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ABSTRACT Accurate and agile link quality estimation is essential for wireless sensor networks. Using the
mapping models between physical layer parameters and packet reception ratio, link quality can be estimated
with advantages of high agility and low overhead. However, existing estimators based on physical layer
parameters fail to utilize link quality information carried by different physical layer parameters efficiently
and effectively and fail to effectively solve the problem that physical layer parameters fluctuate greatly, which
makes them difficult to describe link conditions really. In this study, a lightweight, fluctuation insensitive
multi-parameter fusion link quality estimator is proposed. Two physical layer parameters, Signal-to-Noise
Ratio and Link Quality Indicator are preprocessed by exponential weighted Kalman filtering to get more
stable estimation values. Then, these two parameters are fused using lightweight weighted Euclidean distance
to fully utilize link quality information carried by them. On this basis, link quality is estimated quantitatively
with the mapping model of the fused parameter and packet reception ratio, which is constructed by logistic
regression. Experimental results show that the proposed estimator could reflect link qualitymore realistically.
Compared with similar estimators, estimate error of the proposed one is reduced by 18.32% to 60.11%
under moderate and bad links with large fluctuations, by 1.42% to 83.43% under sudden changed links,
and by 16.64% to 65.61% under a long-time link. More importantly, computation overhead of the proposed
estimator is equivalent to that of single-parameter estimators, but much less than othermulti-parameter fusion
estimators. Compared with the later, computation overhead is reduced by 72.36% to 95.61%.

INDEX TERMS Link quality estimation, wireless sensor network, lightweight, multi-parameter fusion, fluc-
tuation insensitive, exponential weighted Kalman filtering, weighted Euclidean distance, logistic regression,
signal-to-noise ratio, link quality indicator.

I. INTRODUCTION
In recent years, wireless sensor networks (WSNs) have
been increasingly deployed in many fields including military
investigation, environmental monitoring, industrial control,
home automation, and so on [1]. Hundreds and thou-
sands of sensor nodes can self-organize to form multi-hop
networks autonomously. WSNs typically use low power
radio transceivers, which make the wireless links less sta-
ble and fluctuate greatly [2]. In order to improve network
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transmission efficiency and minimize packet retransmission
overheads caused by low quality links, accurate and agile link
quality estimation is necessary for finding the best end-to-
end routes. Therefore, performance of link quality estimation
is critical for the design of WSNs. In order to reduce energy
wastes caused by frequent link switches, a good link quality
estimator should not only be insensitive to instantaneous link
fluctuations, but also respond quickly when sudden changes
arise.

Using the mapping models between physical layer param-
eters and packet reception ratio (PRR), link quality can be
estimated conveniently. Although it has advantages of high
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agility and low overhead, these physical layer parameters
are always very unstable [2]. Therefore, existing estimators
usually use window averaging or Kalman filtering to pre-
process these parameters to reduce fluctuations. However,
the processing effect is not satisfactory. Moreover, existing
estimators either take only one physical layer parameter
into consideration, which makes them difficult to describe
link conditions accurately, or employ too complicated multi-
parameter fusion methods, which could not offer a good
balance among accuracy, agility and low overhead. In this
study, a Lightweight, Fluctuation Insensitive multi-parameter
fusion Link Quality Estimator (LFI-LQE) is proposed. Two
physical layer parameters, Signal-to-Noise Ratio (SNR) and
Link Quality Indicator (LQI), are preprocessed by expo-
nential weighted Kalman filtering to get more stable esti-
mation values. Then, these two parameters are fused using
lightweight weighted Euclidean distance to fully utilize link
quality information carried by them. On this basis, link qual-
ity is estimated quantitatively with the mapping model of the
fused parameter and PRR, which is constructed by logistic
regression.

The contributions of this study are as follows: 1) Correla-
tions between different physical layer parameters and PRR
are compared, and SNR and LQI which are more correlated
to PRR are chosen as target parameters. 2) An exponen-
tial weighted Kalman filtering based preprocessing method
is proposed, which could obtain more stable estimations.
3) A lightweight multi-parameter fusion method based on
weighted Euclidean distance is proposed, which combines
advantages of SNR and LQI under different link quality effi-
ciently and effectively and achieves a fused parameter WED
(weighted Euclidean distance) which is more correlated to
PRR. 4) A mapping model between WED and PRR is con-
structed by logistic regression. 5) On this basis, a link quality
estimator that could offer a good balance among accuracy,
agility and low overhead is proposed.

The rest of this paper is organized as follows. In Section II,
related works are given. This is followed by the acquisition
method of experimental data in Section III. Design motiva-
tion and algorithm description of the proposed estimator are
described in Section IV. Performance comparisons with simi-
lar estimators are discussed in Section V. Finally, conclusions
are presented and suggestions are made for future works.

II. RELATED WORKS
PRR is the most direct metric for link quality estimation.
However, as it always takes long time to get accurate PRR,
the agility of using PRR directly is very poor [3]. This
problem could be solved by using physical layer parameters.
Physical layer parameters used for link quality estimation
include Received Signal Strength Indicator (RSSI), LQI, and
SNR. SNR can be calculated by subtracting background noise
from RSSI. When there are no co-channel interferences,
the noise floor usually remains stable for a few seconds or
even minutes. As a result, changes of SNR with time are
mainly caused by changes of RSSI [2]. Compared with LQI,

RSSI has smaller variance, which makes it more stable when
performing fast link quality estimation [4]. Nevertheless,
compared with RSSI, correlation between LQI and PRR is
higher [2], [5], [6].

