.

Table 1 lists the differences between VITGO and
ITGO.

TABLE 1. Difference between ITGO and VITGO.

C. FLOWCHART AND PSEUDOCODE
The flowchart of VITGO is shown in Fig.4. The param-
eter cPareto refers to the approximate Pareto front in the
corresponding iteration. After the initialization, the vascular
units, invasive cells, growing cells, dormant cells (and dead
cells) generate according to corresponding rules; then, these
cells/units merge together for pruning and domination until
the termination condition is reached.

The pseudocode lists the same steps.

FIGURE 4. Flowchart of multi-objective vascular invasive tumor growth
optimization.

D. TIME COMPLEXITY
According to the processes mentioned above, the time com-
plexity of VTIGO can be analyzed separately. Let T denote
the number of iterations, N denote the number of objective
functions, n denote the size of the population, M denotes the
number of dimension of the decision space (in section 4), nv,
ni, ng, nd refer to the size of vascular units, invasive cells,
growing cells, and dormant cells, respectively. According to
the predefined formulas, we can concluded that: n = nv + ni
+ ng + nd , ni = ng = ne ≈ nd , and ne is determined by vunit .
Therefore, the time complexity of VITGO can be divided as:
1) the growth of vascular units that requiresNnvlognv compu-
tation for each iteration; and the time complexity for this part
is O(TNnvlognv); 2) the update of vascular units that requires
n2v for domination; and the time complexity for this part is
O(Tn2v); 3) the pruning process for blood vessels that requires
nv computation for each iteration; and the time complexity for
this part is O(Tnv); 4) boundary detection that requires a con-
stant computation and the time complexity in this part is also
a constant; 5) the production and search process of invasive
cells that requires ni computation for each iteration; and the
time complexity for this part is O(Tni); 6) the production and
search process of growing cells that requires ng computation
for each iteration; and the time complexity for this part is
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Algorithm 1Vascular Invasive Tumor Growth Optimiza-
tion Algorithm for Multi-Objective Optimization
Input: problemIndex
Output: cPareto

1 Initialization();
2 while t < T do
3 call Vascular unit’ generation;
4 call Invasive cell’ generation;
5 call Growing cell’ generation;
6 call Dormant cell’ generation;
7 call Random generation;
8 vunit ← vunit ∪ icell ∪ gcell ∪ dorcell tmpicell;
9 i← 1;
10 while i < nv do
11 dis← |vuniti − vunit|;
12 if minvalue|2(dis) < delta then
13 vuniti← ∅;
14 nv← nv − 1;
15 end
16 end
17 foreach i,j in vunit do
18 if vuniti < vunitj then
19 vunitj← ∅;
20 end
21 end
22 t ← t + 1;
23 end
24 cPareto← vunit;

O(Tng); 7) the production and searching of dormant cells
that requires nd computation for each iteration; and the time
complexity for this part is O(Tnd ). Since nv, ni, ng, and nd
are part of the population size n, the total time complexity of
VITGO is:

time complexity = O(TNnvlognv + Tn2v + Tnv

+Tni + Tng + TMndor )

= O(T (M + Nn)n) (32)

The time complexity of VITGO was similar to the time
complexity of NSGAII, which is generally influenced by its
fast non-dominated sorting algorithm, and requires O(Nn2)
time complexity in each iteration [16]. Therefore, the time
complexity of the NSGAII algorithm is O(TNn2). The only
difference between VITGO and NSGAII is that the VITGO
considers the influence of the spatial dimension M while the
NSGAII does not.

V. EXPERIMENTS
A. TEST PROBLEMS, COMPARING ALGORITHMS,
AND RUNNING ENVIRONMENT
There are many multi-objective optimization problems that
have been proposed for testing in recent years. The most
generally utilized test problems are ZDTs, UFs, DTLZs and

Algorithm 2 Vascular Unit’ Generation
Input: vunit , Tgaps, p1
Output: vunit , guider

1 endpoint ← ∅;
2 guider ← ∅;
3 foreach j in N do
4 vesselsortj← qsortj(vunit);
5 foreach i in vunit do
6 1vesselsortji← vesselsortji+1 - vesselsort

j
i;

