
Received December 28, 2019, accepted February 4, 2020, date of publication February 10, 2020, date of current version February 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2972611

Neural Langevin Dynamical Sampling
MINGHAO GU 1 AND SHILIANG SUN 1,2
1School of Computer Science and Technology, East China Normal University, Shanghai 200241, China
2Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 201804, China

Corresponding author: Shiliang Sun (slsun@cs.ecnu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61673179, and in part by the Shanghai
Knowledge Service Platform Project under Grant ZF1213.

ABSTRACT Sampling technique is one of the asymptotically unbiased estimation approaches for inference
in Bayesian probabilistic models. Markov chainMonte Carlo (MCMC) is a kind of sampling methods, which
is widely used in the inference of complex probabilistic models. However, current MCMCmethods can incur
high autocorrelation of samples, which means that the samples generated by MCMC samplers are far from
independent. In this paper, we propose the neural networks Langevin Monte Carlo (NNLMC) which makes
full use of the flexibility of neural networks and the high efficiency of the Langevin dynamics sampling to
construct a new MCMC sampling method. We propose the new update function to generate samples and
employ appropriate loss functions to improve the performance of NNLMC during the process of sampling.
We evaluate our method on a large diversity of challenging distributions and real datasets. Our results show
that NNLMC is able to sample from the target distribution with low autocorrelation and rapid convergence,
and outperforms the state-of-the-art MCMC samplers.

INDEX TERMS Hamiltonian dynamics, Langevin dynamics, Markov chain Monte Carlo, neural networks.

I. INTRODUCTION
In Bayesian machine learning, the inference of the complex
probabilistic models generally needs the evaluation of the
intractable integrals, which is challenging. Markov chain
Monte Carlo (MCMC) [10] is a widely used approximation
method for Bayesian probabilistic models [3]–[6]. MCMC
methods construct the Markov chain in terms of the target
distribution and iteratively sample from the Markov chain.
If the number of samples is large enough, we can obtain the
asymptotically unbiased estimation of the target distribution.

Recently, MCMC methods based on dynamics are widely
used in Bayesian machine learning [18]–[24], and signal
processing [1], [2]. Metropolis adjusted Langevin algorithm
(MALA) [11] constructs the Markov chain through Langevin
dynamics. Compared with the random-walk proposals [17],
MALA sampler explores the state space more efficiently
because it exploits the gradient information of the target
distribution. Hamiltonian Monte Carlo (HMC) [24] utilizes
Hamiltonian dynamics to construct the Markov chain. Com-
pared with MALA, HMC introduces a momentum vari-
able to adjust the range of exploration. Besides, HMC has
various attractive properties. Since the total energy of the
Hamiltonian system remains unchanged and the gradient

The associate editor coordinating the review of this manuscript and

approving it for publication was Haiyong Zheng .

information of the target distribution is utilized, HMC sam-
pler has a high acceptance rate with rapid convergence. Mag-
netic Hamiltonian Monte Carlo (MHMC) [9] further adjusts
the range of the exploration through themagnetic field, which
reduces the autocorrelation of the samples and enhances the
convergence speed.MCMCmethods based on dynamics have
multiple advantages, but when it comes to some challenging
distributions, these methods tend to have poor performance
because the neighbor samples can be very close, which results
in high autocorrelation.

To improve the performance of the dynamics based
MCMC methods, we design a new sampler, which is called
neural networks Langevin Monte Carlo (NNLMC). The sam-
ples generated from NNLMC have low autocorrelation with
rapid convergence. NNLMC takes advantage of the neural
networks to adjust the range of exploration of the sampler.
We design appropriate loss functions to train the sampler.
The pure dynamics based MCMC methods only consider
about the gradient information of the target distribution, while
NNLMC not only uses the gradient information of the target
distribution but also learns to improve the performance of the
sampler during the process of sampling.

The contributions of this paper are summarized as follows.
1) We introduce the neural networks to Langevin dynamics
to construct a novel Markov chain Monte Carlo sampler.
The use of neural networks makes the sampler generate the

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 31595

https://orcid.org/0000-0002-6206-8401
https://orcid.org/0000-0001-7069-3752
https://orcid.org/0000-0002-8027-0734


M. Gu, S. Sun: Neural Langevin Dynamical Sampling

samples more flexible. 2) During the process of sampling,
NNLMC is able to learn from the history information of the
samples to generate new samples. 3) We design appropriate
loss functions to train the sampler and further improve the
performance of the sampler. 4) Experiments over challenging
distributions and real datasets are conducted to estimate the
performance of the proposed method. We first compare our
method with MALA, HMC, and MHMC [9], [11], [24] on
six challenging distributions in terms of the autocorrelation
of the samples, maximum mean discrepancy (MMD) [26],
the effective sample size (ESS) [24], and time consump-
tion. We then sample from the posterior distributions of real
datasets using Bayesian logistic regression to evaluate the
performance of the samplers. The final results demonstrate
that NNLMC is able to converge to the target distribution
rapidly and generate more independent samples.

The rest of this article is organized as follows. In Section II,
we introduce the related work which consists of Metropolis
adjusted Langevin algorithm, Hamiltonian Monte Carlo, and
magnetic Hamiltonian Monte Carlo. In Section III, we intro-
duce our neural networks LangevinMonte Carlo and describe
how to train this MCMC sampler. Experiments on sampling
from various challenging distributions and posterior distribu-
tion of real datasets are given in Section IV. In Section V,
we give a conclusion and discuss future work.