In fact, which physical layer parameter is better for link
quality estimation is an unanswered question at present [3].
Baccour et al. [3] pointed out that average LQI is better
than average RSSI for link quality estimation. However, it is
difficult to estimate link quality of moderate links only using
LQI. Meanwhile, the background noise will change when
environment or node changes, which would affect the correla-
tion between RSSI and PRR. Srinivasan and Levis [4] found
that RSSI has better symmetry and therefore believed that it
has more potential. By analyzing correlations between RSSI,
LQI and PRR, Bildea et al. [7] pointed out that RSSI could
not be used to identify good links, while LQI could effectively
distinguish good, moderate and bad links. Gomes et al. [8]
pointed out that only using LQI may overestimate the link
quality under bad links. For this reason, link quality estima-
tors based on all these parameters had drawn much attention
in recent years.

Mean value or variance of physical layer parameters could
be used to analyze link quality qualitatively. The results in
[2] showed that LQI has low variance under good links
and very high variance under moderate and bad links. So,
it could be used as an indicator to quickly identify good links.
Srinivasan and Levis [4] found that when average RSSI is
larger than -86dBm, PRR is always higher than 0.9. As a
result, it could be used to quickly identify good links. Average
RSSI is used in EasiLQE to select the size of next window
adaptively [9]. Four-Bit uses LQI to quickly identify whether
a link has high quality or not, and then estimates link quality
through calculating uplink and downlink’s expected transmis-
sion counts [10]. Boano et al. [11] calculated variances of
LQI with different number of samples and pointed out that
variance of LQI could be used to identify good links, and
the number of samples required was one order of magnitude
lower than using average LQI.

By constructing mapping models between physical layer
parameters and PRR, link quality could be analyzed quan-
titatively. As these physical layer parameters are usually
very unstable, they must be preprocessed by window averag-
ing or Kalman filtering. Gomes et al. [8] established a polyno-
mialmappingmodel betweenmean value of normalizedRSSI
and PRR for link quality estimation in industrial environment.
Gomes et al. [12] proposed LETX, which estimates link qual-
ity by constructing a piecewise linear model between average
LQI and PRR. Luo et al. [13] used Cubic model to fit the rela-
tion between average LQI and PRR. Shu et al. [14] proposed
K-CCI, in which Kalman filtering is used to preprocess LQI
and link quality is estimated by constructing amappingmodel
between smoothed LQI and PRR. Senel et al. [15] proposed
KLE, in which Kalman filtering is used to preprocess RSSI.
Then, SNR is computed by subtracting background noise
from the smoothed RSSI and link quality is estimated by
constructing a mapping model between SNR and PRR.
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The schemes above only use one physical layer param-
eter for link quality estimation, which fail to fully utilize
link quality information carried by different physical layer
parameters. Therefore, it is difficult to describe real link
quality accurately. In recent years, several schemes have been
proposed to fuse multiple physical layer parameters for link
quality estimation. Boano et al. [16] designed a new metric
Triangle by calculating Euclidean distance between mean
values of SNR and LQI, which is used for fast classification
of link quality. Zhao et al. [17] proposed a new metric Sm
by combining two physical layer parameters, RSSI and LQI,
which is also used for classification of link quality. Although
these two fusion methods are simple, they could not be used
to estimate link quality quantitatively. Baccour et al. [18]
proposed FLQE (Fuzzy Link Quality Estimator), which uses
fuzzy logic to fuse four link parameters, namely smoothed
PRR (SPRR), link stability factor (SF), link asymmetry level
(ASL) and average SNR (ASNR). Since FLQE is too sta-
ble, Rekik et al. [19] and Jayasri and Hemalatha [5] adjusted
the link parameters involved in fuzzy logic respectively
to achieve more agile and accurate estimations. Opt-FLQE
replaces the SF in FLQE with the smoothed required number
of packet retransmissions (SRNP) of the sender [19]. ELQET
(Enhanced Link Quality Estimation Technique) uses four link
parameters, namely PRR obtained by LQI mapping, SNR
obtained by Kalman filtering, coefficient of variation of PRR
and average LQI, to characterize link quality [5]. Experimen-
tal results showed that ELQET is more accurate. However,
agility of fuzzy logic based estimators is always poor. At the
same time, using fuzzy logic to fuse multiple link parameters
will introduce much more computation overhead.

Recently, some studies employed machine learning algo-
rithms to process or fuse physical layer parameters, in order
to improve accuracy of link quality estimation. Fu et al. [20]
proposed RADIUS, a thresholding method based on Bayes
theory, which uses mean value and variance of RSSI to iden-
tify the degradation of links, namely, from good links to bad
links. Marinca and Minet [21] took LQI as input and utilized
prediction game to construct an expert system model for link
quality estimation. Liu and Cerpa [22] proposed 4C, which
is a machine learning based link quality prediction scheme
that uses naive Bayes classifier, neural networks and logistic
regression to train historical data of RSSI, SNR, LQI and PRR
offline and predicts PRR effectively. Liu and Cerpa [23] pro-
posed TALENT, which is a real-time link quality prediction
model that uses stochastic gradient descent online learning
algorithm for training logistic regression classifier using PRR
and LQI values. Shu et al. [24] proposed a link quality clas-
sification model, which fuses two physical layer parameters
LQI and RSSI and trains mean values of them by support
vector machine. WNN-LQE employs wavelet neural network
to predict SNR and its variance of the next time, and then
estimates link quality quantitatively using the mappingmodel
between SNR and PRR constructed by Gaussian probability
density function [25]. Although such machine learning based
methods did improve accuracy, it has great disadvantages of

high computation overhead and poor efficiency. Therefore,
it is hard to be employed by sensor nodes which have limited
computing power.

