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ABSTRACT Traditional abnormal trajectory detection algorithms mainly involve the measurement of a
single feature; however, the influence of other features on abnormal trajectory is ignored, resulting in the
inability to fully discover the abnormal trajectory in the trajectory database. To overcome this limitation,
we propose an abnormal trajectory detection method – called TADSS – to find the hidden abnormal trajectory
by using a comprehensive measurement. Firstly, we employ three kernel functions to measure the time,
velocity and position feature values of trajectory data, where the kernel functions extract semantic feature
of the position, time feature of trajectory, and velocity feature of object motion from each trajectory data.
Secondly, we propose a feature fusion strategy to measure the similarity of trajectory data, where we assign
weights to the above kernel functions and then use a linear combination approach to fuse the weighted kernel
functions. Thirdly, we build a trajectory feature graph by using the above fused kernel functions, and then
divide the trajectory feature graph into a plurality of subgraphs by using a conventional graph clustering
technique. Last, we propose a sparse subgraph method to detect abnormal trajectory, where a novel weight
coefficient concept is used to distinguish sparse subgraph. Experimental results driven by both the vehicle
trajectory data of Shanghai city and the Atlantic hurricane data demonstrate the performance of our TADSS.

INDEX TERMS Trajectory data, abnormal detection, kernel function, sparse subgraph.

I. INTRODUCTION
With the development of positioning devices, wireless net-
work, video monitoring and infinite sensors, large amounts
of trajectory data are collected from a variety of devices. One
of the most common types of trajectories is generated byGPS
equipped vehicles. Other types of trajectories probably can be
generated by smart phones, online checkin data, geotagged
messages or media in social networks, RFID readers, and
other such applications. The moving objects can be human
beings, animals, vehicles, and even natural phenomena
(e.g. hurricanes). Furthermore, these trajectory data contain
a large amount of valuable information. Currently, in many
fields, such as those of unmanned driving systems, navigation
systems, and intelligent traffic system, research on trajectory
data receiving increasing attention.

Abnormal data represent objects that are extremely dif-
ferent or inconsistent with the other data objects in a data
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set [1]. An anomalous trajectory is a trajectory that has a large
local or global difference with most of the other trajectories,
in terms of similar metrics [2]. In the hurricane detection
by a meteorological station, the abnormal changes in the
hurricane trajectory can be captured, and the casualties and
property losses can be reduced by providing people with
an early warning; When using the application of an online
car-hailing service, the passengers can receive a warning
from the application if the driver takes a detour or deviates
from the normal driving route. In this manner, the passengers
can avoid paying more than required and avoid incidents
[3], [4]. Therefore, it is of considerable practical significance
to search for an abnormal trajectory in a large trajectory data
set. Most of the existing methods measure the similarity in
terms of the location property of the trajectories [5], [6].
However, in real trajectory data sets, the trajectory data
involve many different features. The attributes of the trajec-
tory data are effectively mined by trajectory clustering algo-
rithms, for example, cluster analysis of the trajectory point
density around a place to mine the attributes of the place [7],
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and the selection of the cluster center effectively improves the
quality of the cluster [8]. To realize a more comprehensive
mining of the abnormal trajectory data, we propose a trajec-
tory similarity measure model that include semantic feature
of the position, time feature of trajectory, and velocity feature
of object motion. In addition, we also design an abnormal
trajectory detection scheme by searching the sparse subgraph.

A. MOTIVATIONS
The abnormal trajectory detection in this study is motivated
by the following three observations:

• Trajectory similarity measurement is an important step
in abnormal trajectory detection, where traditional meth-
ods only measure the similarity from a single dimension.
There is no doubt that these measurement methods lose
some important information, which makes the detection
of abnormal trajectory inaccurate, or even unable to
detect the real abnormal trajectory effectively.

• The abnormal trajectory detection is an expensive oper-
ation, because traversal of data points on different tra-
jectories is time consuming. The high overhead of the
traversal operation becomes more pronounced when it
comes to large datasets. Each trajectory dataset con-
tains many trajectory objects, each of which contains a
large number of data points. When we directly compare
the data points pertaining to different trajectory data,
the corresponding tasks and running time will increase
significantly.

• The existing abnormal trajectory detection methods
require the setting of a large number of parameters,
which leads to a higher influence of human factors in
the experimental conclusions.

Motivation 1: The trajectory data contain the position,
speed, and time attributes. In the measurement of the simi-
larity of trajectories, if the similarity originates from a single
information measurement, the detection results tend to ignore
a large amount of the hidden trajectory information. For
example, the similarity of the trajectory in terms of the posi-
tion attributes cannot indicate whether the data are abnormal
in terms of speed attributes. Similarly, we can detect whether
a vehicle is overspeeding by using the velocity attribute of
the trajectory data; however, we cannot detect the abnormal
behavior in time attribute in this manner. Hence, in the tradi-
tional abnormal trajectory detection methods, as the metrics
correspond to a single feature, the abnormal behavior the
other attributes cannot be accurately detected.
Motivation 2: A trajectory data set contains many tra-

jectories, and each trajectory contains dozens to thousands
of data points. In the detection of abnormal trajectories,
a large amount of time is required to traverse data points
on different trajectories. The traditional detection algorithms
may cause the problem of insufficient memory due to the
direct operation of the data points. These algorithms need
to be recalculated when the parameters are modified, which
requires a large amount of time. At the same time, some data

points are repeatedly calculated for each test, which causes a
lot of time consumption. Therefore, the traditional abnormal
trajectory algorithm cannot be used in massive data sets.
Motivation 3: To set the parameters, the traditional meth-

ods detect the abnormal trajectories by dividing the trajectory
data into subsegments and calculating the proportion and den-
sity of the abnormal trajectory subsegments [9]. For instance,
Lee JG proposed the TRAOD algorithm framework [10], in
which many parameters are required to be set. These artificial
parameters may affect the results of the experiment. A larger
number of parameters correspond to a larger interference of
the human factors. Therefore, the use of fewer parameters can
make the results more objective.

B. OUR APPROACH AND CONTRIBUTIONS
In this paper, we propose a method, sparse-subgraph-based
abnormal trajectory detection using multiple information
sources (i.e., TADSS). TADSS consist of three distinct phases:
• Establishment of trajectory similarity measure model:
the important features of the trajectory are reflected in
many aspects, such as semantic feature of the position,
time feature of trajectory, and velocity feature of object
motion, and so on. In first phase, the feature information
of each trajectory is extracted from position, velocity and
time by using multiple kernel functions.