II. RELATED WORK
In this section we introduce the related dynamics based
MCMC samplers which include MALA, HMC and MHMC.

A. METROPOLIS ADJUSTED LANGEVIN ALGORITHM
Metropolis adjusted Langevin algorithm (MALA) [11] is a
popular MCMC sampler which aims to sample from the
target distribution efficiently. Compared with the Metropolis-
Hasting algorithm, MALA takes advantage of the gradi-
ent information to construct the Markov chain, while the
Metropolis-Hasting algorithm proposes the new state through
a random walk [17], which significantly reduces the effi-
ciency of sampling.

The main idea of MALA is to use Langevin dynamics to
construct the Markov chain. Langevin dynamics is a kind
of stochastic process and it can be written as the stochastic
differential equation (SDE) [13] which takes the form as:

dθ =
1
2
∇θ lnπ (θ )dt + dW , (1)

where π represents the probability density function, θ repre-
sents the random variable that is sampled, t represents the
time, and W is a Wiener process. Since solving this SDE
is very difficult, a first-order Euler-Maruyama discretization
[15] is used to provide an approximate solution to the SDE,
and the solution can be written as:

θt+1 = θt +
ε2

2
· ∇θ lnπ (θt )+ ε · zt , (2)

where ε is the step size of discretization and zt ∼ N (zt |0, I ).

In order to satisfy the detailed balance [10] to make the
MCMC converge to the target distribution, the Metropolis-
Hasting procedure [12] is utilized. The transformation prob-
ability of MALA can be written as:

T (θ ′|θn) = N (θ ′|µ(θn), ε2 · I ),

T (θn|θ ′) = N (θn|µ(θ ′), ε2 · I ),

µ(θn) = θn +
ε2

2
· ∇θ lnπ (θn),

µ(θ ′) = θ ′ +
ε2

2
· ∇θ lnπ (θ ′), (3)

where T (θ ′|θn) and T (θn|θ ′) are transformation probability,
θn is the last sample and θ ′ is the new sample generated
through (2). The final acceptance rate of MALA takes the
form as:

min
[
1,
π (θ ′)T (θ ′|θn)
π (θn)T (θn|θ ′)

]
. (4)

MALA takes advantage of the gradient information of the
target distribution to construct an efficient Markov chain,
which makes the sampler converge to the target distribution
rapidly. However, the first-order Euler-Maruyama discretiza-
tion makes the samples remain in high correlation, which
means that the samples are far from independent.

B. HAMILTONIAN MONTE CARLO
Hamiltonian Monte Carlo (HMC) is one of the most popu-
lar MCMC algorithm [17], [24]. HMC utilizes Hamiltonian
dynamics to construct the sampler. Compared with MALA,
HMC introduces a momentum variable p to control the scope
of exploring the state space. For the Hamiltonian dynamics
system, we describe the total energy through the following
equation:

H (θ, p) = U (θ )+ K (p), (5)

where θ is the position variable that needs to be sampled,
p is the auxiliary momentum variable, U (θ ) is the potential
energy at position θ , and K (p) is the kinetic energy. H (θ, p)
is the total energy of the Hamiltonian dynamics system. The
Hamiltonian equations can be written as:

dθ
dt
=
∂H (p, θ)
∂p

= ∇pK (p),

dp
dt
= −

∂H (p, θ)
∂θ

= −∇θU (θ ). (6)

Generally, solving the differential equations in (6) is very
difficult. In practice, a discretization method called leapfrog
[25] is used to simulate the Hamiltonian dynamics, which
takes the form as:

pt+ ε2 = pt −
ε

2
· ∇θU (θt ),

θt+ε = θt + ε · ∇pK (pt+ ε2 ),

pt+ε = pt+ ε2 −
ε

2
· ∇θ (θt+ε), (7)

31596 VOLUME 8, 2020



M. Gu, S. Sun: Neural Langevin Dynamical Sampling

Algorithm 1 Hamiltonian Monte Carlo [24]
Input: step size ε, leapfrog size L, initial point θ1, sample
number N .
Output: samples θ .
for n = 1 to N do
p(n) ∼ N (0, 1)
(θ0, p0) = (θ (n), p(n))
p0 = p0 − ε

2 · ∇θU (θ0)
θ0 = θ0 + ε · ∇pK (p0)
for i = 1 to L do
pi = pi−1 − ε · ∇θU (θi−1)
θi = θi−1 + ε · ∇pK (pi)

end for
pL = pL − ε

2 · ∇θU (θL)
(θ ′, p′) = (θL , pL)
u ∼ Uniform[0, 1]
α = min

[
1, exp

(
H (θ (n−1),p(n−1))

H (θ ′,p′)

)]
if α > u then

(θ (n+1), p(n+1)) = (θ ′, p′)
else
(θ (n+1), p(n+1)) = (θ (n), p(n))

end if
end for

where ε represents the step size, pt and θt represent the
momentum and position at time t , respectively. Since the pro-
cess of discretization introduces some errors, the Metropolis-
Hasting procedure is used to adjust the acceptance rate of the
sampler, which takes the form as:

min
[
1, exp

(
−
H (θt+ε, pt+ε)
H (θt , pt)

)]
. (8)

Suppose the target distribution is π (θ ). The potential
energy function can be written as:

U (θ ) ∝ −lnπ (θ ). (9)

HMC introduces momentum variable p, and it samples from
the joint distribution π (θ, p) ∝ exp [−H (θ, p)]. Through (7),
the new state (θ ′, p′) is generated. Since exp [−H (θ, p)] =
exp [−U (θ )] · exp [−K (p)], position variable θ and momen-
tum variable p are independent, so HMC can alternatively
sample θ and p. Alg. 1 demonstrates the main idea of HMC.