In summary, there are mainly two problems for existing
link quality estimators based on physical layer parameters.
Firstly, effect of preprocessing physical layer parameters
using window averaging or Kalman filtering is unsatisfactory.
These methods work well when the link is stable. However,
when the link fluctuates greatly, there still are large fluc-
tuations for the estimated values after preprocessing. Sec-
ondly, existing estimators either take only one physical layer
parameter into consideration, which makes them difficult to
describe link conditions accurately, or employ too compli-
cated multi-parameter fusion methods, which could not offer
a good balance among accuracy, agility and low overhead.
In order to achieve more accurate link quality estimation, it is
necessary to preprocess physical layer parameters effectively.
Meanwhile, a lightweight multi-parameter fusion algorithm
should be designed to realize efficient fusion and best use
of multiple physical layer parameters without increasing too
much computation overhead.

FIGURE 1. Experimental fields: (a) Playground, (b) Corridor, and
(c) Rooftop.

III. EXPERIMENTAL DATA ACQUISITION
In order to obtain link quality data with different charac-
teristics, several experimental fields were chosen, as shown
in Fig. 1. Among which, there were not only typical outdoor
environment which has simple propagation channel and low
external interferences but also semi-enclosed environment
which has complex propagation channel and high external
interferences. Experiments were conducted with two TelosB
nodes, one as transmitter and the other as receiver. TinyOS
2.1 operating system was used, which uses NesC language
for programming [26].

Modeling data were collected from all experimental fields
mentioned above. In these experiments, transmit power and
distance between two TelosB nodes were changed to produce
different link quality. At each distance, 500 packets were sent
and PRR was calculated using the number of successfully
received packets. At the same time, mean values of SNR
and LQI of successfully received packets were calculated.
To obtain data for performance comparisons, long time exper-
iments were conducted in the semi-enclosed environment, in
which external interferences such as walking people andWiFi
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signals were present. In all experiments, channel 26 was used.
At each distance, three transmit powers, 0dBm,−15dBm, and
−25 dBm, were used.

IV. LIGHTWEIGHT, FLUCTUATION INSENSITIVE
MULTI-PARAMETER FUSION LINK QUALITY ESTIMATOR
A. DESIGN MOTIVATION
According to the analysis in Section II, there is still room
for improvement in the preprocessing and fusion methods
of physical layer parameters. When physical layer parame-
ters fluctuate greatly, the effects of window averaging and
Kalman filtering are unsatisfactory. In order to make link
quality estimators offer a good balance among accuracy, sta-
bility and agility, requirements for physical layer parameter
preprocessing are as follows: on one hand, estimators should
be insensitive to instantaneous link fluctuations to avoid fre-
quent link switches, which would waste energy and increase
delay; on the other hand, estimators also should respond
quickly when sudden changes arise. In order to fulfil these
requirements, by analyzing amounts of experimental data,
this study proposed to preprocess physical layer parameters
using exponential weightedKalman filtering. Its performance
is better than window averaging and Kalman filtering. Con-
sidering the order of writing, detailed algorithm description
and performance comparison results will be presented in
Section IV-C and Section V-B respectively.

In order to fully utilize link quality information carried
by different physical layer parameters without increasing too
much computation overhead, lightweight multi-parameter
fusion algorithms should be designed. Boano et al. [16] and
Zhao et al. [17] had proposed two simple fusion methods,
which integrate multiple physical layer parameters by calcu-
lating Euclidean distance between the origin and the point
composed of mean values of physical layer parameters.

Boano et al. [16] combined two physical layer parameters
to generate a new metric Triangle. This metric calculates
Euclidean distance between the origin and the point com-
posed of mean values of SNR and LQI, as shown in (1).

Triangle =
√
SNR2 + LQI2 (1)

Zhao et al. [17] proposed a new metric Sm by fusing two
physical layer parameters, RSSI and LQI, as shown in (2).
Link quality is classified according to values of Sm. Compared
with RSSI and LQI, Sm is more correlated with PRR and its
variance is smaller.

Sm =
√
(RSSI + 100)2 + LQI2 (2)

Although these two methods provide a feasible way for
lightweight fusion of physical layer parameters, there are
some drawbacks in practice: Firstly, they were designed for
link quality classification, but not for estimating link quality
quantitatively. Secondly, both methods ignore the impact of
different ranges of physical layer parameters on the fused
metrics. Thirdly, Sm does not consider the impact of noise
floor changes on link quality estimation [17].

FIGURE 2. RSSI and PRR in all experimental fields.

FIGURE 3. SNR and PRR in all experimental fields.

Fig. 2 to 4 show the relationships of RSSI, SNR, LQI and
PRR respectively. It can be seen from Fig. 2 that there are
obvious translations for the relationships between RSSI and
PRR in different environments, because the noise floor would
change when environment or node changes. As a result, RSSI
could not be used for link quality estimation directly. It can
be further confirmed by Fig. 3, in which the SNR calcu-
lated by RSSI and noise floor is more correlated with PRR.
Fig. 4 shows that LQI and PRR are also highly correlated.
In order to analyze correlations between RSSI, SNR, LQI and
PRR quantitatively, their Spearman and Kendall correlation
coefficients were calculated, as shown in Table 1. It is obvi-
ous that correlations between SNR, LQI and PRR are much
higher than the correlation between RSSI and PRR.

Furthermore, by examining Fig. 2 to 4 carefully, we can
find that the ranges of RSSI and SNR are −95dBm to
−85dBm and 2dB to 10dB respectively when PRR changes
from 0 to 1. However, the corresponding range of LQI is 60 to
105. It means that the impact of LQI on Sm and Triangle is
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TABLE 1. Correlation coefficients of RSSI, SNR, LQI and PRR.

FIGURE 4. LQI and PRR in all experimental fields.

FIGURE 5. Relationships of LQI, Sm, Triangle and PRR in all experimental
fields.

much higher than that of RSSI and SNR. Fig. 5 shows the
relationships of LQI, Sm, Triangle and PRR. It is obvious that
the relationships between Sm, Triangle and PRR are not so
dissimilar from that between LQI and PRR. It means that the
effects of RSSI and SNR are almost completely covered by
LQI. Theweight of RSSI or SNR in the newmetrics should be
increased to realize more effective fusion of these parameters.
According to the above analysis, a multi-parameter fusion
method based on weighted Euclidean distance was proposed
to fuse SNR and LQI, which are more correlated with PRR.
Considering the order of writing, detailed algorithm descrip-
tion will be presented in Section IV-D.