• Calculation and fusion of the weighted similarity mea-
sures: we assign weights to each feature vector and use a
linear combining approach for feature fusion of multiple
vectors. The fused feature values are used to measure the
similarity of two trajectories.

• Anomalous trajectory detection: the fused feature values
are mapped to a feature graph, and then the graph is
divided into a plurality of subgraphs by using a conven-
tional graph clustering technique. The anomalous trajec-
tory are obtained by searching the sparse subgraphs.

Our key contributions are summarized as follows.
1) Novel trajectory similarity measure: we employ three

kernel functions to measure the time, velocity and posi-
tion feature values of trajectory data. First, we propose
a model for extracting the semantic features from the
trajectories. In the model, a semantic kernel is applied to
solve the problem of data misalignment when the coor-
dinates of the entire trajectory are measured. Second,
we design a novel speed-based similarity metric that
effectively accommodates the velocity properties of tra-
jectory data with features of position and time labels.
This approach allows us to identify the same vector data
at different locations.

2) Multi-feature fusion mechanism for trajectory similar-
ity detection: We propose an evaluation mechanism for
abnormal trajectory using multiple feature vectors. First,
we assign different weights to each kernel function,
inwhich the selection ofweights can be based on domain
knowledge or mining tasks. Second, we use a linear
combination approach to fuse weighted kernel func-
tions. In our method, the behavior of different feature
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vectors can be represented approximately by a fusion
vector, in which different feature vectors are jointly
learned to maximize the consistency of all the diffu-
sion processes. The fusion mechanism can be applied
to different application scenarios only by adjusting the
corresponding weight combination.

3) Abnormal trajectory detection: We propose a sparse-
subgraph-based abnormal trajectory detection algorithm
TADSS. First,we build a trajectory feature graph by
using the above fused kernel functions, in which a
trajectory is treated as a node in the graph. Second,
we divide the trajectory feature graph into a plurality
of subgraphs by using a conventional graph clustering
technique. Third, we propose a sparse subgraph method
to detect abnormal trajectory, where a novel weight coef-
ficient concept is used to distinguish sparse subgraph
(see Definition 6).

4) Experiments on multiple real datasets: We use the vehi-
cle trajectory data of Shanghai city to test the perfor-
mance of our algorithms TADSS, and apply the Atlantic
hurricane data to evaluate the impacts of parameters on
the experimental results. Our experimental results show
that TADSS accurately detect real abnormal trajecto-
ries, and outperform the existing algorithm in terms of
efficiency.

C. ROADMAP
The rest of the paper is structured as follows: Section II
introduces the related work on abnormal trajectory
research. Section III proposes a method of the feature fusion
measurement by using the kernel functions and introduces
abnormal trajectory detection process in sparse subgraph.
In section IV, TADSS algorithm is introduced and analyzed.
Section V describes experimental settings and offers result
analysis. Finally, we conclude our study in section VI.

II. RELATED WORK
There exist many research directions for the trajectory data.
Currently, researchers are focusing on optimizing effective
trajectory indexing structures [11], and developing meth-
ods for trajectory frequent pattern based on grid sequence
[12]–[14], trajectory outlier detection based on trajec-
tory information entropy distribution [15], abnormal trajec-
tory detection for intelligent transport system [16], trajectory
uncertainty management [17], [18], and mining knowledge
from trajectory data [19], [20], etc. Among these domains,
the study of abnormal trajectories is an important research
direction. The main methods pertaining to abnormal trajec-
tory detection mainly include classification based methods,
cluster based methods, density based methods, and statistics
based methods. In this section, we also introduce the existing
abnormal trajectory detection algorithm.

A. DISTANCE BASED TRAJECTORY DETECTION METHOD
The algorithms based on distance measurement are a type of
classical detection method. These algorithmsmainly measure

the similarity of the trajectories by calculating the distance
between two data points, such as the Euclidean distance.

The concept of an abnormal trajectory was originally pro-
posed by Knorr et al. [21] These researchers proposed a
method for the abnormal trajectory detection based on the dis-
tance, and indicated that the trajectory data mainly have four
features: position information (longitude and latitude), mag-
nitude of the velocity, direction of the velocity and timestamp.
In addition, these researchers studied the position properties
of the trajectories and detected the abnormal trajectories by
using traditional positional measures. When considering a
complete trajectory, the disadvantage of this method is that
the abnormal fragments can not be detected because the errors
are evenly distributed to each object.

To overcome this problem, Lee et al. [10] proposed a
segmentation detection framework algorithm named TRAOD.
This algorithm involves two steps: First, the algorithm con-
ducts a coarse grained partitioning for the trajectory data,
and later, coarse grained detection is performed. Second,
the tracjectory data are divided into fine grains to detect
an abnormal trajectory. In this algorithm, the similarity is
determined by considering the Hausdorff distance [27] in
pattern recognition.

The abovementioned abnormal trajectory algorithm based
on distance measurement considers only the position fea-
ture of the trajectory data, and other features of the tra-
jectory data are ignored. To overcome this limitation,
Yuan et al. [22], [28] proposed a trajectory outlier detection
algorithm based on similar structures, which considered other
features of the trajectory data; this method made the results
more objective and more similar to a real situation.

B. DENSITY BASED TRAJECTORY DETECTION METHOD
In the distance based abnormal trajectory algorithms, the user
must specify the global distance threshold which is difficult
to select. The abnormal trajectories can be regarded as global
outliers detected by the global distance threshold. However,
some data sets exhibit features related to the density of
the data objects, which can be regarded as local abnormal
trajectories.

To overcome the shortcomings of the distance based meth-
ods, Liu et al. [23] proposed a density-based trajectory outlier
detection algorithm (DBTOD). The DBTOD employ consid-
ers the concept of the trajectory density of the neighborhood
object distribution. This algorithm considers two aspects: the
distance between the segments, and the number of segments
within a given range. Compared with the distance based algo-
rithm, this method overcomes the problem of the parameter
sensitivity of the distance based methods. To improve the
efficiency of the algorithm, Liu et al. [24] used an R-tree to
store the trajectory data to accelerate the algorithm.