7 if 1vesselsortji > Tgaps then
8 vunitnew← 0.5 · p1 · (vesselsort

j
i+1 +

vesselsort ji );
9 vunit ← vunit ∪ vunitnew;
10 endpoint ← endpoint ∪ vesselsort ji ∪

vesselsort ji+1;
11 end
12 end
13 end
14 vcenter ← 1

nv

∑nv
i=1 vuniti;

15 foreach i in vunit do
16 disci ← |vuniti − vcenter |;
17 end
18 idxMax← Idxof (max(disci ));
19 endpoint ← endpoint ∪ vunitidxMax ;
20 foreach i in vunit do
21 disvi ← |vuniti − vunit|;
22 if minvalue|2(disvi ) > Tgaps then
23 endpoint ← endpoint ∪ vuniti;
24 end
25 end
26 guider ← endpoint;

Algorithm 3 Invasive Cell’ Generation
Input: guider , ne, ni
Output: icell

1 icell← ∅;
2 i← 0;
3 while i < ni do
4 randj← ceil(ne · rand);
5 step← α · Levy;
6 icellnew1← guiderrandj · (step+1);
7 icellnew2← guiderrandj · (-step+1);
8 if icellnew1 < icellnew2 then
9 icell← icell ∪ icellnew1;
10 else
11 icell← icell ∪ icellnew2;
12 end
13 i← i+ 1;
14 end

WFGs. They were constructed with different principles and
contain different difficulties for an algorithm to address.
The test set ZDT has a total of six problems; each of them
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Algorithm 4 Growing Cell’ Generation
Input: guider , ne, ng, p2
Output: guider , gcell

1 gcell← ∅;
2 i← 0;
3 while i < ng do
4 randj← ceil(ne · rand);
5 gcellnew← p2 · guiderrandj;
6 gcell← gcell ∪ gcellnew;
7 if gcellnew < guiderrandj then
8 guider ← guider ∪ gcellnew;
9 end
10 i← i+ 1;
11 end

Algorithm 5 Dormant Cell’ Generation
Input: guider , ne, nd , p3, p4
Output: dorcell

1 dorcell← ∅;
2 deacell← ∅;
3 i← 0;
4 while i < nd do
5 randj← ceil(ne · rand);
6 dorcellnew1← p3 · guiderrandj;
7 if guiderrandj < dorcellnew then
8 deacell← deacell ∪ dorcellnew1;
9 else
10 foreach m dimension in M do
11 dorcellnew2← dorcellnew1;
12 dorcellnew2,m← p4 · dorcellnew1,m;
13 if dorcellnew1 < dorcellnew2 then
14 deacell← deacell ∪ dorcellnew2;
15 else
16 deacell← deacell ∪ dorcellnew1;
17 dorcellnew1← dorcellnew2;
18 end
19 end
20 end
21 deacell← ∅;
22 i← i+ 1;
23 end

involves a difficulty that can be evaluated, and an algorithm
may encounter these difficulties during evolutions [39]. Each
test problem in ZDT set has two objective functions. Since
ZDT5 of this test set is rarely used, in the experiment, we only
use the other five multi-objective optimization problems for
testing. The test set DTLZ is totally different from the test set
ZDT in that the number of its objective functions is extensible
and can be arbitrarily specified [40]. The most frequently
utilized number of the objective functions in DTLZs is three,
and the most frequently utilized test problems are DTLZ1-
DTLZ4. The test set UF is also totally different from that of

Algorithm 6 Random Generation
Input: nrand
Output: tmpicells

1 tmpicells← ∅;
2 i← 0;
3 while i < nrand do
4 icelltmp1← rand · boundary;
5 tmpicells← tmpicells ∪ icelltmp1;
6 i← i+ 1;
7 end

the ZDT and DTLZ in that it is constructed by a series of
unconstrained problems and a series of generally constrained
problems [41]. There are ten test problems in total in the UF
set: UF1-UF10. UF1-UF7 are the two-objective optimization
problems, and UF8-UF10 are the three-objective optimiza-
tion problems. All ten of these problems will be utilized in the
experiment. The test set WFG includes nine test problems:
WFG1-WFG9. Similar to DTLZ, the number of objective
functions in WFG is extensible, and the number of objective
functions is set to three in all the experiments. The parameter
k of these problems is set to 2, and and the parameter l is
set to 2. Other parameters are the same as which suggested
in the corresponding paper. There are in total 28 test prob-
lems in the experiment: ZDT1, ZDT2, ZDT3, ZDT4, ZDT6,
UF1, UF2, UF3, UF4, UF5, UF6, UF7, UF8, UF9, UF10,
DTLZ1, DTLZ2, DTLZ3, DTLZ4, WFG1, WFG2, WFG3,
WFG4, WFG5, WFG6, WFG7, WFG8, and WFG9. The first
12 problems are two-objective problems, and the others are
three-objective problems.