B. OVERALL STRUCTURE OF LFI-LQE
For ease of description, overall structure of LFI-LQE pro-
posed in this study is firstly given, as shown in Fig. 6. Two
physical layer parameters, SNR and LQI, are preprocessed
by exponential weighted Kalman filtering to get more sta-
ble estimation values. Then, these two parameters are fused
using lightweight weighted Euclidean distance to fully utilize
link quality information carried by them, which would not
increase too much computation overhead. On this basis, link
quality is estimated quantitatively with the mapping model of
WED and PRR, which is constructed by logistic regression.

C. EXPONENTIAL WEIGHTED KALMAN FILTERING OF
PHYSICAL LAYER PARAMETERS
In order to make link quality estimators to offer a good
balance among accuracy, stability and agility, this study pro-
posed to preprocess physical layer parameters using expo-
nential weighted Kalman filtering to obtain more stable and
accurate estimation values. The time update equations of
Kalman filter are as follows:

x−k = xk−1 (3)

P−k = Pk−1 + Q (4)

The filter measurement equations are:

Kk = P−k
(
P−k + R

)−1
(5)

xk = x−k + Kk (zk − x
−

k ) (6)

Pk = (1− Kk )P
−

k (7)

where zk is the measured value of SNR or LQI at the k-th
window. x−k and xk are the priori and posteriori estimates
of SNR or LQI respectively. P−k and Pk are the variances of
priori and posteriori estimation error, and Kk is the optimal
Kalman gain.
Q and R are the process noise variance and measurement

noise variance, respectively. Generally, the process noise and
measurement noise are assumed to be Gaussian noise [15],
[16]. Q can be computed at the initialization process by
computing the variance of xk−xk−1 over a set of inputs. Since
it is possible forQ to change slowly over time, it is reasonable
to estimate Q periodically. An error in the exact value of
Q only effects the convergence of the estimate and not its
accuracy [15]. For SNR, the value of R can be calculated as
the variance of noise floor [15]. For LQI, the value of R can
be calculated as the variance of LQI [16].

Normal operation of the Kalman filter also requires the
following two parameters: xk ’s initial value x0 and Pk ’s ini-
tial value P0. x0 can be calculated as the mean value of
SNR or LQI in the first time window. For the Kalman filter to
be optimal, P−k or Pk needs to be calculated, which implicitly
includes the initial condition P0. However, due to the fact that
this initial value is not known, no Kalman filter is optimal in
practice. Fortunately, it can be asymptotically optimal under
certain conditions, no matter what the initial guess on P0 is
[15]. A common practice is to useQ as the initial guess of P0.
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FIGURE 6. Block diagram of LFI-LQE.

To further reduce fluctuations of physical layer parameters,
exponential weighted average filtering was adopted to pro-
cess the SNR or LQI estimates produced by Kalman filtering.
Its calculation formula is as follows:

Xk = λ× Xk−1 + (1− λ)× xk (8)

where λ is the smoothing factor which belongs to (0, 1), xk is
the estimate produced by Kalman filtering. Furthermore, (8)
could be written as:

Xk =
k∑
i=1

λk−i(1− λ)ixi + λkX0 (9)

where x0 is generally used as X0 in practice. Therefore,
we have:

Xk =
k∑
i=0

λk−i(1− λ)ixi (10)

As xk is asymptotically optimal, the exponential weighted
Kalman filter expressed in (8) will also be asymptotically
optimal. On the other hand, according to the stability of
Kalman filter, the stability of the exponential weighted
Kalman filter is only affected by smoothing factor λ. The
larger the λ, the more stable the estimation. λ could be
adjusted according to actual demands. In this study, the value
of λ is set to 0.4.

D. LIGHTWEIGHT MULTI-PARAMETER FUSION BASED ON
WEIGHTED EUCLIDEAN DISTANCE
Based on the analysis in Section IV-A, a lightweight multi-
parameter fusion method based on weighted Euclidean dis-
tance was proposed, as shown in (11). The impact of SNR on
the fused metric WED is increased by adjusting its weight.

WED =
√
(SNR× β)2 + LQI2 (11)

where β is the weight factor of SNR. In this study, the value
of β is 10 according to the ranges of SNR and LQI.

Fig. 7 shows the relationships of LQI, Sm, Triangle, WED
and PRR in all experimental fields. It is obvious that the
range of WED is 65 to 140 when PRR changes from 0 to
1, which is larger than the ranges of LQI, Sm and Trian-
gle. That is to say, WED could be used to describe PRR

TABLE 2. Correlation coefficients of Sm, triangle, WED and PRR.

FIGURE 7. Relationships of LQI, Sm, Triangle, WED and PRR in all
experimental fields.

more accurately than LQI, Sm and Triangle. Table 2 shows
the Spearman and Kendall correlation coefficients of Sm,
Triangle, WED and PRR. It is obvious that the correlation
between WED and PRR is the highest. As can be seen from
Table 1, compared with the correlation between LQI and
PRR, the correlations between Sm, Triangle and PRR show
little improvement, because they ignore the impacts of differ-
ent ranges of physical layer parameters on the fused metrics.