C. CLASSIFICATION BASED TRAJECTORY
DETECTION METHOD
Li et al. [25] proposed an anomaly trajectory detection algo-
rithm, named Roam, based on the classification. This method
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TABLE 1. Comparisons of trajectory detection algorithm.

mainly consists of three parts: First, we divide the trajectory
into a unit and construct a feature space with the relevant
attributes. Second, we determine the hierarchy of features
through the automatic extraction. Third, we build a classifier
to detect the effective region in the feature space.

Roam is a supervised abnormal trajectory detection algo-
rithm, and the trajectory data are difficult to find in the
tagged data. As a result, it is not possible to find the
results of interest to the observer for many common datasets.
Furthermore, it is difficult to manage the local abnormal
data processing of the trajectories.In contrast to the tradi-
tional trajectory measurement methods mentioned above,
Ramirez-Padron R et al. [26] introduced similarity kernels
for the nearest neighbor based on the outlier detection and
introduced a method for the classification of similar kernel
functions. Hamid et al. proposed an elite ensemble frame-
work to manage the two control parameters of the proposed
algorithm [29]. Fernando et al. [30] proposed a novel model
based on deep learning to predict the future motion of a
pedestrian given a short history of their, and their neighbours,
past behaviour.

Table 1 summarizes the other methods associated with the
TADSS: (1) The TADSS uses the kernel function dimension-
ality reduction trajectory data and a measure of the feature
fusion to make the results more relevant to the observers;
(2) the DBOutlier uses the distance to measure the similar
trajectories and subsequently finds the anomalous trajec-
tory data; (3) the TRACLUS involves a clustering algorithm
framework; (4) the TRAOD uses the Hausdorff distance to
measure the similarity of the trajectories and involves a detec-
tion framework for the abnormal trajectories; (5) the TODSS
uses a similar structure to detect the abnormal trajectories and
considers other feature of the trajectories; (6) the DBTOD is a
density based trajectory anomaly detection algorithm, which
enables the observer to better set the threshold; (7) the RTOD
uses the R tree to store the data to make the algorithm more
efficient; (8) Roam detects the anomalous trajectories by
classifying the tagged data objects; (9) the SKSS introduces a
method to detect the abnormal data by using kernel functions.

In summary, the traditional outlier trajectory detection
algorithm directly processes the data position information
and adopts the metric of a single feature of the trajectory
data, ignoring the other feature information inclued in the

trajectory information. However, the trajectory data contain
other features such as the velocity information, and different
observers are interested in different trajectory data charac-
teristics. For example, the vehicle trajectory position infor-
mation is the same on a road segment. However, if the data
exhibit considerably higher values than those of other vehi-
cle trajectories, vehicle overspeeding or emergency events
(involving fire vehicles, ambulance vehicles, etc.)may be
occurring. Such information cannot be detected if only one
feature is measured from the location information. Abnormal
trajectory algorithms using the entire trajectory data as the
basic unit, have not been extensively relatively studied. Based
on the graph based clustering method, the kernel function can
be used to map the trajectory data to the high dimensional
space to ensure that the data can be linearly divided; subse-
quently, the trajectory data are constructed as an undirected
weighted graph. The kernel function is used to measure the
similarity between the nodes in the graph, and the subgraph
obtained by the graph clustering is processed through spectral
clustering. Finally, the anomalous trajectory is searched in
the subgraph. The trajectory data have a more uncertain
distribution, and thus, we use the spectral clustering to obtain
better clustering results.

In this paper, the trajectory data are mapped into a graph
model, and the trajectory anomaly detection process is illus-
trated in Fig.1. The main process of the trajectory anomaly
detection process is divided into three parts: In the first part,
we use the corresponding kernel function method to measure
the similarity of the trajectory data in terms of three features;
in the second part, we assign different weights to the metrics
of the corresponding features and add them to obtain the
similarity measure of the feature fusion. In the third part,
we divide the graph model into subgraphs through spectral
clustering and search the subgraphs for abnormal data.

Table 2 lists the major notations used throughout this
paper.

III. MULTI FEATURE FUSION TRAJECTORY DATA
METRIC AND ANOMALY DETECTION
In this section, we map the trajectory data into an undirected
graphmodel. Each trajectory is treated as a vertex in the graph
model, which means that we consider a trajectory data as an
object, and the similarity measure of different trajectories is
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FIGURE 1. The description of the trajectory anomaly detection process.

TABLE 2. Symbol and notation.

represented by the weight value between the vertices. Since
each trajectory is composed of many data points, we need to
reduce the dimensionality of the data to ensure that we can
view a trajectory as an object. In this work, we reduce the
dimensional trajectory data by using kernel functions, which
map the eigenspace of the samples to an eigenspace with
higher dimensions [31]. Consequently, the results showmany
new features that could not be observed before, because the
data are mapped through the kernel functions.

The trajectory data often contain different characteristic
attributes, and the measurement methods of these different
attributes cannot be unified. For example, for the location
characteristic attribute, because the number of points con-
tained in different trajectory data is different, we need to
stretch the data to align the data. For the velocity character-
istic attribute, we need to consider the velocity information
of the trajectory with the position attribute, and we need to
compare the velocity magnitudes and the directions at dif-
ferent positions. Ahmad Nazari1 et al. proposed a weighting
framework to weight up the better clusters (clusters with
higher qualities) [32], and Frouzan Rashidi et al. proposed a
weighted metric in the graph model [33]. In this manner, the
different features can be measured using a weighted fusion
metric.

Since the trajectory data are mapped to a high dimensional
space through the kernel function, it is difficult to distinguish

the distribution of the mapped data. The traditional clustering
algorithms, such as the k-means algorithm, find it difficult
to adapt to this phenomenon. Thus, in this work, we adopt
the spectral clustering method. Compared with the tradi-
tional comparison algorithm, it is better to distinguish, extract
and amplify the useful features through the combination of
the kernel function mapping and spectral clustering. This
approach can obtain the correct clustering results even if
the traditional clustering algorithm cannot obtain satisfactory
results.