In the experiment, we will utilize five multi-objective
optimization algorithms to compare with VITGO: NSGA-
III [17], MODA [30], HEIA [27], MOEA/D-AGR [36] and
MOEA/D-CDE [35]. These algorithms have been briefly
introduced in Section 2. The running environment of these
algorithms is R2014a. Each algorithm will be tested with the
28 test problems with 30 runs, and the results will be recorded
in the following tables.

B. PERFORMANCE METRICS
To evaluate the performance of multi-objective algorithms
in different aspects, we choose four performance metrics in
total: generational distance (GD) [42], inverse generational
distance (IGD) [43], Spread (SP) [44] and hypervolume
(HV) [45]. Generational distance (GD) is to calculate the root
of the sum of the squares of the minimum distances from
each individuals of the approximate Pareto front to its nearest
neighbor of the true Pareto front [42]. It takes a similar idea
to the Euclidean distance and can therefore be utilized to
estimate how far it is from the approximate Pareto front to
the true Pareto front.

GD =
√∑|cR|

i=1 distance(cr,p)
|cR|

(33)
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Here cR is the approximate Pareto front (current results of a
multi-objective optimization algorithm). |cR| is the size of the
approximate Pareto front. cr is an individual on the approx-
imate Pareto front cR. p is an individual on the true Pareto
front PF and it is the nearest individual of cr. The function
distance() is to calculate the Euclidean distance. This formula
is to calculate the Euclidean distance of each individual cr in
cR and its nearest neighbor p in PF to estimate how far it
is from the approximate Pareto front cR to the true Pareto
front PF. It can identify the convergence of the approximate
Pareto front cR and the performance of the corresponding
multi-objective optimization algorithm.

Inverse generational distance (IGD) is to calculate the min-
imum distance from each individual of the true Pareto front
PF to its nearest neighbor in the approximate Pareto front cR.
It takes a similar idea to GD but an inverse technique to both
identify the convergence and diversity of a multi-objective
algorithm.

IGD =
∑|PF|

i=1 distance(p,cr)
|PF|

(34)

Here, PF is the true Pareto front of a multi-objective
optimization problem. |PF| is the size of the true Pareto
front. p is an individual on the true Pareto front PF. cr is a
point on the approximate Pareto front cR and it is the nearest
individual from p. The function distance() is to calculate the
Euclidean distance. This formula is to calculate the (average)
Euclidean distance between an individual p in PF and its
nearest neighbor cr in cR to estimate how far it is from the
true Pareto front PF to the approximate Pareto front cR.
Therefore, it can both identify the convergence and diversity
of the approximate Pareto front cR and the performance of
the corresponding multi-objective optimization algorithm.

Spread (SP) is a formula to calculate the square root of
the approximate average of the square of mean difference
of the Manhattan distance between each individual of the
approximate Pareto front and its nearest neighbor. It takes a
similar idea to the standard deviation and can therefore be
utilized to estimate the identify the density and diversity of
the approximate Pareto front.

SP =

√
1

|cR| − 1
∑|cR|

i=1 (d̄ − di)
2 (35)

di = minj
∑M

m=1(|fi,m − fj,m|), i, j ∈ cR (36)

Here cR is the approximate Pareto front. |cR| is the size of
the approximate Pareto front. fi,m is the mth fitness value of
the ith individual in cR. di is the Manhattan distance of the
ith individual in cR and its nearest neighbor j. d̄ is the mean
value of di. This formula can identify the degree of dispersion
of the approximate Pareto front and be utilized to estimate the
identify the density and diversity to a certain extent.