E. MAPPING MODEL BASED ON LOGISTIC REGRESSION
In order to estimate link quality quantitatively, it is necessary
to construct amappingmodel betweenWEDand PRR. Logis-
tic regression is often used to fit the S-shaped relationship
of measured data as shown in Fig. 7 [23], [27]. Therefore,
it was chosen to establish the mapping model between WED
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and PRR. The expression of the logistic regression model is
shown in (12).

g(z) =
1

1+ e−z
(12)

where z is a linear function. Let z = at + b. For convenience
of expression, set the parameter matrix (a,b) as θ , then z can
be expressed as:

z = θ t (13)

As a result, general form of the logistic regression model
is:

hθ (t) =
1

1+ e−θ t
(14)

where t is the input sample and hθ (t) is the probability that
the input sample is classified into a certain class. hθ (t) is
classified using a two-class method, and the model output
has corresponding relationship with the binary sample output
y(y ∈ {0, 1}). The threshold of hθ (t) is set to 0.5: when hθ (t)
is greater than or equal to 0.5, y is 1; when hθ (t) is less than
0.5, y is 0. According to above descriptions:

P(y|t; θ ) = hθ (t)y(1− hθ (t))1−y (15)

where P(·) is the probability of a sample. Likelihood function
can be used to solve the model’s coefficient θ , which expres-
sion is:

L(θ ) =
m∏
i=1

(hθ (t (i)))y
(i)
(1− hθ (t (i)))1−y

(i)
(16)

where m is the number of input samples. Loss function of the
model could be obtained by taking logarithm of (16):

J (θ ) = − logL(θ )

= −

m∑
i=1

(y(i) log(hθ (t (i)))

+(1− y(i)) log(1− hθ (t (i)))) (17)

When J (θ ) takes the minimum value, θ is optimal, which
could be obtained using gradient descent method. Update
process of θ in the gradient descent method is as follows:

θj := θj − α
δ

δθj
J (θ ) (18)

where α is the step size of the gradient descent method.
Derivative of J (θ ) could be obtained using (17), as shown
in (19).

δ

δθj
J (θ ) = −

1
m

m∑
i=1

(
y(i)

1
hθ (t (i))

δ

δθj
hθ (t (i))

− (1− y(i))
1

1− hθ (t (i))
δ

δθj
hθ (t (i))

)

= −
1
m

m∑
i=1

(
y(i)

1
gθ (θ t (i))

− (1− y(i))
1

1− gθ (θ t (i))

)

×
δ

δθj
gθ (θ t (i))

= −
1
m

m∑
i=1

(
y(i)

1
gθ (θ t (i))

− (1− y(i))
1

1− gθ (θ t (i))

)
×gθ (θ t (i))(1− gθ (θ t (i)))

δ

δθj
θ t (i)

= −
1
m

m∑
i=1

(
y(i)(1−gθ (θ t (i)))−(1−y(i))gθ (θ t (i))

)
t (i)j

= −
1
m

m∑
i=1

(
y(i) − gθ (θ t (i))

)
t (i)j

=
1
m

m∑
i=1

(
hθ (t (i))− y(i)

)
t (i)j (19)

Therefore, the update process of θ could be written as:

θj := θj − α
1
m

m∑
i=1

(
hθ (t (i))− y(i)

)
· t (i)j (20)

Using the WED and PRR data shown in Fig. 7 as input,
the optimal mapping model between WED and PRR could
be obtained as follows:

PRR =
1

1+ e−0.1416×WED+13.3085
(21)

V. PERFORMANCE COMPARISONS AND ANALYSIS
A. EVALUATION PARAMETERS
Coefficient of variation (CV) is generally used to assess
stability and agility of the estimated values quantitatively [3].
CV is defined as the ratio of the standard deviation to the
average of estimated values, as shown in (22).

CV =

√
1
n

n∑
i=1

(
E(i)−

1
n

n∑
i=1

E(i)
)2

1
n

n∑
i=1

E(i)
(22)

where E(i) denotes the estimated value of the i-th window
and n is the number of estimated values. Smaller CV means
more stable SNR or LQI estimations. In addition, Root Mean
Squared Error (RMSE) was chosen as the evaluation param-
eter for estimation accuracy, as shown in (23).

RMSE =

√√√√√ n∑
i=1
(E(i)− R(i))2

n
(23)

where n is the number of estimated values, E(i) and R(i) are
the estimated value and practical value of the i-th window,
respectively. The smaller RMSE is, the closer estimated val-
ues and practical values are.

B. EFFECTS OF EXPONENTIAL WEIGHTED KALMAN
FILTERING
Wireless links are typically classified into three categories
according to their PRR values, which are good links, mod-
erate links and bad links [2]. Three links all with length
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FIGURE 8. Processing effects of SNR under the good link.

of 300s were chosen from the long-time experiments, and
processed by window averaging, Kalman filtering and expo-
nential weighted Kalman filtering respectively. Time win-
dows of these filters are all set to 5s. These links include a
good link with PRR greater than 95%, a moderate link, and a
bad link with a few received packets.

Fig. 8 and Fig. 9 show the processing effects of SNR and
LQI under the good link. It can be seen that these three meth-
ods all get good results under the good link due to the large
number of packets received. Fluctuation of the estimated
values obtained by exponential weighted Kalman filtering is
smaller than window averaging and Kalman filtering.

Fig. 10 to 13 show the processing effects of SNR and LQI
under the moderate link and the bad link respectively. Under
the moderate link that fluctuates greatly and the bad link with
a few received packets, fluctuation of the estimated values
obtained by exponential weighted Kalman filtering is obvi-
ously smaller than window averaging and Kalman filtering.
Although Kalman filtering reduces the fluctuation to some
extent comparedwith window averaging, its processing effect
is not satisfactory due to the large fluctuations of moderate
link and bad link themselves. These unexpected fluctuations
could be further suppressed by exponential weighting aver-
age filtering the outputs of Kalman filtering, which is also
the reason why the effect of exponential weighting Kalman
filtering is better than other preprocessing methods.

Table 3 shows the CVs of SNR and LQI estimations
obtained by different preprocessing methods under the

FIGURE 9. Processing effects of LQI under the good link.