A. DESCRIPTION OF THE MULTI FEATURE FUSION
TRAJECTORY AND FEATURE INFORMATION MODEL
In this paper, the trajectory data are mapped into vertices in
the graph, and the trajectory data are formalized as follows:
Definition 1: We define a trajectory data set: X =

{x1, . . . , xk , . . . , xn}T . The trajectory data element xk is an
element composed of nk consecutive points, nk = {sk , vk , ek}.
sk represents the position feature information, vk represents
the speed feature information, and ek represents the time
feature information.
Definition 2: Given N Trajectories, the trajectory data are

mapped into the graph G with N vertices, where G is denoted
as G = (V ,E, ω). V = {v1, v2, . . . , vn} represents the set of
vertices for the trajectories; E = {e1, e2, . . . , en} represent
the edges for the vertices; ω = {ω1, ω2, . . . , ωn} represents
the weight that corresponds to the similarities between two
trajectories.

For the graph model for the trajectory data, the vertex
similarity is measured by the multiple information feature
fusion technique. In this paper, we use a similarity matrix
K (Ti,Tj) to represent the similarity of the vertices in the graph
model. We construct a similarity matrix K , where ω = K ,
which means that each element of K represents the similarity
ω of the vertices in the graph [34]:

K (Ti,Tj) =
m∑
1

αmKm(Ti,Tj) (1)

K (Ti,Tj) = 1, where Ti = 1, 2, . . . ,N and Tj =
1, 2, . . . ,N , which means that a trajectory is most similar to
itself. αm represents preassigned weights, which are used to
reflect the users’ interest in the m dimensional features.
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When considering the similarity of different trajectory
location features, we obtain different trajectory data contain-
ing different numbers of points due to the different object
movements and data collectors, etc. The measurement of
the similarity of different trajectories inevitably leads to the
misalignment of data and unmatched trajectory data with a
different number of points. To solve this phenomenon of data
misalignment, we use the global alignment kernel (GAK ) [35]
to measure the similarity between the different trajectory
data.
Definition 3: We denote the coordinate set of the n − th

trajectory as cn(πm(i)); π (i) represents the i − th point
of the trajectory. c1(πm(i) = {(x1, y1), (x2, y2), . . . , (xi, yi)}
represents the coordinate set of the 1 − th trajectory, and
π1(x) represents x1, which is the x coordinate of the 1 − th
coordinate.

We compare with two time series, (c1(π (i)), c2(π (j))),
which represent the two dimensional coordinates of the two
different trajectories. Because the number of points from
the two sequences is not identical, we adopt the idea of the
DTW : First, we obtain the coordinate points from the two
trajectories and calculate the Euclidean distance between the
two coordinate points by using formula (2). We store the
distance into the matrix d .

d(m1,m2) = dx2 + dy2.
dx = (c1(πm1(x))− c2(πm2(x))),
dy = (c1(πm1(y))− c2(πm2(y))).

(2)

d(i,j) = eij + min(d(i−1,j), d(i,j−1), d(i−1,j−1)) (3)

Second, we use formula (3) to calculate the distance of the
dynamic time warping (DTW) between the two sequences.
Let us assume that ϕ(x, y) is equal to d(x,y), which is the
DTW distance between the two trajectories of d(x,y). Finally,
we build the kernel function using the global alignment
kernel [36]:

Kp(Ti,Tj) = e−ϕ(x,y) (4)

By calculating the position information of the trajectory
data using formula (4), we can effectively solve the prob-
lem of misalignment between the two position information
sequences of the trajectory.

When we deal with the real trajectory data, the velocity of
the trajectory at different positions have different meanings.
For example, the instantaneous velocity of a certain region
is concentrated in a relatively smaller interval, which may
be an intersection or a school road segment. If the direction
is concentrated in a small range of angles, then this section
may prohibit the turnaround, among other phenomena. The
traditional abnormal trajectory algorithms cannot identify an
abnormal instantaneous velocity or direction existing in the
data set because they measure the location feature of the
trajectory data. In addition, the velocity information packet
of the trajectory data contains the magnitude and direction
of the velocity, and the velocity position at this time should
be considered. The traditional methods of measuring the

vector data cannot the process the vector velocity and position
information at the same time. As a result, the spatial pyramid
kernel function method used in image processing is adopted
in this paper to measure the similarity of the velocity features
of the trajectories.

The speed information is gradually divided into differ-
ent orders of magnitude. First, the velocity information is
divided into 2l level region blocks by the position coordinates,
l = 0, 1, . . . , n. The number of direction and speeds values
is counted separately in each area. The speed magnitude and
direction are divided into different regions, and the number of
directional angles and velocity magnitudes having the same
region are counted separately into different histograms hk .
Next, the size of the histogram hk in the same region is
considered to perform similarity matching. Comparing the
two histogram sizes of the two trajectories in this region,
the minimum of the two values is taken as the matching
similarity measure of the portion. Finally, the histograms in
the different regions for the same magnitude are subjected to
an accumulation operation to obtain the similarity measure
under the magnitude.

Ll(hk (Ti), hk (Tj)) = min(hk (Ti), hk (Tj)) (5)

Formula (5) is used for the calculation. The area block
similarity of the 2l+1 level is computed by repeating the above
operation until the area is divided into the expected levels.

Kh(Ti,Tj) =
2∑
i=0

1
2i
(Ll+1 − Ll) (6)

Finally, the spatial pyramid kernel is calculated using for-
mula (6), and we regard the calculated results as the similarity
in the velocity features.

Next, we introduce the method to measure the trajectory
data under the time features. t(0) and t(1) represent the
beginning and end times of the trajectory, respectively. After
determining the difference between these two times, the dif-
ference in the time measurement is compared using formula
(7) to determine t(Ti,Tj). Finally, the radial basis (RBF)
kernel function is used to calculate the measure similarity
through formula (8) to determine Kh(Ti,Tj). Considering the
N trajectory, the parameter β is obtained as 1∑N

0
∑N

0 t(Ti,Tj)
.

t(Ti,Tj) =
1∑
i=0

(tk (i)− tk (j))2 (7)

Kt (Ti,Tj) = e−βt(Ti,Tj) (8)

Different observers may be interested in different aspects
of the same trajectory data set. For example, when a passenger
takes a taxi, he/she is concerned about whether the driver
takes a detour.When private car owners are traveling, they are
concerned about whether the vehicle is overspeeding. In the
current time frame, it is important for emergency vehicles to
avoid congested roads. Therefore, we designed a weighted
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fusion measure to accommodate the different requirements
of the different observers.