C. MAGNETIC HAMILTONIAN MONTE CARLO
Magnetic Hamiltonian Monte Carlo (MHMC) [9] exploits
the non-canonical Hamiltonian dynamics to construct the
MCMC sampler. Different from HMC, MHMC adds a mag-
netic field to the Hamiltonian dynamics.

We can imagine the magnetic energy as a kind of potential
energy. To make the concept of magnetic concrete, we sup-
pose that there is a charged particle in the magnetic field. If a
particle is not charged, then only gravity acts on the particle.
If the particle is charged, the magnetic force may act on the
particle. Furthermore, the value of force may change along
with the change of the value of the momentum. The larger

the momentum is, the larger the magnetic force will act on
the particle. Moreover, the direction of the force is always
perpendicular to the direction of motion.

MHMC can be viewed as a special case of HMC.When the
direction of the magnetic field is the same with the direction
of the motion of the particle, MHMC sampler degenerates to
the HMC sampler. The magnetic Hamiltonian equations are
formulated as follows:

dθ
dt
= M−1p,

dp
dt
= −∇U (θ )+ Gp, (10)

where G represents the magnetic filed, M is the mass matrix
and the update equations are defined as:

θt+1 = θt + G−1(exp(G · ε)− I )pt ,

pt+1 = exp(G · ε)pt . (11)

With the help of the magnetic field, the charged particle can
explore its state space more efficiently. MHMC sampler may
reduce the autocorrelation rate of the samples, which makes
the samples more independent. Since MHMC has significant
performance, in the experiment part, we compare our method
with it.

III. NEURAL NETWORKS LANGEVIN MONTE CARLO
MALA iteratively samples from the target distribution
through theMarkov chain defined on the Langevin dynamics.
However, MALA makes the samples remain highly auto-
correlated, which makes the samples far from independent.
In order to sample from the target distribution indepen-
dently and rapidly, we propose neural networks Langevin
Monte Carlo (NNLMC), which adjust the Langevin dynam-
ics through neural networks to obtain samples, instead of
obtaining samples using (2). In this section, we introduce the
NNLMC in detail, then we propose appropriate loss functions
to train and optimize the sampler.

Although HMC is an efficient sampler, utilizing neural net-
works to improveHMC sampler is difficult, because the intro-
duction of the neural networks breaks the detailed balance.
In other words, the transformation probabilities T (x ′|x) and
T (x|x ′) in HMC sampler are the same. However, the intro-
duction of the neural networks makes the transformation
probabilities different, where x is the last sample and x ′ is
the new sample. Although we can adjust the acceptance prob-
ability by Metropolis-Hasting procedure, the transformation
probability is difficult to calculate. InMALA, the transforma-
tion probability is designed as a Gaussian distribution, which
provides us a chance to design the model on it.

Assume thatπ (x) represents the target distribution,U (x) =
−lnπ (x) is the potential energy function, and ∇xU (x) rep-
resents the gradient of the potential energy function. x is
the variable that needs to be sampled. The architecture of
NNLMC is demonstrated in Figure (1(a)). NNLMCcomputes
a mapping from the input xn−1 and ∇xU (xn−1) to the output

VOLUME 8, 2020 31597



M. Gu, S. Sun: Neural Langevin Dynamical Sampling

FIGURE 1. The architecture of the NNLMC.

xn by using the following equations:

mn−1 = f (xn−1,∇xU (xn−1))

= xn−1 −
ε2

2
· ∇xU (xn−1),

an−1 = σ ([xn−1,∇xU (xn−1)]),
cn−1 = mn−1 � an−1,
in−1 = s([xn−1,∇xU (xn−1)]),
µn−1 = cn−1 + in−1,
xn = µn−1 + ε · zn, (12)

where ‘‘�’’ is the element-wise product of the vectors, ε is the
step size of the discretization, and zn is the standard Gaussian
distribution. σ (x) = yσ = W>1 Relu(W

>
σ x) and s(x) =

ys = W>2 Relu(W
>
s x) are the neural networks parameterized

by W1, Wσ , W2, and Ws, respectively, where y is the output
of the neural networks and we use the Relu as the active
function. We do not use the active function at the output
layer. The structure of the neural networks is demonstrated
in Figure (1(b)). We concatenate xn−1 and ∇xU (xn−1), and
take [xn−1,∇xU (xn−1)] as the input of the neural networks.
Assume that xn−1 is a m-D vector, then [xn−1,∇xU (xn−1)] is
a 2m-D vector. Through the above neural networks, we obtain
an−1 and in−1 which are m-D vectors.
It is noted that (12) can be divided into four main parts.

In the first part, we exploit the gradient information directly

to obtain the proposal statemn−1. In the second part, we adjust
the proposal state through the neural networks an−1, and then
we obtain cn−1. In the third part, we additional add in−1 to
provide more flexibility for the proposal state, which can
be viewed as the bias. Finally, we add the Gaussian term to
obtain the proposal sample. Compared with MALA, the pro-
posed method exploits neural networks to add the flexibility
of generating samples.