TABLE 3. CVs of SNR and LQI estimations under the moderate and bad
link.

moderate and bad link. Since different preprocessingmethods
all get good results under the good link, their effects under
the good link were not compared and analyzed quantitatively.
It can be seen that CVs of the estimations obtained by expo-
nential weighted Kalman filtering proposed in this study are
the smallest, which means that its estimations are the stablest.

C. LINK QUALITY ESTIMATORS FOR COMPARISON
KLE, K-CCI, LETX, 4C, FLQE, and ELQET were cho-
sen to compare with the proposed estimator. Among them,
KLE, K-CCI, LETX, and 4C all take only one physical layer
parameter into consideration. However, the parameter types,
preprocessing methods and mapping models they employ are
different. Since the test environments are different, param-
eters of the mapping models given in original papers are
not directly applicable to this study. Therefore, if not clearly
stated, parameters of the mapping models given below are all
fitted using the test data in this study.
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FIGURE 10. Processing effects of SNR under the moderate link.

FIGURE 11. Processing effects of LQI under the moderate link.

KLE uses Kalman filtering to preprocess RSSI and calcu-
lates SNR by subtracting background noise from smoothed
RSSI values. Then, a mapping model between SNR and PRR

FIGURE 12. Processing effects of SNR under the bad link.

FIGURE 13. Processing effects of LQI under the bad link.

are employed to estimate link quality quantitatively [15].
Estimated PRR of the i-th window is:

PRRKLE (i) = f (SNR(i)) (24)
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where f (·) represents the mapping model between SNR and
PRR, which can be implemented in the form of lookup table.

K-CCI uses Kalman filtering to preprocess LQI and then
estimates link quality quantitatively using a mapping model
between LQI and PRR, which is constructed using Cubic
model [14]. The estimated PRR of i-th window is:

PRRK−CCI =


1, LQI > 104
0.000006331×LQI3 − 0.001996×LQI2

+ 0.2257×LQI−8.013, 66<LQI≤104
0, LQI ≤ 66

(25)

Both LETX and 4C use window averaging to preprocess
LQI and then estimate link quality quantitatively by estab-
lishing mapping models between LQI and PRR [11], [22].
LETX uses a piecewise linear model, as shown in (26), while
4C uses logistic regression to construct the mapping model
between LQI and PRR, as shown in (27).

PRRLETX =


1, LQI > 102
0.02041×LQI−1.0825, 78<LQI≤102
0.05×LQI − 3.39, 68 < LQI≤78
0.0005556×LQI−0.02778, 50≤LQI≤78

(26)

PRR4C =
1

1+ e22.5247−0.269×LQI
(27)

Both FLQE and ELQET use fuzzy logic to fuse multiple
parameters, but different types of parameters are used [5],
[18]. FLQE uses four link parameters, namely smoothed
PRR (SPRR), link stability factor (SF), link asymmetry level
(ASL) and average SNR (ASNR). As other candidate estima-
tors only consider one-way transmission, the ASL parameter
was removed for fairness when implementing FLQE. The
estimated PRR of i-th window is:

FLQE = α1 × FLQEi−1 + 100× (1− α1)× µ1(i) (28)

where the smoothing factor α1 is 0.9, and µ1(i) is as follows:

µ1(i) = β1min(µSPRR(i), µSF (i), µASNR(i))

+(1− β1)mean(µSPRR(i), µSF (i), µASNR(i)) (29)

where the smoothing factor β1 is 0.6.
ELQET also uses four link parameters, namely PRR

obtained by LQI mapping, SNR obtained by Kalman filter-
ing, coefficient of variation of PRR and average LQI. The
estimated PRR of i-th window is:

ELQET (i) = α2 × ELQET (i− 1)+ (1− α2)× µ2(i) (30)

where the smoothing factor α2 is 0.8, and µ2(i) is as follows:

µ2(i) = β2min(µPRR(i), µSA(i), µASNR(i), µALQI (i))

+(1−β2)mean(µPRR(i), µSA(i), µASNR(i), µALQI (i))

(31)

where the smoothing factor β2 is 0.6.

FIGURE 14. Performance comparison with single-parameter estimators
under different link quality.

As multi-parameter fusion estimators based on machine
learning algorithms are too complicated for WSNs which
have limited computing power, they are not chosen for com-
parison. Although 4C also uses machine learning algorithms
for link quality prediction, the mapping model between LQI
and PRR that it ultimately uses is obtained by offline train-
ing. As a result, it will not increase too much computation
overhead when the estimator is in the actual running. Time
windows of above estimators are all set to 5s. Since the short-
time statistical PRR could not truly reflect the link quality [3],
PRR counted every 50s is used as the evaluation criterion for
accuracy.

D. PERFORMANCE COMPARISON UNDER DIFFERENT
LINK QUALITY
Performance of the estimators is compared under different
link quality, as shown in Fig. 14 and Fig. 15. The same good
link, moderate link and bad link as in Section V-II are used.
Other good, moderate and bad links are also tested and similar
results are obtained. For the sake of space, corresponding
charts are omitted. Fig. 14 shows the comparison between
LFI-LQE and single-parameter estimators, and Fig. 15 shows
the comparison between LFI-LQE and other multi-parameter
fusion estimators. It can be seen that LFI-LQE and single-
parameter estimators all perform well under the good link,
while the estimated values of other multi-parameter fusion
estimators are quite different from the real PRR, although
they are very stable. Under the bad link, estimated values of
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FIGURE 15. Performance comparison with other multi-parameter fusion
estimators under different link quality.

single-parameter estimators fluctuate greatly and are inaccu-
rate, because little information could be obtained by single-
parameter estimators in bad links. However, estimated values
of LFI-LQE and other multi-parameter fusion estimators are
more accurate and stable. Under the moderate link, although
more information could be obtained than the bad link, esti-
mated values of single-parameter estimators still fluctuate
greatly due to the large fluctuations of physical layer param-
eters themselves. Estimated values of other multi-parameter
fusion estimators are still stable, but their estimate errors
are fairly large. Benefiting from the fusion of SNR and LQI
and more effective preprocessing, estimated values of the
proposed estimator are stable and accurate under different
link quality. ELQET and FLQE are too stable, so they are
unresponsive when the link changes. For example, under the
moderate link, ELQET and FLQE could not keep up with link
changes accurately after 150s as LFI-LQE does. The reason
is that the fuzzy logic of ELQET and FLQE would select the
most pessimistic parameter as part of their final estimations,
which inevitably results in too pessimistic estimations.