K (Ti,Tj)=αpKp(Ti,Tj)+ αhKh(Ti,Tj)+ αtKt (Ti,Tj) (9)

We initialize the values of αp, αh and αt as αp =
Kp
σ (K ) , αh =

Kh
σ (K ) , αt =

Kt
σ (K ) , and these values satisfy the

conditions of formula (10).{
αp + αh + αt = 1, 0≤αp, αh, αt≤1.
σ (K ) = σ (Kp)+σ (Kh)+σ (Kt )

(10)

αp, αh, αt respectively represent the weights of Kp(Ti,Tj),
Kh(Ti,Tj), Kt (Ti,Tj).
For some same trajectory data, different experts pay close

attention to different features. For example, some experts are
only interested in semantic feature of the position, however,
other experts are interested in time feature of trajectory.
In order to suit the demands of various experts, we may
modify the parameter values in formula (9) to highlight the
importance of some trajectory features. If experts pay atten-
tion to a single trajectory feature, we set the weight of this
feature to 1 and theweight of other features to 0. If experts pay
attention to multiple features, we assign an average weight
to these features where the sum of the weights is 1. For
example, if an observer pays attention to the route of the
taxi, then his/her attention demands for the position feature.
We consider the position measurement weight value as 1,
and the measurement weight values of speed and time as
0 (i.e., αp = 1, αh = 0, and αt = 0). If an observer
pays attention to the abnormality of driving process, he/she
should be concerned about the abnormal trajectories under
the position feature (detour) and speed feature (overspeed-
ing). we consider the measurement weight values of position
and speed as 1, and the time measurement weight value is 0
(i.e., αp = 0.5, αh = 0.5, and αt = 0).
We make w(Ti,Tj) = K (Ti,Tj), w(Ti,Tj) ∈ W . The measure-

ment values of the various trajectory similarities are calcu-
lated and stored in the upper triangular matrix. According
to the fact that the similarity matrix is a symmetry matrix,
we obtain the similarity matrixW as follow:

W =

ω11 . . . ω1n
. . . . . . . . .

ωn1 . . . ωnn

 (11)

B. ABNORMAL DETECTION BASED ON
SPECTRAL CLUSTERING
In this paper, we use spectral clustering method to divide the
node objects in the graph model. The result of the clustering
is that the objects within the same group are similar, and the
objects are not similar if they come from different groups.
In the graph model, the objects in the graph are divided into
several subgraphs through spectral clustering, which makes
the objects remarkably similar if they come from the same
subgraph, whereas the objects in different subgraphs have an
incredibly low similarity.

Definition 4: Given graphs G =< V ,E, ω > and G′ =
< V ′,E ′, ω′ >, if V ′ ⊆ V , E ′ ⊆ E, ω′ ⊆ ω, we consider that
graph G′ is a subgraph of G.
Definition 5: Given a subgraph G′, two different trajec-

tories Ti, Tj, and the weight ω(Ti,Tj) between Ti and Tj,
the weight coefficient is denoted as M (G′), which is a ratio
between the sum of all trajectories weight

∑|E|
h=1 ω(Ti,Tj) and

the number of | E |. Formally, we have

M (G′) =

∑|E|
h=1 ω(Ti,Tj)

| V |
(12)

In particular, when a subgraph contains a single ver-
tex, we consider the weight coefficient of the subgraph
to be 0.
Definition 6 (Sparse Subgraph): Given a weight coeffi-

cient threshold τ , the subgraph G′ and its weight coefficient
M (G′), If M (G′) ≤ τ , then G′ is a sparse subgraph. Please
note that the value of τ is much smaller than the average of
the weight coefficients of all subgraphs.

We also describe the computational process of the data
processing, which consists of five steps:
Step 1: Each trajectory is mapped into a node in the

graph by considering definition 1. We calculate the simi-
larity measure between the different trajectory vertices by
using formula (9) K (Ti,Tj) = αpKp(Ti,Tj)+ αhKh(Ti,Tj)+
αtKt (Ti,Tj).
Step 2: We construct the similarity matrix W , and insert

the similarity measurements of different trajectories into this
matrix; w(Ti,Tj) = K (Ti,Tj),w(Ti,Tj) ∈ W .
Step 3:We build a degree matrix D(i,j) =

∑n
1 w(Ti,Tj). That

is,D(i,j) is expressed as the sum of every row in theW matrix,
and L = D−W is constructed.
Step 4:We solve for the eigenvalue k in thematrix L. In this

paper, the difference between the eigenvalues K = k(i+1)−ki
is calculated. If the values of K(i+1)/Ki and Ki/K(i−1) change
significantly, the number of clusters is selected as K in this
paper.
Step 5: The k-means algorithm is used for the clustering of

the feature vectors, and the trajectory data nodes are divided
into each subgraph G′. Finally, we calculate the weight coef-

ficient for each subgraph G′ by M (G′) =
∑|E|

h=1 ω(Ti,Tj)

|V | , and
output the weight coefficient M (G′) ≤ τ graph of the trajec-
tory data.

IV. ALGORITHM IMPLEMENTATION
In this section, we describe the implementation of the
algorithm. For the abnormal trajectory detection algorithm,
we mainly use a measurement method of the feature fusion
and algorithm for the abnormal trajectory detection of the
sparse subgraph. The method of feature fusion measure-
mentmainly consists of three kernel functions: DTW_Kernel,
Spatial_Pyramid_Kernel and RBF_ Kernel. The detection
algorithm mainly divides the subgraph through spectral clus-
tering and later detects the abnormal trajectories in the sub-
graph by judging that the weight coefficient is less than the
threshold τ .
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Algorithm 1 TADSS:Abnormal Trajectory Detection of
Sparse Subgraph
Input: Trajectory data;
Output: abnormal trajectory;
1: n← input the number of trajectories in the trajectory set

2: for (i = 0; i < n; i++) do
3: Kp← DTW_Kernel;
4: for (l = 0; l < 3; l ++) do
5: L← Spatial_Pyramid_Kernel(l);
6: end for
7: Kh←

∑2
i=0

1
2i (Ll+1(hk (i), hk (j))− Ll(hk (i), hk (i));

8: Kt ← RBF_Kernel;
9: K (Ti,Tj) = αpKp(Ti,Tj)+αhKh(Ti,Tj)+αtKt (Ti,Tj);