Hypervolume (HV) is to calculate the hypervolume of each
individual of the approximate Pareto front, which can be
utilized to identify the dominance.

HV (cR, r) = volume(
⋃
f∈cR

[f1, r1]× ...[fM , rM ]) (37)

Here cR is the approximate Pareto front. r is the pre-
defined reference individual. fi is the ith objective value of
an individual. This formula is to test the dominance of the
approximate Pareto front to the reference r. In the experi-
ments, we choose r to be 1.1*max(PF) for each test problems.
For example, the reference individual r for ZDT1 is [1.1 1.1].
The parameter N for HV is set to 100000.

C. PARAMETER SETTINGS
To better analyze the proposed VITGO algorithm, we should
firstly identify the influence of each parameter in VITGO
and select proper values for them. The test problem for the
parameter selection is UF1 since it is not easy to achieve the
true Pareto front. Therefore, the nondominated solutions can
be more discriminating for different values of parameters and
then the effect of each parameter can be clearly showed.

FIGURE 5. MaxGTest. Tgaps = 0.01, delta = 0.001, popsize = 20.

FIGURE 6. PopsizeTest. Tgaps = 0.01, delta = 0.001, maxG = 200.

FIGURE 7. TgapsTest1. maxG = 200, delta = 0.001, popsize = 20.

Figure 5 - Figure 12 is the results of parameter test-
ing. Figure 5 shows the influence of the parameter maxG,
which is the maximum generation of the VITGO algorithm.
To clearly showed the influence of the parameter maxG,
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FIGURE 8. TgapsTest2. maxG = 1000, delta = 0.001, popsize = 20.

FIGURE 9. DeltaTest1. maxG = 200, Tgaps = 0.01, popsize = 20.

FIGURE 10. DeltaTest2. maxG = 1000, Tgaps = 0.01, popsize = 20.

FIGURE 11. DeltaTest3. maxG = 200, Tgaps = 0.01, popsize = 20.

we have selected three small values for it: 10, 50, and 200.
According to Figure 5, it can be concluded that as the number
of iterations increases, the converge of the VITGO algorithm
becomes better. Larger maximum generation will help for
convergence. In the experiments the parameter maxG will be
set to 1000.

Figure 6 shows the influence of the parameter n, which is
the initial number of the whole population. The value of this
parameter is set to 20, 50, and 200. The parameter maxG in
Figure 6 was set to 200 to magnify the discrimination of the

FIGURE 12. DeltaTest4. maxG = 1000, Tgaps = 0.01, popsize = 20.

effect of the parameter n. It can be concluded from Figure 6
that within a certain range, as the initial number of population
increases, the convergence of the VITGO algorithm becomes
better. However, after the initial number of the population
increase to a certain value, the effect of this parameter will
gradually weaken. It is because the size of the population
of the VITGO algorithm is not fixed, instead it is indirectly
controlled by the parameter δ. Therefore, in the experiment
the parameter n will be set to 50.

Figure 7 and Figure 8 show the influence of the parameter
Tgaps, which is a parameter to identify the endpoints on the
approximate Pareto front. The value of this parameter is set
to 0.1, 0.01, and 0.001. The parameter n was set to 20 to
magnify the discrimination. In Figure 7, the parameter maxG
was set to 200 and in Figure 8, the parameter maxG was
set to 1000. It can be concluded from Figure 7 that as the
value of Tgaps decreases, the convergence of the VITGO
algorithm becomes better. However, as the value of maxG
increases, the effect of this parameter will gradually weaken
(see Figure 8). Therefore, in the experiment the parameter
Tgaps will be set to 0.01.

Figure 9 - Figure 12 show the influence of the parameter
δ, which is a parameter to trigger the pruning scheme and
then indirectly control the size of the whole population. The
value of this parameter is set to 0.1, 0.01, and 0.001. The
parameter n was set to 20 to magnify the discrimination.
In Figure 9, the parameter maxG was set to 200 and in
Figure 10, the parameter maxG was set to 1000. It can be
concluded from Figure 9 that as the value of δ decreases,
the convergence of the VITGO algorithm becomes better.
Figure 10 supports this conclusion. It can also be concluded
from Figure 10 that as the value of δ decreases, the diversity
of the VITGO algorithm becomes better. The reason is that δ
is to indirectly control the density of the approximate Pareto
front and the size of the whole population. Larger δ will
results in smaller density of the approximate Pareto front
and then the guidance of the vascular units will weaken.
To comprehensively demonstrate the effect of the parameter
δ, we utilized another test problem UF2 to identify the influ-
ence of this parameter. The parameter settings in UF2 were
the same as those in UF1. Figure 11 - Figure 12 showed the
results and they also support these conclusions. Therefore,
in the experiment the parameter δ will be set to 0.001.