In order to evaluate the accuracy of LFI-LQE quantita-
tively, RMSEs under different link quality are calculated,
as shown in Fig. 16. It is obvious that RMSEs of LFI-LQE
and single-parameter estimators are all very small under the
good link, while RMSEs of FLQE and ELQET are relatively
larger. Under the moderate and bad link, RMSEs of LFI-LQE
are both the lowest. Compared with other estimators, estimate
error of the proposed one is reduced by 18.32% to 60.11%.

FIGURE 16. RMSEs under different link quality.

FIGURE 17. Performance comparison with single-parameter estimators
under sudden changed links.

E. PERFORMANCE COMPARISON UNDER SUDDEN
CHANGED LINKS
In addition to fluctuations, there are also sudden changes in
actual links [9]: changes of environmental conditions may
cause the link to suddenly change from good to bad, or from
bad to good. The estimator should respond quickly and accu-
rately when sudden changes arise. Two sudden changed links
both with length of 300s were chosen from the long-time
experiments for performance comparison of the estimators,
as shown in Fig. 17 and Fig. 18. Among them, the sudden
changed link 1 represents a sudden change from good link
to bad link, and sudden changed link 2 represents a sudden
change from bad link to good link. The changes both occur
at 150s of two links. Other sudden changed links are also
tested and similar results are obtained. For the sake of space,
corresponding charts are omitted. Fig. 17 shows the compar-
ison between LFI-LQE and single-parameter estimators, and
Fig. 18 shows the comparison between LFI-LQE and other
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FIGURE 18. Performance comparison with other multi-parameter fusion
estimators under sudden changed links.

FIGURE 19. Difference curves of single-parameter estimators under
sudden changed links.

multi-parameter fusion estimators. In order to demonstrate
the reaction speed of each estimator more intuitively, whether
data packets are received or not is also marked at the top of
Fig. 17 and Fig. 18.

Due to different preprocessing methods employed by the
estimators, there are differences between response times to
the sudden changes. It can be seen from Fig. 17 that there
are few packets received for a period after the sudden change
arises in link 1. Therefore, estimators do not have enough
information to react. LETX and 4C, which use mean values
of physical layer parameters, are the fastest. However, their

FIGURE 20. Difference curves of multi-parameter fusion estimators under
sudden changed links.

FIGURE 21. RMSEs under sudden changed links.

responses are excessively fierce and the following estimations
fluctuate greatly. That is to say, although LETX and 4C react
more quickly, their estimations are not reliable.

Response times of LFI-LQE, KLE and K-CCI are essen-
tially the same, but large fluctuations also appear for subse-
quent estimations of KLE and K-CCI. Unlike them, LFI-LQE
is still stable after reaction. Therefore, it could describe link
quality more accurately. It can be seen from Fig. 18 that
reactions of FLQE and ELQET are too slow, which lead to
considerably large errors.

For the sudden changed link 2, there are quite a lot of
packet losses at the beginning. In this stage, estimated values
of single-parameter estimators are inaccurate. Unlike them,
LFI-LQE could get stable and accurate estimations. When
the sudden change arises in link 2, LFI-LQE and single-
parameter estimators all react quickly. However, reaction
speed of LFI-LQE is not as fast as single-parameter estima-
tors due to its more stable preprocessing. On the other hand,
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FIGURE 22. Performance comparison under a long-time link.

reactions of FLQE and ELQET are still very slow, which
makes them much worse than LFI-LQE.

Although single-parameter estimators react quickly when
the link suddenly changes, their estimated values fluctuate
greatly when the link quality is not good. To analysis the time
points when estimators generate accurate estimated values,
differences between estimated values of each estimator and
the real PRRwere calculated, as shown in Fig. 19 and Fig. 20.
The time point when the difference is less than 10% for the
first time is taken as a standard. From Fig. 19, it is shown
that under sudden changed link 1, LFI-LQE is one of the
fastest estimators to generate accurate estimated values, all
at 175s. However, as sudden changed link 2 is from bad link
to good link, all estimators could acquire enough information
within one time window after the sudden change arises to
make accurate estimation. Hence, LETX and 4C, which use
window averaging, generate accurate estimated values within
only one time window, both at 155s. KLE and K-CCI, which
use Kalman filtering, also generate accurate estimated val-
ues at 155s, while LFI-LQE that uses exponential weighted
Kalman filtering generates accurate estimated values at 160s.
As can be seen from Fig. 20, reactions of ELQET and FLQE,
which use fuzzy logic to fuse multiple parameters, are very

slow, and could not generate accurate estimated values even
for long time.

In order to describe the accuracy of LFI-LQE quantita-
tively, RMSEs under sudden changed links are calculated,
as shown in Fig. 21. It is obvious that RMSEs of LFI-LQE
are the smallest under sudden changed links. Compared with
other estimators, estimate error of the proposed one is reduced
by 1.42% to 83.43%.