10: end for
11: Spectral_Clustering();

12: if
∑|E|

h=1 ω(Ti,Tj)

|V | 6 τ then
13: Outlier ← V;
14: end if
15: return Outlier

The TADSS consists of the following five steps:
Step 1: We measure the similarity of the trajectory data

in terms of the position attribute. The location similarity
measure is calculated by calling theDTWkernel function (see
line 3 in algorithm 1) by using algorithm 2. First, we calculate
the distance between two points on two different trajectories
using the Euclidean distance (see line 4 in algorithm 2) and
store the distance between these two points in the distance
matrix (see line 5 in algorithm 2). Second, we search for the
shortest distance between the two trajectories through the idea
of the dynamic time warping (see line 10 in algorithm 2).
Finally, the kernel function is used to calculate the similarity
of the two trajectories (see line 13 in algorithm 2).
Step 2:We calculate the size of the histogram bin of each

trajectory and calculate the similarity measure of the velocity
(see lines 4-7 in algorithm 1). Since the velocity characteristic
is a vector data, we use the spatial pyramid kernel function to
perform the measurement in algorithm 3. First, we store the
velocity information into a dictionary, where the key value
corresponds to the coordinates of the trajectory, and the value
is the magnitude and direction of the trajectory velocity (see
line 2 in algorithm 3). Second, we divide the coordinate infor-
mation of the trajectories into small grids (see lines 3 and 4 in
algorithm 3) and count the number of velocities and directions
in each grid; this information is stored in histogram bin (see
lines 5–12 in algorithm 3). Third, we compare the velocities
by using the spatial pyramid kernel function and introduce the
specific calculation formula (6) (see line 7 in algorithm 1) in
the detection algorithm.
Step 3: For the time information, we calculate the time

similarity measure of the trajectory by calling the radial basis
kernel function (see line 8 in algorithm 1). We may focus on
the trajectory for a given period of time. We calculate the

Algorithm 2 DTW_Kernel: Kernel Function DTW
Input: position information (longitude and latitude coor-
dinate position of the trajectory);
Output: location similarity measure Kp;
1: n1, n2 ← Number of position information points in tra-

jectory 1 and trajectory 2
2: for (i = 0; i< n1; i++) do
3: for (j = 0; j< n2; j++) do
4: Dis = (x1 − y1)2 + (x2 − y2)2;
5: Di,j← Dis;
6: end for
7: end for
8: for (i = 0; i< n1; i++) do
9: for (j = 0; j< n2; j++) do

10: d(i,j) = eij + min(d(i−1,j), d(i,j−1), d(i−1,j−1));
11: ϕ(n1,n2)← Dis
12: end for
13: end for
14: DTW_Kernel ← e−ϕ(n1,n2) ;
15: return DTW_Kernel

distribution of the trajectory interval by using algorithm 4.
The difference between the beginning and end times of the
trajectory is calculated( see line 3 in algorithm 4), and the sim-
ilarity of the time data is later calculated by using the radial
basis kernel function (see line 4 in algorithm 4).
Step 4: Previously, we introduced the three kernel functions

in the measurement. Next, we introduce the abnormal trajec-
tory detection algorithm. According to definition 1, we treat
the trajectory data set as a graph model. Next, we set the
weights by observing the degree of interest of the observer
and obtain a measure of the feature fusion (see line 9 in
algorithm 1). Finally, we divide the subgraph through spectral
clustering and calculate the weight coefficient of the sub-
graph. Next, we output the abnormal trajectories by judging
if the weight coefficient is less than the threshold τ (see
lines 11–14 in algorithm 1).
Through the above description of the algorithm, it can be

noted that the proposed algorithm shortens the detection time
by using the kernel function method. In addition, if the new
data keep increasing, we only need to add the calculation for
the new data on the basis of the original stored similarity
matrix. Compared with the traditional algorithm, we do not
need to repeat the calculation for the previous data.

V. EXPERIMENTAL RESULTS AND ANALYSIS
This section describes the experimental evaluation of the
TADSS and its comparison with the iBOAT , the TPRO and
the TRAOD; details regarding the iBOAT , the TPRO and the
TRAOD can be found in [10], [13], [14]. For all the reported
results, the experimental environment was as follows:
Intel(R) Core (TM) i5-6640HQ CPU, 8GB. Windows 10.
The TADSS algorithm was coded in Python (python 3.6).
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Algorithm 3 SPM_Kernel:Spatial Pyramid Kernel
Input: speed information of trajectory;
Output: speed similarity measure Kh;
1: n1, n2← speed information of trajectory 1 and trajectory

2;
2: Convert the trajectory data to dic1 and dic2 (with coordi-

nate information as key value, speed size and direction as
value);

3: gird()← Generate a matrix containing the positional
information of the two trajectories on the map coordi-
nates;

4: The gird matrix is divided into several matrix regions
with a size of 2l and the size of the matrix after segmen-
tation is len ∗ wid ;

5: for (i = 0; i< n1; i++) do
6: for (j = 0; j< n2; j++) do
7: Bin1 ←Count the magnitude and direction of the

velocity in area 1;
8: Bin2 ←Count the magnitude and direction of the

velocity in area 2;
9: Sim = min(Bin1,Bin2);

10: Sum+ =Sim;
11: end for
12: end for
13: return Sum

Algorithm 4 RBF_Kernel: Radial Basis Kernel Function
Input: time information of trajectory;
Output: time similarity measure Kt ;
1: t1(start), t1(end)← Start time and end time of trajectory

1
2: t2(start), t2(end)← Start time and end time of trajectory

2
3: sim = ((t1(start)− t2(start))2 + (t1(end)− t2(end))2)

1
2 ;

4: RBF_Kernel = e−sim;
5: return Sim

We test the abnormal detection on a taxi trajectory data set
and hurricane data set.