Other parameters was just the same as those in the original
ITGO, as shown in Table 2. The letter ‘‘M’’ in Table 2 means

29478 VOLUME 8, 2020



J. Zhou et al.: VITGO Algorithm for Multi-Objective Optimization

TABLE 2. Parameters for VITGO.

that the length of the parameter is M and the letter ‘‘1’’
means that the length of the parameter is 1. p1, p2, p3 and p4
are the perturbations of the VITGO algorithm. They should
take some tiny values to avoid the array (element) to equal
to another one. Moreover, the values of p1, p2, p3 and p4
is no fixed. They require a relatively small range of values
to ensure that they assist the selected individual to search
around. In this experiment we will take small values for each
of them. As listed in Table 2.

Besides the VITGO algorithm, other five algorithms also
apply the same values of n and maxG as those in VITGO.
The nArchives of NSGAIII and other algorithms is set to
1000 to maintain the diversity as much as possible. Moreover,
in the last iteration they will not apply the deletion based on
the nArchives for the same goal. Other parameters of these
algorithms are just the same as the corresponding papers [17],
[27], [30], [35], [36].

FIGURE 13. Part-1 vascular unit generation.

FIGURE 14. Part-2 invasive cells generation.

D. MAIN EXPERIMENTS
The production of different types of individuals are listed
in Figure 13 - Figure 16. It is an immediate results of DTLZ1.
Figure 13 is the beginning of a generation: vascular units
identification. The read dots in Figure 13 are the vascular
units in the current generation and they are also the cur-
rent approximate Pareto front. Figure 14 is the second step:
invasive cells generation. The blue dots are generated by the

FIGURE 15. Part-3 growing cells generation.

FIGURE 16. Part-4 dormant cells and dead cells generation.

guidance of vascular units and some of them are located at un-
searched areas. Figure 15 is the generation of growing cells.
The green dots are also generated by the guidance of vascular
units and they will search around. Figure 16 is the generation
of dormant cells and the identification of dead cells. After
the generation and movement of dormant cells, all of the
individuals will merge together to get a new approximate
Pareto front, and lead the next generation.

Table 3 - Table 7 are the results of the experiments.
M-CDE andM-AGR respectively referred to MOEA/D-CDE
and MOEA/D-AGR.

Table 3 is the generational distance of the approximate
Pareto front determined by the algorithms in 30 runs. It can
be concluded from Table 3 that the proposed VITGO out-
performs other five algorithms in most cases, especially
the test problems ZDTs and WFGs. Half of them are
two-objective problems and the others are three-objective
problems. The test problems that cannot be completely
solved by VITGO also include two-objective problems and
three-objective problems. Therefore, the performance of the
proposed VITGO algorithm is independent of the number
of the conflicting objective functions of a multi-objective
problem. Since generational distance is mostly utilized to
identify the convergence, it can be concluded that the conver-
gence of the proposed VITGO is satisfactory in most cases.
In those test problems where VITGO does not perform well,
its performance is not unacceptable.

Table 4 is the inverse generational distance of the approx-
imate Pareto front determined by the algorithms in 30 runs.
Inmore than half of the cases, the proposedVITGO algorithm
can outperform other five algorithms. Similar to Table 3,
the proposed VITGO algorithm can almost solve the test
problems in ZDT and WFG, and it can also solve some of
the test problems in UF and DTLZ. Since IGD can both
identify the convergence and diversity of an approximate
Pareto front, it can be concluded that both the convergence
and diversity of the proposed VITGO is acceptable in more
than half of the cases. Even for the test problems that it
cannot solve completely, the performance of the VITGO is
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TABLE 3. GDs of algorithms.

not unacceptable. It can also be concluded from Table 4 that
the performance of the VITGO algorithm is independent of
the number of the conflicting objective functions of a multi-
objective problem.