We then talk about how to accept the proposal samples.
Since we take advantages of the framework of Langevin
dynamics, we can utilize theMetropolis-Hasting procedure to
maintain the detailed balance, which ensures that the samples
can finally converge to the target distribution. So the transfor-
mation function of NNLMC can also be viewed as a Gaussian
distribution, and the mean of this transformation function can
be written as follows:

µ(xn) =
(
xn −

ε2

2
· ∇xU (xn)

)
� σ ([xn,∇xU (xn)])

+ s ([xn,∇xU (xn)]) . (13)

The variance of this transformation function is ε2. Finally,
the transformation probability can be defined as:

T (x ′|xn) = N
(
x ′|µ(xn), ε2 · I

)
, (14)

31598 VOLUME 8, 2020



M. Gu, S. Sun: Neural Langevin Dynamical Sampling

where x ′ is the new sample generated through (12) and the
acceptance rate α takes the form as:

α = min
[
1,
π (x ′)T (xn|x ′)
π (xn)T (x ′|θn)

]
= min

[
1,
π (x ′)N (xn|µ(x ′), ε2 · I )

π (xn)N
(
x ′|µ(xn), ε2 · I

)] . (15)

We take (15) as the acceptance rate to accept the samples so
that we can ensure that the samples are able to converge to
the target distribution.

In order to improve the performance of NNLMC sampler
to have lower autocorrelation, rapid convergence, and higher
acceptance rate during the process of sampling, we next
discuss loss functions used in NNLMC.

A. LOSS FUNCTION OF THE TRAINING PROCEDURE
We design two loss functions to train the parameters of Wσ

and Ws.
The first loss function is defined as:

l1(ω) = exp
(
−
∣∣|x ′ − xn∣∣ |) , (16)

where
∣∣|x ′ − xn∣∣ | = √(x ′ − xn)> (x ′ − xn) and ω represents

the parameters of Wσ and Ws. Our purpose is to maximize
the distance between x ′ and xn to reduce the autocorrela-
tion among samples. Although we can directly minimizing
−
∣∣|x ′ − xn∣∣ | to enlarge the distance between x ′ and xn,

we find it difficult to optimize. With the enhancement of the
distance, this loss function will dominate the optimization
direction, which will lead to the unexpected results.

The second loss function is defined as:

l2(ω) = exp
(
−
π (x ′)
π (xn)

)
. (17)

We wish to use (17) to raise the acceptance rate of the
samples. The final loss function takes the form as:

L(ω) = w1 · l1(ω)+ w2 · l2(ω), (18)

wherew1 andw2 are two weight parameters andw1+w2 = 1.

B. THE COMPLETE ALGORITHM
We then elaborately introduce the details of the procedure of
training the NNLMC sampler on a batch of samples. Assume
that π represents the target distribution, x(1:b)1 = {x i1|i ∈
[1, b]} represents the initial samples and x(1:b)n represents the
samples at time n, where b represents the batch size. Provided
that we have obtained x(1:b)n , then new samples x(1:b)t can be
calculated through (12) which takes the form as:

x(1:b)t =

(
x(1:b)n −

ε2

2
· ∇xU

(
x(1:b)n

))
� σ

([
x(1:b)n ,∇xU

(
x(1:b)n

)])
+ s

([
x(1:b)n ,∇xU

(
x(1:b)n

)])
+ ε · z(1:b)n . (19)

We then calculate the transformation probability
T
(
x(1:b)t |x(1:b)n

)
and T

(
x(1:b)n |x(1:b)t

)
which take the form as:

T
(
x(1:b)t |x(1:b)n

)
= N

(
x(1:b)t |µ

(
x(1:b)n

)
, ε2 · I (1:b)

)
,

T
(
x(1:b)n |x(1:b)t

)
= N

(
x(1:b)n |µ

(
x(1:b)t

)
, ε2 · I (1:b)

)
, (20)

where µ(x(1:b)n ) and µ(x(1:b)t ) can be calculated through (13).
After calculating the transformation probability, we can get

the acceptance rate as follows:

α(1:b)

= min

1, π
(
x(1:b)t

)
N
(
x(1:b)t |µ

(
x(1:b)n

)
, ε2 · I (1:b)

)
π
(
x(1:b)n

)
N
(
x(1:b)n |µ

(
x(1:b)t

)
, ε2 · I (1:b)

)
 .
(21)

For each sample x(i)t in x(1:b)t , we accept the sample through
the acceptance rate α(i), which can be written as:{

x(i)n+1 = x(i)t if x(i)t is accepted, i ∈ [1, b]
x(i)n+1 = x(i)n if x(i)t is not accepted, i ∈ [1, b].

(22)

After accepting these samples, we further improve the per-
formance of NNLMC sampler by optimizing the parameters
Wσ and Ws. Since a batch of the samples is used, the loss
functions take the form as:

l1(ω) = exp

(
−
1
b

b∑
i=1

∣∣∣x(i)t − x(i)n ∣∣∣
)
,

l2(ω) = exp

−1
b

b∑
i=1

π
(
x(i)t
)

π
(
x(i)n
)
 ,

L(ω) = w1 · l1(ω)+ w2 · l2(ω). (23)

Finally, we minimize the loss function through gradient
descent, which can be written as:

ω = ω − γ
∂L(ω)
ω

, (24)

where γ represents the learning rate. The complete algorithm
is given in Alg. 2.

IV. EXPERIMENTS
In this section, we show the performance of NNLMC.
We conduct the experiments on six distributions which con-
sist of ring distribution (RING), the strongly correlated Gaus-
sian (SCG), the ill-conditioned Gaussian (ICG), the mixtures
of Gaussian (MOG), the rough well (RW), and the Gaussian
funnel (GF). We compare NNLMC with HMC, MALA, and
MHMC on autocorrelation, the maximum mean discrepancy,
effective sample size, and time consumption. Next, we con-
duct the experiments on six real datasets using Bayesian
logistic regression. We sample from the posterior distribu-
tions and compare our methods with logistic regression (LR),
variational Bayesian logistic regression (VBLR), HMC and
MALA on some performance indexes.