In this paper, to verify the feasibility of the algorithm,
the data set we used corresponded to February 20, 2007; the
Shanghai taxi trajectory data in the data set contain more
than four thousand taxi vehicle trajectories within 24 h and
the movement trajectory with a vehicle sampling interval
of 1 min. The trajectory data attributes included the ID num-
ber of the vehicle, vehicle longitude dimension information,
timestamp information, and magnitude of the instantaneous
velocity. The vehicle angle is a radian of the vehicle direction
and theNorth direction. The trajectory data sets have different
numbers of trajectories, and each trajectory has approxi-
mately about 1700 to 7000 points.We organized the trajectory
data set in terms of the location of the properties of the latitude
(longitude), speed features (longitude latitude information,

magnitude of the instantaneous velocity, vehicle orientation),
and time (time stamp). Because of the considerable amount
of information, we considered a point every 20 min. Two
experiments for the data sets were performed in this paper,
and each data set contained 82 different paths. The hurri-
cane data of the year 2017–2018 were used for testing and
included 28,798 data points with 1131 trajectories. We tested
the influence of the algorithm parameters and compared the
experiment results with those of the TRAOD.
Throughout our extensive experiments, the parameters

are set as follows. In the accuracy evaluation experiment,
the weight coefficient threshold is set to 0(i.e., τ = 0,),
and the number of cluster is set to 20(i.e., k = 20). In the
efficiency evaluation experiment, we evaluate the impacts
of parameter k(i.e., the number of cluster) on the mining
efficiency of TADSS, so the number of cluster is varied from
20 to 200. Specifically, the various k are 20, 30, 40, 50, 60,
80, 90, 100, 105, 200, respectively.

A. AUTHENTICITY OF THE EXPERIMENTAL RESULTS
To verify the authenticity of the algorithm, we divided the
data set into two sets. We tested the rental vehicle considering
different parameters in the experiment. We set the number of
cluster as 20 and 35 in the first and second data sets, namely,
data sets No.1 and No.2, respectively. Next, we performed
different measurements to note the differences in the results.

Fig.2 shows the abnormal trajectory detection under the
velocity attribute, where αh = 1. We examine five abnormal
trajectories in the No.1 data set and twelve abnormal trajecto-
ries in the No.2 data set. The experimental results are shown
in 2(a) and 2(b), respectively. Compared with the abnormal
trajectories detected under the location attribute, it is difficult
to intuitively see that some trajectories in Fig.2 are abnor-
mal trajectories, which may be caused by the overspeeding.
It is difficult for us to intuitively visualize the anomalies
of these data under the position features of the trajectory.
These anomalies are often overlooked when using the other
trajectory detection algorithms.

In Fig.3, αp = 1. This aspect means that we are testing for
the abnormal trajectories under the location property of the
data set. The location features of the abnormal trajectories
are shown in Fig.3(a), which indicates that there exist eight
abnormal trajectories in the No.1 data set; Fig.3(b) shows
that eleven abnormal trajectories exist in the No.2 data set.
Intuitively, we can see from Fig.3 that the trajectory marked
in red is an obvious abnormal trajectory, which deviates from
most of the trajectories in terms of the position features.
However, in the second data set, there exist two distinct
trajectories that have not been detected. The reason for this
phenomenon may be that the DTW kernel function detects
only the global data, which may ignore some local abnormal
trajectories. When the location feature is adopted to measure
the trajectory data, although we can detect the majority of the
abnormal trajectories, the local abnormal information is often
ignored.
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FIGURE 2. Features of the velocity. (a) corresponds to dataset No.1 and (b) corresponds to dataset No.2. The abnormal trajectories
are represented by red lines and the normal trajectories are represented by blue lines.

FIGURE 3. Features of the position. (a) corresponds to dataset No.1 and (b) corresponds to dataset No.2. The abnormal trajectories are
represented by red lines and the normal trajectories are represented by blue lines.

From these experiments, it is easy to see that different
measurements lead to different results. Different observers
have different interests; therefore, we need a measure that
can be adjusted. Consequently, our approach is an efficient
algorithm for different observers. However, for the location
properties of the trajectories, our method involves a global
comparison. Next, we use a measure of the feature fusion.
In Fig.4, we use ameasure involving the fusion of the location
and velocity features; αp = 0.5, αh = 0.5. Fig.4(a) shows
that eleven abnormal trajectories exist in the No.1 data set;
Fig.4(b) shows that fourteen abnormal trajectories exist in the
No.2 data set. Comparing the results with previous experi-
ments, it can be noted that more significant abnormal data is
observed after the feature fusion.

We extract the local information, as shown in Figs. 3 and 4,
which is reflected in several areas in the upper right of
the figures. We mark these areas with Roman numerals
such as I, II, and III. By observing areas I and II in
Figs.3(a) and 4(a), we can observe that the metric through
feature fusion can help detect more anomalies at the edges.
At areas II and III in Fig.4(b), we can see two notable
anomalous trajectories (i.e., the red lines), which are normal

trajectories (i.e., the blue lines) in Fig.3(b). In contrast, some
trajectories (i.e., the red lines) plotted in area I in Fig.3(b) are
misjudged as anomalous trajectories, which can be detected
correctly, as shown in area I in Fig.4(b). The phenomenon
observed in Figs.3(b) and 4(b) can be attributed to the metrics
after feature fusion being more accurate than the metrics
before the fusion. From the above description, we can see that
the degree of abnormality of areas II and III is significantly
greater than that of area I, which indicates that the fused
anomaly is more meaningful. These abnormal trajectories
may be caused by the wrong location detected using the GPS,
the driver taking a detour or the vehicle overspeeding.

In Fig.4(a), we found not only abnormal trajectories under
the location characteristics but also several new abnormal
phenomena at the edge of the data set. In Fig.4(b), we can
clearly see the two abnormal trajectories, which were not
detected when using the location feature. We find that the
global kernel function may involve losses in the local abnor-
mal trajectory, but this aspect is compensated by detecting
the abnormal velocity. It can be seen that the velocity mea-
surement can also compensate for the deficiency of the DTW
kernel function in the local detection. In addition, several
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FIGURE 4. Fusion features of position and velocity. (a) corresponds to dataset No.1 and (b) corresponds to dataset No.2. The abnormal
trajectories are represented by red lines and the normal trajectories are represented by blue lines.

new abnormal trajectories at the edge of data set are found.
Therefore, the measurement after the feature fusion makes
the experimental results more valuable and proves that our
method is meaningful.

B. INFLUENCE OF THE PARAMETERS
No vector data for the velocity are available in the hurricane
data; therefore, we performed experiments only on the fea-
ture of the position. We detected 1,131 trajectories of the
hurricane. After a considerable amount of implementation,
we found that when we set the threshold value to as 0,
we could obtain some abnormal trajectory data, and these
results revealed some interesting phenomena. When we set
different parameters, we obtained different abnormal trajec-
tories, and the results are presented in the Table 3.