Table 5 is the Spread of the approximate Pareto front
determined by the algorithms in 30 runs. It can be utilized
to identify the nearest neighbor of each individual in the
approximate Pareto front. To a certain extent, it can be utilized
to identify the diversity of an algorithm. If the distribution of
the approximate Pareto front is not uniform, the performance
metric SP may fail. For example, Figure 23 shows the final
approximate Pareto front of UF2, which is actually not com-
plete (the diversity of it is not somuch good). However, the SP

TABLE 4. IGDs of algorithms.

of UF2 in Table 5 is even better than that of ZDT3, in which
diversity of the approximate Pareto front is obviously better
than that of UF2. The reason is that the performancemetric SP
is utilized to identify the nearest neighbor of each individual,
and the nearest neighbor of each individual in UF2 is closer
than that of ZDT3. Therefore, to a certain extent SP can be
utilized to identify the diversity of an approximate Pareto
front, but not in all of the cases. According to Table 5, it can
be concluded that the performance of our proposed VITGO
is also acceptable.

Table 6 is the hypervolume of the approximate Pareto front
determined by the algorithms in 30 runs. It can identify the
dominance of an approximate Pareto front. According to
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TABLE 5. SPs of algorithms.

Table 6, it can be concluded that the dominance of the
approximate Pareto front determined by the proposedVITGO
is satisfactory in most cases. For the test problems that it
cannot solve completely, the performance is also accept-
able. It can also be concluded that the performance of
the VITGO algorithm is independent of the number of the
conflicting objective functions of a multi-objective prob-
lem. Therefore, the performance of the proposed VITGO
algorithm is better than others in more than half of the
cases.

Table 7 is the average time cost of the six algorithms. It can
be concluded from Table 7 that the time cost of the proposed
VITGO algorithm is worse than some of the other algorithms.

TABLE 6. HVs of algorithms.

FIGURE 17. ZDT1.

The reason is that the farthest search and expanding
population size will cause a lot of computations which cannot
be omitted. However, it is not necessarily unacceptable.
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TABLE 7. Time cost of algorithms (s).

FIGURE 18. ZDT2.

FIGURE 19. ZDT3.

FIGURE 20. ZDT4.

To analyze the performance of the VITGO algo-
rithm in depth, its graphical results are also provided in
Fig 17 - Fig 44. The red dots in these figures refer to the true

FIGURE 21. ZDT6.

FIGURE 22. UF1.

FIGURE 23. UF2.

FIGURE 24. UF3.

FIGURE 25. UF4.

Pareto front and the blue dots refer to the approximate Pareto
front gotten by VITGO. From these figures we can intuitively
identify the performance of VITGO and mutually verify its
performance with the performance metrics.
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FIGURE 26. UF5.

FIGURE 27. UF6.

FIGURE 28. UF7.

FIGURE 29. UF8.

The graphical results of ZDTs are provided in
Fig 17 - Fig 21. It can be concluded from these figures that the
proposed VITGO algorithm can almost solve these problems
completely. Table 3 - Table 6 support this conclusion. Accord-
ing to paper [39], ZDT1 has a convex Pareto front and
its solutions are uniformly distributed; ZDT2 has a Pareto
front which is the non-convex counterpart to that of ZDT1;
ZDT3 has a Pareto front which consists of several non-
continuous convex parts and its search space is unbiased;
ZDT4 is multi-model; and ZDT6 is not uniformly distributed,
especially near its Pareto front [39]. This level of bias,
unbalance or multi-model in ZDTs seems nothing to the

FIGURE 30. UF9.

FIGURE 31. UF10.

FIGURE 32. DTLZ1.

FIGURE 33. DTLZ2.

proposed VITGO. The test problems can be successfully
solved. Moreover, we can probably draw a conclusion that
properties of true Pareto front have no effect on the VITGO
algorithm since the VITGO algorithm searches in the deci-
sion space and the Pareto front displays in the objective space.
Instead, the properties of the Pareto solutions are more likely
to affect the performance of VITGO. We will continue to
discuss these properties in the following subsubsections.