VOLUME 8, 2020 31599



M. Gu, S. Sun: Neural Langevin Dynamical Sampling

Algorithm 2 Neural Networks Langevin Monte Carlo
Input: target probability density function π , step size ε,
learning rate γ , optimization steps L, sample number N ,
batch size b, initial batch samples x(1:b)1 , energy function
U (·), gradient of energy function ∇U (·).
Output: samples x1:N .
Initializing the parameters ω = (Wσ ,Ws) of the neural
networks.
for n = 1 to N do
for iter = 1 to L do
Obtaining the proposal samples x(1:b)t through (19).
Calculating µ

(
x(1:b)n

)
and µ

(
x(1:b)t

)
through (13).

Calculating T
(
x(1:b)t |x(1:b)n

)
and T

(
x(1:b)n |x(1:b)t

)
through (20).
Obtaining the acceptance rate α(1:b) through (21).
Calculating loss function L(ω) through (23).
ω = ω − γ∇ωL(ω)

end for
u(1:b) ∼ Uniform[0, 1]
for i = 1 to b do
if α(i) > u(i) then
x(i)n+1 = x(i)t

else
x(i)n+1 = x(i)n

end if
end for

end for

The whole experiments are conducted on a server with
eight GPUs. Batch size is set to be 3000, the hidden layers
of the neural networks are set to be [512, 512, 512]. The
activation functions are set to be ReLU. The learning rate of
NNLMC is set to be 1e-5. w1 and w2 are both set to be 0.5 in
all experiments.

A. PERFORMANCE INDEXES
First, we introduce the performance indexes.

Effective sample size (ESS) [24] is a common method to
measure the variance of the MCMC samplers, which takes
the form as:

ess = N/(1+ 2×
M∑
s=1

ρ(s)), (25)

where ess represents the effective sample size, ρ(·) is the
autocorrelation function, s represents the step size of auto-
correlation, N is the number of the samples, and M is the
maximum step size of autocorrelation. Since our method
almost has no autocorrelation after 30 steps, we set M = 30.
Autocorrelation is widely used to measure the correla-

tion between a series of samples. Assume that X represents
a series of samples, and t represents the position of the
sample and t ∈ (1,N − s), where N is the number of
samples and s represents the step size of autocorrelation.

TABLE 1. Six distributions and their acronyms.

The autocorrelation function ρ(·) can be written as:

ρ(s) =
E[(Xt − µ)(Xt+s − µ)]

σ 2 , (26)

where function E(·) is the mathematical expectation operator,
µ = E[X ] and σ 2

= E[(X − µ)2]. Autocorrelation is one of
the most effective ways to measure the correlation between
samples. The lower the autocorrelation of the samples is,
the more independent the samples will be. Kullback-Leibler
divergence is used to calculate the difference between two
distributions represented as the function, while Maximum
mean discrepancy (MMD) [26] is commonly used to measure
the discrepancy between two distributions represented as a
series of samples. The lower the value of MMD is, the closer
the two distribution will be. We assume that X represents
the samples generated from the sampler and Y represents
samples generated from the actual distribution. M and N
are the number of samples for X and Y , respectively. The
definition of MMD takes the form as:

R2[X ,Y ] =
1
M2

M∑
i,j=1

κ(xi, xj)−
2
MN

M ,N∑
i,j=1

κ(xi, yj)

+
1
N 2

N∑
i,j=1

κ(yi, yj), (27)

where κ(·, ·) is the kernel function which takes the form as:

κ(x, y) =
(
1.0+ x>y

)2
. (28)

In our experiments, we utilize MMD to measure the converge
speed of the samplers.

B. VARIETIES OF CHALLENGING DISTRIBUTIONS
In this section, we compare NNLMC with MALA, HMC,
and MHMC on six distributions in terms of autocorrelation,
MMD, ESS, and time consumption. For RING, ICG, MOG,
and SCG, we set step size of NNLMC εp = 0.8. For GF,
we set step size εp = 1.0. For RW, we set step size εp = 0.8.
We set optimization length L = 2 for NNLMC. For HMC
and MHMC, we set ε = εp

lf , where lf represents the leapfrog
length.We set lf = 40 in the experiments. The initial samples
are all sampled from the standard normal distribution. For
all methods, we sample 20000 samples with 10000 burn-in
samples. The distributions are introduced below.

31600 VOLUME 8, 2020



M. Gu, S. Sun: Neural Langevin Dynamical Sampling

FIGURE 2. The performance of NNLMC, HMC, MALA, and MHMC on
Gaussian funnel. The upper figure demonstrates the relationship between
autocorrelation and lag (the interval between samples). The bottom
figure shows the relationship between MMD and the number of samples.

The energy function of the ring-shaped distribution can be
written as:

U (x) =
(
√
x21 + x

2
2 − 2)2

0.32
. (29)

We sample from a 2-D ill-conditioned Gaussian whose diag-
onal covariance is set to be 10.05 and 0.105. We sample from
a 2-D strongly correlated Gaussian (which is similar to the
case in [24]) whose covariance matrix is as follows:∑

=

[
5.05 −4.95
−4.95 5.05

]
. (30)

We sample from the Rough well (which is similar to the case
in [8]) whose energy function takes the form as:

U (x) =
1
2
xTx + η

∑
i

cos(
xi
η
), (31)

where we set η = 10−2. We sample from the Gaussian funnel
whose energy function can be defined as:

U (x) =
1
2

((x1
σ

)2
+

x22
exp(x1)

+ ln (2π · exp(x1))

)
, (32)

FIGURE 3. The performance of NNLMC, HMC, MALA, and MHMC on
mixtures of Gaussian. The upper figure demonstrates the relationship
between autocorrelation and lag (the interval between samples). The
bottom figure shows the relationship between MMD and the number of
samples.

where we set σ = 1.0. We sample from the mixtures of
Gaussian whose probability density function takes the form
as:

π (x) =
1
2
N (x|µ, I )+

1
2
N (x| − µ, I ), (33)

where µ = [−1.0, 1.0]. The distributions and their acronyms
are showed in Table. 1.