TABLE 3. Number of abnormal trajectories when using different
parameters.

The experimental results are not difficult to interpret:
Whenwe set the threshold value as 0, the number of abnormal
trajectories increases with the number of clusters.The pos-
sible reasons for this phenomenon are as follows: First, for
large trajectory data sets, because there are many subgraphs
with only one vertex, we regard the weight coefficients of
these subgraphs as 0. Second, an increase in the number of
clusters leads to an increase in the number of subgraphs,
and the trajectory data are thus allocated to more subgraphs.

Due to the abovementioned reasons, more sparse subgraphs
are generated because the distribution of the trajectory data is
more dispersed.

Next, we show a part of the results to determine the change
trend of these results. We select the detection results for when
the number of clusters is set as 20, 40, 60 and 75. The results
of these tests are shown in Fig. 5.

Intuitively, as shown in Fig.5, we found that with the
increase in the number of clusters, more abnormal trajec-
tories could be found at the edge of the hurricane data.
In Figs.5(a) and 5(b), these abnormal trajectories appear in
the middle. As we continue to increase the number of classes
in the cluster, the increase in the number of classes leads
to the increase in the number of sparse subgraphs, because
the trajectory data are allocated to more subgraphs. As a
result, as the number of exceptions increases, more abnormal
trajectories are present at the edges in Figs.5(c) and 5(d).

C. ALGORITHM COMPARISON
During the experiment, when the data correspond to 1131 tra-
jectories, the TRAOD algorithm cannot be implemented due
to memory reasons, and the TADSS algorithm can detect the
abnormal trajectories. We performed the testing considering
404 trajectories. The TRAOD algorithm was tested with the
following parameters settings: D = 15.0, P = 1.0, F = 0.1,
WeightPar = 5, WeightAngle = 5, WeightPer = 5. The
parameter settings for the TADSS algorithm are as follows:
k = 35, τ = 0. In the parameter setting of the algorithm,
the TADSS algorithm sets two parameters, and the TRAOD
algorithm sets five parameters. The advantages of the TADSS
algorithm are thus notable.

The results of comparison of the two algorithms are shown
in Fig.6. TRAOD found 30 anomalous trajectories and TADSS
found 41 anomalous trajectories. It can be seen from the
comparison that the anomaly trajectories found by the two
algorithms have many distinct parts. It can be seen from
Fig.6(b) that the TADSS algorithm finds the abnormal data
that are out of position at marks 1 and 2; the most common
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FIGURE 5. Parameter influence experiment. (a) the number of clusters is set as 20; (b) the number of clusters is set as 40; (c) the number of
clusters is set as 60; (d) the number of clusters is set as 75.

FIGURE 6. Comparison experiment between TRAOD algorithm and TADSS algorithm.

trajectory direction is the East West trend at mark 3, whereas
the trend is aNorth South trend, which is an obvious abnormal
data point. In Fig.6(a), TRAOD did not find any anomalous
data at the bottom left of the figure, indicating that the TADSS
algorithm is valid.

We set different parameters in order to test the effect of
the parameters on the efficiency of the algorithm, which are

listed in Table 4, and we also evaluate the efficiency of the
four algorithms in the various trajectory data sets, where the
trajectory numbers are 100, 200 and 403, respectively.

Fig.7. shows that TADSS’s efficiency behaves better than
iBOAT , TPRO and TRAOD with the same number of the tra-
jectory. In algorithm TRAOD, we need set two parameters for
detecting abnormal trajectory. The first parameter is used to
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FIGURE 7. Comparison experiment efficiency between TRAOD algorithm and TADSS algorithm.

TABLE 4. Parameters setting of TADSS, iBOAT, TRPO and TRAOD.

filter the anomalous coarse values; and the second parameter
is utilized for obtaining the anomalous trajectories. In the
coarse-grained detection stage, if a small amount of data is
filtered by the TRAOD, then a large amount of data needs
to be processed in the second stage. Hence, TRAOD’s min-
ing efficiency measured in terms of running time is signifi-
cantly reduced. In algorithms iBOAT and TPRO, an important
parameter(i.e., grid size) needs to be adjusted many times,
which will consume a lot of times during the process of grid
establishment. The size of the grid affect the efficiency of
the algorithm. Here, we set the grid size to the number of
trajectory. In other words, one grid contains one point. On the
contrary, TADSS algorithm can directly measure the global
trajectory data to reduce the number of comparisons and the
running time. The second observation is that the impact of the
different parameters on TADSS’s running time is very weak
when we test the same trajectory data set. Unfortunately,
the impact of various parameters on TRAOD algorithm is
significant. For example, in Fig.7(a), the running times of
TADSS are 29.4s, 28.7s, and 29.4s, respectively, the running
times of iBOAT are 27.3s, 29s, and 24s, respectively; the
running times of TPRO are 89s, 92s, and 85s, respectively;
and the running times of the TRAOD are 54s, 82s, 64s, respec-
tively. Similarly, we test the running times of two algorithms
in the number of 200 and 403 datasets, and the experimental
results plotted in Fig.7(b) and 7(c) are consistent with those
in Fig.7(a). The experimental results are shown as follows:
In a small-scale data set, the running time of TADSS algo-
rithm is close to iBOAT , and less than TPRO and TRAOD
algorithms. As the number of trajectories is a large value,
TADSS has a higher efficiency than iBOAT , TPRO and
TRAOD algorithms.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose an abnormal trajectory data detec-
tion algorithm based on a sparse subgraph. The algorithm
measures trajectory data from the multiple feature, which
effectively solves the problem of single point measurement
in traditional algorithm. Mining data from multiple fea-
tures makes it easier to discover information hidden in large
amounts of trajectory data. Moreover, the TADSS algorithm
can effectively reduce the problem of multi parameter setting
in traditional methods. The observer assigns the different
weights to the different trajectory features according to their
own interests, which makes it easier for the observer to
find the abnormal trajectory under their interested features.
Finally, we test with the real data. The next work is to par-
allelize TADSS, which will greatly improve the efficiency of
the algorithm. The purpose of parallel algorithm is to make
the algorithm can deal with the larger trajectory data set.
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