The graphical results of UFs are provided in
Fig 22 - Fig 31. It can be concluded from these figures that
the true Pareto front of UFs have all been reached. However,
the approximate Pareto front obtained by VITGO is not
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FIGURE 34. DTLZ3.

FIGURE 35. DTLZ4.

FIGURE 36. WFG1.

FIGURE 37. WFG2.

always complete or not all of the individuals in the approx-
imate Pareto front have reached the true Pareto front. The
two-objective problems in UF can be farther divided into two
parts: i) test problems that can almost be completely solved,
including UF1, UF2, and UF7; and ii) test problems that
cannot be completely solved, including UF3, UF4, UF5, and
UF6. According to paper [41], objective functions in the test
set UF are composed of trigonometric functions, squares,
sets and a large number of products and summations.
The concavity and monotonicity of these objective func-
tions are very complicated and this kind of properties are
really different from that of the corresponding Pareto front.

FIGURE 38. WFG3.

FIGURE 39. WFG4.

FIGURE 40. WFG5.

FIGURE 41. WFG6.

FIGURE 42. WFG7.

According to the conclusions obtained above, the prop-
erties of true Pareto front may not affect the perfor-
mance of VITGO and the properties of Pareto solutions
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FIGURE 43. WFG8.

FIGURE 44. WFG9.

could do. Therefore, the properties of the Pareto solu-
tions should also be taken into consideration. According
to paper [41], Pareto solutions of UFs can be continu-
ous (UF1, UF2, UF3, UF4, UF7) or discrete (UF5, UF6).
Continuous Pareto solutions represent a situation that they
can be determined by searching around their neighbors
in the decision space, which is exactly what we did in
the vascular unit generation, growing cell generation and
dormant cell generation in VITGO. Discrete Pareto solu-
tions are more likely to be determined by the Levy flight,
the random walk or the improved boundary detection scheme
(in VITGO). In other words, the latter operation is based
on the probability, and the former one is based on stably
logical searching. This is why VITGO cannot perform well
in UF5 and UF6, but instead it can perform well in UF1,
UF2 and UF7. If the objective functions drastically change
their values, the properties of objective functions can still
affect the performance of VITGO. For example, if an objec-
tive function dramatically changes its monotonicity in a small
range (such as 0.000001), logical search of VITGO may
fail and only the random surrounding search could succeed.
In this situation, the performance of VITGO is definitely
affected, such as in UF3. However, this kind of influence
is smaller than that of the distributions of Pareto solutions
since ZDTs can be successfully solved by VITGO while
ignoring their difficulties. Three-objective test problems in
UF show similar characteristics. Fig.29 - Fig.31 indicates that
the VITGO could almost achieve the complete Pareto front of
UF9, but not UF8 and UF10. However, due to the difficulties
of UF9 it still can not be solved completely. Some individuals
in the approximate Pareto front of UF9 is far from the true
Pareto front comparedwith other ones. Table 3 - Table 6 could
also verified this conclusion.

The graphical results of DLTZs are provided in
Fig.32 - Fig.35. It can be concluded from these graphical
results that the true Pareto front of DTLZ1-DTLZ4 have
already been reached, but some individuals in the approx-
imate Pareto front were not good enough. According to
paper [40], the objective functions of DTLZs are composed
of trigonometric functions, exponential functions, products
and summations, but the complexity of them is less than that
of UFs [40]. In other words, these functions can be solved
more easily and the Pareto solutions of DLTZs can be more
easier to determined. Similar conclusion can be drawn from
Table 3 - Table 6 that the proposed VITGO algorithm can
perform better in DTLZs than UFs.

The graphical results of WFGs are provided in
Fig.36 - Fig.44. It can be concluded from these graphi-
cal results that WFG1-WFG9 have already been solved by
VITGO, both considering the convergence and diversity.
According to paper [46], the objective functions of WFGs are
composed of polynomial, multi-model functions and linear
functions, which to be transformed by bias, shift, or reduction
to cause different difficulties. Different from the objective
functions in UFs, this kind of transformations in WFGs is
simple and gentle, and then does not cause very dramatic
changes in objective functions. Therefore, the schemes in
VITGO such as endpoint generation, vascular guidance and
movement, invasion, cell generation, and even the improved
boundary detection scheme can play the their biggest roles in
determining the approximate Pareto front. Finally, as shown
in Fig.36 - Fig.44, the approximate Pareto front of WFGs are
almost closed to the corresponding true Pareto front, just as
those in ZDTs. The results in Table 3 - Table 6 support the
conclusion that VITGO can almost solve the WFGs.