Fig. 2 and Fig. 3 illustrate the performance on Gaussian
funnel and mixtures of Gaussian, respectively, which show
that the samples generated from NNLMC sampler have
lower autocorrelation and more rapid convergence than other
methods.

As Fig. 4, Fig. 5 and Fig. 6 illustrate, in ICG, SCG and
RING distributions, the autocorrelation of samples generated
from NNLMC is significantly lower than other methods, and
NNLMC is able to converge to the target distribution rapidly,
which suggests that the proposed loss functions do make the
neural networks adjust the sampler, and thus the performance
of the sampler is significantly improved.

In rough well, we find that HMC, MALA, and MHMC
still have high autocorrelation after 30-step autocorrelation,
while NNLMC has much lower autocorrelation. However,
NNLMC has large fluctuation. We further inquire the reason

VOLUME 8, 2020 31601



M. Gu, S. Sun: Neural Langevin Dynamical Sampling

FIGURE 4. The performance of NNLMC, HMC, MALA, and MHMC on
ill-conditioned Gaussian. The upper figure demonstrates the relationship
between autocorrelation and lag (the interval between samples). The
bottom figure shows the relationship between MMD and the number of
samples.

TABLE 2. The effective sample size (ESS) of HMC, MALA, MHMC and
NNLMC on six distributions.

why the autocorrelation of NNLMC has such fluctuation.
It is noted that the neighbour samples have large distance.
For example, we have sampled 5 samples a, b, c, d, e, where
(a, b), (b, c), (c, d), and (d, e) have long distance, while (a, c),
(c, e), and (b, d) have close distance. It is the loss function
l1(ω) defined in (23) that causes this phenomenon. The final
result is demonstrated in Fig. 7. Although NNLMC has large
fluctuation in autocorrelation on roughwell, the result is com-
petitive, for the autocorrelation of NNLMC declines much
more fast than other methods.

Although in some distributions, NNLMC has large fluc-
tuation on autocorrelation, alternate positive correlation and

FIGURE 5. The performance of NNLMC, HMC, MALA, and MHMC on
strongly correlated Gaussian. The upper figure demonstrates the
relationship between autocorrelation and lag (the interval between
samples). The bottom figure shows the relationship between MMD and
the number of samples.

TABLE 3. The time consumption (seconds) of HMC, MALA, MHMC and
NNLMC on six distributions.

negative correlation imply that NNLMC has excellent perfor-
mance in ESS, and the final result is demonstrated in Table. 2.

It is noted that compared with other methods, NNLMC has
better performance on ESS, which demonstrates the effec-
tiveness of the training procedure. The time consumption of
HMC, MALA, MHMC, and NNLMC is shown in Table. 3.
It is noted that MALA has the lowest computational cost,
and leapfrog length makes HMC and MHMC slower than
MALA.Although the computational cost of NNLMC ismuch
higher than that of MALA due to the optimization of the
parameters during the process of sampling, it is competitive
with HMC and MHMC, for it achieves better performance in
autocorrelation and MMD but not consume extra time.

31602 VOLUME 8, 2020



M. Gu, S. Sun: Neural Langevin Dynamical Sampling

FIGURE 6. The performance of NNLMC, HMC, MALA, and MHMC on the
ring distribution. The upper figure demonstrates the relationship between
autocorrelation and lag (the interval between samples). The bottom
figure shows the relationship between MMD and the number of samples.

In order to further explore the effect in the autocorrelation
of changing w1 and w2, we conduct an experiment on MOG
with different values ofw1 andw2. The result is demonstrated
in Fig. 8.

C. BAYESIAN LOGISTIC REGRESSION
Logistic regression (LR) [14] can be defined as a conditional
distribution p(Y |X ) which is parameterized by the logistic
distribution. The goal of LR is to maximize the likelihood
function. After obtaining the parameters of p(Y |X ), we can
calculate the label of the data. Bayesian logistic regression
[27] (BLR) is a also classification model. For the two-class
classification problem, BLR can be defined as a posterior
distribution p(w|t) ∝ p(t|w)p(w), where p(t|w) =

∏N
n=1[1−

yn]1−tn , p(w) is the prior distribution of the parameters w,
t = (t1, ..., tN )> is the label of data, and yn is the predicted
value. The goal of BLR is to calculate the predicted value
under the expectation of the posterior distribution to predict
the label of the data, which takes the form as:∫

σ (w>x)p(w|t)dw = Ep(w|t)[σ (w>x)], (34)

where σ (·) is the logistic function. Evaluating this expectation
is intractable, for the normalization term in the posterior
distribution is unknown. In order to calculate this expectation,

FIGURE 7. The performance of NNLMC, HMC, MALA, and MHMC on rough
well. The upper figure demonstrates the relationship between
autocorrelation and lag (the interval between samples). The bottom
figure shows the relationship between MMD and the number of samples.