F. PERFORMANCE COMPARISON UNDER A LONG-TIME
LINK
Fig. 22 shows the performance comparison under a long-time
link, which length is half an hour. This link is composed
of different link conditions, including good links, moder-
ate links, bad links, and sudden changed links, which can
be used to evaluate estimators under complicated condi-
tions. Among the single-parameter estimators, LETX and
4C, which use mean values of physical layer parameters,
perform rather badly. Fluctuations of their estimated values
are quite large. Estimated values of KLE and K-CCI, which
are based on Kalman filtering, fluctuate less than LETX
and 4C. Thanks to exponential weighted Kalman filtering
and multi-parameter fusion, LFI-LQE is more stable than
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FIGURE 23. CDFs of the estimated values for single-parameter estimators
under the long-time link.

FIGURE 24. CDFs of the estimated values for multi-parameter fusion
estimators under the long-time link.

single-parameter estimators. Although FLQE and ELQET are
more stable than LFI-LQE, their estimated values are quite
different from the real ones. As a result, they could not truly
reflect the link quality.

Fig. 23 and Fig. 24 show theCumulativeDistribution Func-
tions (CDF) of the estimated values under the long-time link.
It can be seen that estimated values of FLQE and ELQET are
almost evenly distributed. However, it can be seen from the
distribution of real PRR that the proportion of moderate links
under this long-time link is quite small, which means that
FLQE and ELQET could not describe link quality accurately.
Since LETX, K-CCI, KLE, and 4C only use the link qual-
ity information carried by single physical layer parameter,
the distributions of estimated values for LETX, K-CCI, and
KLE under bad links and moderate links are quite different
from that of real PRR. Similarly, the distribution of estimated
values for 4C under good links is quite different from that of
real PRR. Unlike them, the distribution of estimated values
for LFI-LQE is very close to that of real PRR.

In order to describe the accuracy of LFI-LQE quanti-
tatively, RMSEs under the long-time link are calculated,
as shown in Fig. 25. It is obvious that RMSE of LFI-LQE is

FIGURE 25. RMSEs under the long-time link.

FIGURE 26. Relative computation overheads of the estimators.

the smallest under the long-time link. Compared with other
estimators, estimate error of the proposed one is reduced by
16.64% to 65.61%.

By comparing and analyzing the performance of candidate
estimators under different link quality and sudden change
links, it can be seen that single-parameter estimators would
fluctuate greatly and get inaccurate estimations under bad
links with few packets received and moderate links with large
fluctuations. Estimators using fuzzy logic to fuse multiple
parameters are too stable, which could not keep up with link
changes accurately in time. Additionally, these estimators are
apt to underestimate the link quality. Benefiting from the
fusion of SNR and LQI and more effective preprocessing,
the estimator proposed in this study could not only achieve
stable and accurate estimations under bad links and moderate
links, but also generate accurate estimations quickly under
sudden change links. Therefore, its performance under the
long-time link is the best.

G. COMPUTATION OVERHEAD
In order to compare the computation overheads, the time
that candidate estimators take to generate 10000 estimated
values is counted. 20 times were repeated under the same
condition to eliminate the error that may occur in single run.
Then, average time of 20 runs was taken as the time of each
estimator. In order to show the difference in computation
overhead more clearly, the ratio of computation time relative
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to the proposed estimator was calculated, as shown in Fig. 26.
Platform parameters used in this test are as follows: 3.5GHz
Intel Pentium processor, 8GB memory; Windows 10 operat-
ing system; Matlab 2013a.

It is shown that relative computation overheads of single-
parameter estimators are all smaller than the proposed one.
Among them, 4C and LETX, which preprocess physical layer
parameters by window averaging, are the fastest, while KLE
and K-CCI using Kalman filtering are the second. LFI-LQE
takes slightly longer time than single-parameter estimators,
but much less time than other multi-parameter fusion esti-
mators. Compared with KLE, computation overhead of LFI-
LQE increases by 49.77%. However, it decreases by 72.36%
and 95.61% respectively compared with FLQE and ELQET.

VI. CONCLUSIONS AND FUTURE WORKS
Accurate and agile link quality estimation is necessary for
efficient routing in wireless sensor networks. Using the map-
ping models between physical layer parameters and packet
reception ratio, link quality can be estimated with advantages
of high agility and low overhead. However, these physical
layer parameters are usually very unstable. Existing estima-
tors typically use window averaging or Kalman filtering to
preprocess these parameters. Unfortunately, the processing
effects are not satisfactory. Additionally, existing estimators
either take only one physical layer parameter into considera-
tion, which makes them difficult to describe real link qual-
ity accurately, or employ too complicated multi-parameter
fusion methods, which could not offer a good balance among
accuracy, agility and low overhead.

In this study, a lightweight, fluctuation insensitive multi-
parameter fusion link quality estimator is proposed. In order
to get more stable estimations, exponential weighted Kalman
filtering is utilized to preprocess two physical layer param-
eters, SNR and LQI. Then, lightweight weighted Euclidean
distance is used to fuse these two parameters to fully utilize
link quality information carried by them, which would not
introduce excessive computation overhead. This lightweight
multi-parameter fusion method combines the advantages of
SNR and LQI under different link quality, so it could achieve
more accurate estimations. On this basis, link quality is esti-
mated quantitatively with the mapping model of the fused
parameter and packet reception ratio, which is constructed by
logistic regression.

Experimental results show that the proposed estimator
could reflect link quality more realistically. Compared with
similar estimators, estimate error of the proposed one is
reduced by 18.32% to 60.11% under moderate and bad links,
by 1.42% to 83.43% under sudden changed links, and by
16.64% to 65.61% under a long-time link. More importantly,
computation overhead of the proposed estimator is equivalent
to those of single-parameter estimators, but much less than
other multi-parameter fusion estimators. Compared with the
later, computation overhead is reduced by 72.36% to 95.61%.
In the future, the proposed estimator would be integrated to
existing protocols of wireless sensor networks.
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