In conclusion, the proposed VITGO can outperform other
fivemulti-objective algorithms inmore than half of the 28 test
problems. Even in the test problems where VITGO does not
perform well, its performance is still acceptable. More than
half of the 28 test problems can be solved completely by
the proposed VITGO algorithm. The effect of the VITGO
is mostly based on the distributions of Pareto solutions, and
partly based on the monotonicity and the dispersion of the
objective functions. The properties of the true Pareto front
cannot directly affect the performance of VITGO. According
to the ‘‘no free lunch’’ in paper [47], the performance of
VITGO is satisfactory to a certain extent. In the future we will
make it more targeted to solve a real-world multi-objective
problem rather than solve MOPs generally.

E. VITGO WITH 20-OBJECTIVE PROBLEMS
To comprehensively evaluate the performance of VITGO,
an additional experiment based on 20-objective problems
is provided. Scalable test problems DTLZ1-DTLZ7 were
chosen to identify the performance of VITGO. The number
of objective functions of DTLZs is set to 20. A parallel
coordinates plot was provided to display the approximate
Pareto front determined by VITGO. In order to evaluate the
results more accurately, the parameter maxG was further
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FIGURE 45. DTLZ1-20(maxG=1000).

FIGURE 46. DTLZ1-20(maxG=5000).

FIGURE 47. DTLZ1-20(maxG=20000).

FIGURE 48. DTLZ2-20(maxG=20000).

FIGURE 49. DTLZ3-20(maxG = 20000).

adjusted with larger values while leaving other parameters
unchanged. Figure 45 - Figure 47 listed the results of the
experiments. It can be concluded from these figures that as
the parameter maxG increases, the algorithm will get close to

FIGURE 50. DTLZ4-20(maxG = 20000).

FIGURE 51. DTLZ5-20(maxG = 20000).

FIGURE 52. DTLZ6-20(maxG = 20000).

FIGURE 53. DTLZ7-20(maxG = 20000).

a better result. We chose maxG = 20000 for DTLZs in final.
Figure 48 - Figure 53 shows the results. The performance of
VITGO was also acceptable.

VI. CONCLUSION
This paper proposed a vascular invasive tumor growth opti-
mization algorithm for multi-objective optimization called
VITGO, which is implemented to search for a significant
Pareto front of different MOPs. It extended the cell model
of the invasive tumor growth optimization algorithm to a
cell-vessel model, including the generation of vascular units,
the guidance of vascular units, the update and pruning of
vascular units, the generation and movement of different
tumor cells, and the interactions between different individ-
uals. A series of search schemes were creatively proposed
to enable determinations elicited by the VITGO, including
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1) endpoints detection and generation, which tries to identify
the incomplete parts and discontinuous parts of the approxi-
mate Pareto front and generate new individuals based on the
endpoints; 2) vascular guidance, which guides the movement
of growing cells and dormant cells by the vascular units since
the vascular units are located exactly on the current approxi-
mate Pareto front; 3) a pruning scheme, which trims out sim-
ilar vascular units periodically to maintain convergence and
diversity in a tiny loop; 4) unknown region searching, which
inherits the invasive cells’ behavior of ITGO and improves it
with an opposite search and a random walk to achieve better
convergence; 5) a wider search, which generates growing
cells on both sides of the incomplete approximate Pareto
front (guided by vascular units) to attain better diversity;
6) farthest search, which searches in just one dimension at
a time to acquire better diversity and stability; and 7) a ran-
dom walk with the corresponding variable that exceeds the
boundary while the other variables stay the same, ensuring
the diversity and stability. These schemes can indeed help to
search and solve different types of MOPs successfully. The
experiments and analysis showed that the proposed VITGO
can outperform the other five state-of-the-art algorithms since
it became closer to the true Pareto front in most cases, and the
approximate Pareto front identified by the VITGO algorithm
was more complete in most cases. In the future, we will
expand the application of VITGO to deal with more problems
encountered in real-world settings.
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