FIGURE 8. The Autocorrelation of NNLMC with different values of w1 and
w2.

variational Bayesian logistic regression [29] (VBLR) utilizes
the variational distribution to approximate the posterior distri-
bution to calculate the integral. In our experiment, we directly
sample from the posterior distribution p(w|t) and evaluate the
integral through Monte Carlo methods, which can be written
as:

Ep(w|t)[σ (w>x)] =
1
N

N∑
i=1,wi∼p(w|t)

σ (w>i x). (35)

VOLUME 8, 2020 31603



M. Gu, S. Sun: Neural Langevin Dynamical Sampling

TABLE 4. Classification accuracy of VBLR, LR, HMC, MALA, and NNLMC.

TABLE 5. Area under the receiver operating characteristic curve of VBLR, LR, HMC, MALA and NNLMC.

TABLE 6. The mean value of effective sample size of each dimension for
HMC, MALA, and NNLMC.

Utilizing (35), we can calculate the label of the data. We use
the performance of classification to evaluate the quality of the
samples.

We sample from the posterior distributions on six real-
world datasets from UCI repository [16]: Pima Indian (Pi),
Haberman (Ha), Immunotherapy (Im), Heart (He), German
(Ge) and Australian (Au). To improve the stability of the
model, we normalize all datasets to have zero mean value and
unit variance. In all datasets, we set a standard normal distri-
bution N (0, I ) as the prior distribution for the parameters.
In each experiment, we sample 8000 samples and repeatedly
conduct the experiments ten times to calculate the mean value
and the standard deviation for each performance index. In this
experiment, we have not compared the proposed method with
MHMC, because the magnetic parameter G of MHMC is
difficult to set [9] when the dimension of the variable is large.

Table 4 shows the classification accuracy, and Table 5
shows the area under the receiver operating characteristic
curve (AUC) [28]. The results demonstrate that NNLMC
obtains better performance than LR, VBLR, and similar
performance to HMC on classification accuracy. Besides,
NNLMC achieves the best performance on AUC. All these
performance indexes demonstrate that NNLMC can sample
from the posterior distribution accurately. Finally, we utilize

the mean ESS of each dimension to further measure the
quality of the samples generated from MALA, HMC, and
NNLMC. As Table 6 suggests, NNLMC has better perfor-
mance than HMC and MALA in ESS.

V. CONCLUSION
In this study, we propose a new sampler called neural
Langevin Monte Carlo, which takes advantage of the flexi-
bility of neural networks to construct an effective sampler.
The appropriate loss functions are designed to train and
improve the performance of the proposed sampler. NNLMC
is able to generate samples with low autocorrelation and rapid
convergence especially for the challenging distributions. The
experiments results in various distributions, and real datasets
show that our method can provide superior performance com-
pared with pure dynamics based MCMC methods. We plan
to introduce reinforcement learning to our model to obtain
further improvement for future work.

REFERENCES
[1] L. Martino, ‘‘A review of multiple try MCMC algorithms for signal pro-

cessing,’’ Digit. Signal Process., vol. 75, pp. 134–152, Apr. 2018.
[2] M. F. Bugallo, L. Martino, and J. Corander, ‘‘Adaptive importance sam-

pling in signal processing,’’ Digit. Signal Process., vol. 47, pp. 36–49,
Dec. 2015.

[3] L. Hou, X. Chen, K. Lan, R. Rasmussen, and J. Roberts, ‘‘Volumetric next
best view by 3D occupancy mapping using Markov chain Gibbs sampler
for precise manufacturing,’’ IEEE Access, vol. 7, pp. 121949–121960,
2019.

[4] Z. Wang, S. Lyu, and L. Liu, ‘‘Learnable Markov chain Monte Carlo
sampling methods for lattice Gaussian distribution,’’ IEEE Access, vol. 7,
pp. 87494–87503, 2019.

[5] X. Zhou and M. Xu, ‘‘Model-based proposal learning for Monte Carlo
optimization of redundancy allocation problem,’’ IEEE Access, vol. 6,
pp. 47953–47958, 2018.

[6] M. Xu, X. Zhou, Q. Huo, and H. Liu, ‘‘Efficient stochastic approximation
Monte Carlo sampling for heterogeneous redundancy allocation problem,’’
IEEE Access, vol. 4, pp. 7383–7390, 2016.

[7] R. M. Neal, ‘‘Slice sampling,’’ Ann. Statist., vol. 31, no. 3, pp. 705–767,
Jun. 2003.

31604 VOLUME 8, 2020



M. Gu, S. Sun: Neural Langevin Dynamical Sampling

[8] J. Sohl-Dickstein, M. Mudigonda, and M. R. DeWeese, ‘‘Hamiltonian
Monte Carlo without detailed balance,’’ in Proc. Int. Conf. Mach. Learn.,
2014, pp. 719–726.

[9] N. Tripuraneni, M. Rowland, Z. Ghahramani, and R. Turner, ‘‘Magnetic
Hamiltonian Monte Carlo,’’ in Proc. Int. Conf. Mach. Learn., 2017,
pp. 3453–3461.

[10] C. P. Robert and G. Casella, Monte Carlo Statistical Methods. Springer,
2013.

[11] U. Grenander andM. I. Miller, ‘‘Representations of knowledge in complex
systems,’’ J. Roy. Stat. Soc., B Methodol., vol. 56, no. 4, pp. 549–581,
Nov. 1994.

[12] W. K. Hastings, ‘‘Monte Carlo sampling methods usingMarkov chains and
their applications,’’ Biometrika, vol. 57, no. 1, pp. 97–109, Apr. 1970.

[13] B. Øksendal, ‘‘Stochastic differential equations,’’ in Stochastic Differential
Equations. Cham, Switzerland: Springer, 2003, pp. 65–84.

[14] D. A. Freedman, Statistical Models: Theory and Practice. Cambridge,
U.K.: Cambridge Univ. Press, 2009.

[15] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential
Equations. Springer, 2013.

[16] K. Bache and M. Lichman. (2013). UCI Machine Learning Repository.
School of Information and Computer Science. University of California.
Irvine, CA, USA. [Online]. Available: http://archive.ics.uci.edu/ml

[17] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, ‘‘Hybrid Monte
Carlo,’’ Phys. Lett. B, vol. 195, pp. 216–222, Sep. 1987.

[18] M. Betancourt, ‘‘The fundamental incompatibility of scalable Hamiltonian
Monte Carlo and naive data subsampling,’’ in Proc. Int. Conf. Mach.
Learn., 2015, pp. 533–540.

[19] M. Girolami and B. Calderhead, ‘‘Riemann manifold Langevin and
HamiltonianMonte Carlo methods,’’ J. Roy. Stat. Soc., B (Stat. Methodol.),
vol. 73, no. 2, pp. 123–214, Mar. 2011.

[20] G. Celeux, M. Hurn, and C. P. Robert, ‘‘Computational and inferential
difficulties with mixture posterior distributions,’’ J. Amer. Stat. Assoc.,
vol. 95, no. 451, pp. 957–970, Sep. 2000.

[21] Y. Zhang, X. Wang, C. Chen, R. Henao, K. Fan, and L. Carin, ‘‘Towards
unifying Hamiltonian Monte Carlo and slice sampling,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2013, pp. 1462–1470.

[22] Z. Wang, S. Mohamed, and N. Freitas, ‘‘Adaptive Hamiltonian and
Riemann manifold Monte Carlo,’’ in Proc. Int. Conf. Mach. Learn., 2013,
pp. 1462–1470.

[23] M. D. Homan and A. Gelman, ‘‘The no-U-turn sampler: Adaptively setting
path lengths in Hamiltonian Monte Carlo,’’ J. Mach. Learn. Res., vol. 15,
no. 1, pp. 1593–1623, Jan. 2014.

[24] S. A. G. G. Brooks and X. Jones Meng, Handbook Markov Chain
Monte Carlo. Boca Raton, FL, USA: CRC Press, 2011.

[25] R. M. Neal, Probabilistic Inference Using Markov Chain Monte Carlo
Methods. Toronto, ON, Canada: Univ. of Toronto Press, 1993.

[26] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola,
‘‘A kernel two-sample test,’’ J. Mach. Learn. Res., vol. 13, pp. 723–773,
Mar. 2012.

[27] D. J. C. Mackay, ‘‘The evidence framework applied to classification net-
works,’’ Neural Comput., vol. 4, no. 5, pp. 720–736, Sep. 1992.

[28] J. A. Hanley and B. J. Mcneil, ‘‘A method of comparing the areas under
receiver operating characteristic curves derived from the same cases,’’
Radiology, vol. 148, no. 3, pp. 839–843, Sep. 1983.

[29] T. Jaakkola and M. Jordan, ‘‘A variational approach to Bayesian logistic
regression models and their extensions,’’ Statist. Comput., vol. 1553, no. 3,
pp. 147–154, 2000.

MINGHAO GU received the bachelor’s degree in
computer science in 2017. He is currently pursu-
ing the master’s degree with the Pattern Recog-
nition and Machine Learning Research Group,
School of Computer Science and Technology, East
China Normal University, Shanghai, China. His
research interests include machine learning and
Monte Carlo methods.

SHILIANG SUN received the Ph.D. degree in
pattern recognition and intelligent systems from
the Department of Automation and the State Key
Laboratory of Intelligent Technology and Systems,
Tsinghua University, Beijing, China, in 2007.

He is currently a Professor with the School of
Computer Science and Technology and the Head
of the Pattern Recognition and Machine Learning
Research Group, East China Normal University,
Shanghai, China. From 2009 to 2010, he was a

Visiting Researcher with the Department of Computer Science, Centre for
Computational Statistics andMachine Learning, University College London,
London, U.K. In 2014, he was a Visiting Researcher with the Department of
Electrical Engineering, Columbia University, New York, NY, USA. His cur-
rent research interests include kernel methods, multiview learning, learning
theory, approximate inference, sequential modeling, and their applications.
His research results have expounded in more than 100 publications at peer-
reviewed journals and conferences, such as JMLR, IEEE T-NNLS, IEEE
T-Cybernetics, IEEE T-MM, NIPS, ICML, IJCAI, and ECML.

Dr. Sun is on the Editorial Board of multiple international journals, includ-
ing Neurocomputing and the IEEE TRANSACTIONS ON NEURAL NETWORKS AND

LEARNING SYSTEMS.

VOLUME 8, 2020 31605


	INTRODUCTION
	RELATED WORK
	METROPOLIS ADJUSTED LANGEVIN ALGORITHM
	HAMILTONIAN MONTE CARLO
	MAGNETIC HAMILTONIAN MONTE CARLO

	NEURAL NETWORKS LANGEVIN MONTE CARLO
	LOSS FUNCTION OF THE TRAINING PROCEDURE
	THE COMPLETE ALGORITHM

	EXPERIMENTS
	PERFORMANCE INDEXES
	VARIETIES OF CHALLENGING DISTRIBUTIONS
	BAYESIAN LOGISTIC REGRESSION

	CONCLUSION
	REFERENCES
	Biographies
	MINGHAO GU
	SHILIANG SUN


