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ABSTRACT Malicious document files used in targeted attacks often contain a small program called
shellcode. It is often hard to prepare a runnable environment for dynamic analysis of these document files
because they exploit specific vulnerabilities. In these cases, it is necessary to identify the position of the
shellcode in each document file to analyze it. If the exploit code uses executable scripts such as JavaScript
and Flash, it is not so hard to locate the shellcode. On the other hand, it is sometimes almost impossible to
locate the shellcode when it does not contain any JavaScript or Flash but consists of native x86 code only.
Binary fragment classification is often applied to visualize the location of regions of interest, and shellcode
must contain at least a small fragment of x86 native code even if most of it is obfuscated, such as a decoder for
the obfuscated body of the shellcode. In this paper, we propose a novel method, o-glasses, to visualize
the shellcode by recognizing the x86 native code using a specially designed one-dimensional convolutional
neural network (1d-CNN). The fragment size needs to be as small as the minimum size of the x86 native code
in the whole shellcode. Our results show that a 16-instruction-sequence (approximately 48 bytes on average)
is sufficient for the code fragment visualization. Our method, o-glasses (1d-CNN), outperforms other
methods in that it recognizes x86 native code with a surprisingly high F-measure rate (about 99.95%).

INDEX TERMS Binary analysis, CNN, machine learning, MLP, shellcode, visualization.

I. INTRODUCTION
In recent years, targeted attacks have become a major threat.
In a targeted email attack, an email contains a request to open
an attached file or click on a hyperlink in the email body.
If the recipient does so, then some malware is launched. Most
such malware is newly crafted, unknown malware, and is
thus often hard for antivirus scanners to detect. In particu-
lar, malicious document files used in targeted email attacks
often contain an executable file embedded within a decoy
document file: over 60% of the attached files in targeted
email attacks occurring in 2014 were reported to be document
files [27].

The left-hand side of Figure 1 shows a typical structure
for a malicious document file. The malicious document file
consists of four parts: exploit code, shellcode, an executable
file, and a decoy document file. Exploit code is a piece of

The associate editor coordinating the review of this manuscript and

approving it for publication was Donato Impedovo .

FIGURE 1. Typical structure and execution process of a malicious
document.

software, a chunk of data, or a sequence of commands that
takes advantage of a bug or vulnerability of computer soft-
ware, hardware, or something electronic to cause unintended
or unanticipated behavior. Exploit code in the malicious doc-
ument file is a program designed to exploit a word processing
software vulnerability. Exploit code is executed when the
malicious document file is opened, and typically leading to
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the execution of the shellcode. A shellcode is a piece of
code that is executed after exploiting a software vulnerabil-
ity. Modern operating systems implement ASLR (Address
Space Layout Randomization1) and DEP (Data Execution
Prevention2) to protect from execution of such malicious
codes. However, there are already several known exploit
codes (ex. CVE-2014-6362, CVE 2017-11882 and others)
that can avoid such mitigations. The typical shellcode in the
malicious document file is designed to create an executable
file and a decoy document from the remainder of the file and
to launch the executable file. Then, the victim that opened the
malicious document file becomes controllable by attackers.
The right-hand side of Figure 1 shows a typical execution
process of a malicious document file.

To reach attackers’ information, we should not only detect
the malware but also figure out the features of the malware
in detail. Here, we face several problems. First, we should
prepare a runnable condition for the malware in order to
conduct dynamic analysis. When the target file is a malicious
document exploiting specific vulnerabilities, it is often dif-
ficult to prepare the activatable environment (OS versions,
browsing software, language, patches, and so on) because the
conditions are complicatedly intertwined. Therefore, we are
often forced to conduct static analysis. When the target file
is an executable file, it is easy to find the entry point for
analysis. However, when the target file is a document file, it is
not so easy to find the entry point. In this case, we focus on
the shellcode executed after exploit code. When the malware
uses JavaScript or Flash, we can figure out the location of
the shellcode quickly. However, exploit code uses not only
JavaScript and Flash but also font and image files, for exam-
ple, a TIFF image (CVE-2017-5133 [19], [25], CVE-2004-
1308 [16]), a jpeg2000 image (CVE-2016-8332 [18], [24]),
and a TrueType font (CVE-2011-3402 [17]). When searching
for shellcode, it is important to consider various types of
exploit code. Thus, our target is a class ofmalicious document
files that contain x86 native code hidden somewhere in them.

Although attackers tend to use obfuscation to protect their
code, shellcode must contain at least a small fragment of
x86 native code, such as a decoder. Figure 2 shows an exam-
ple of a small decoder containing 17 opcodes in only a 29-
byte sequence. This code was obtained from a malicious
document file with a size of more than 100kB used in a real
attack.

Our challenge, therefore, is finding a small amount of code
like that shown in Figure 2 in often large document files. To
do this, we introduce a novel method, called o-glasses,
to visualize the shellcode by recognizing the x86 native code

1ASLR is a computer security technique involved in preventing exploita-
tion of memory corruption vulnerabilities. ASLR randomly arranges the
address space positions of key data areas of a process, including the base
of the executable and the positions of the stack, heap and libraries.

2DEP is a system-level memory protection feature that is built into the
operating system starting with Windows XP and Windows Server 2003
(cited from https://docs.microsoft.com/en-us/windows/
win32/memory/data-execution-prevention).

FIGURE 2. An example of a small decoder with a 29-byte sequence. It
contains only 17 opcodes, and it decodes the body of the shellcode with
1-byte-key xor encoding. (‘‘0xCC’’ in this example).

using a specially designed one-dimensional convolutional
neural network (1d-CNN).

In summary, the main contributions of our approach are as
follows:

A. EASILY COLLECTIBLE TRAINING DATASETS
One of the most significant problems in using machine learn-
ing is how to prepare the training dataset. Even an excellent
model cannot demonstrate its performancewithout large sam-
ples. However, studies of malware using machine learning
sometimes struggle to collect samples because they need
examples of malware for training. In contrast, our approach
does not need malware for the training dataset. Thus, samples
for learning are easily available to anyone.

B. HIGH RECOGNITION RATE FOR X86 CODE
Conventional signature-based malware detectors do not work
when an unknown code is embedded. On the other hand,
program code is not supposed to be in document files. So,
extracting shellcode from malicious document files becomes
a reality if we can separate program code precisely from nor-
mal byte sequences in document files. The solution provided
in this paper is based on the assumption that shellcode and
general program code have similar distributions of code.

C. VISUAL ANALYSIS FOR SUPPORTING ANALYSTS
Visualizing a binary as an image helps to get an overview of
the file quickly. While some experienced analysts can deduce
the location of the embedded program code from a grayscale
image converted from the binary file, even inexperienced ana-
lysts can achieve similar results using our proposed methods.

II. PRELIMINARIES
The proposed solution lies in the static analysis of files. We
do not take into account the file structure. The only thing
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of importance for us is whether a file fragment is a piece
of x86 code.

A. X86 ARCHITECTURE
The x86 and x86-64 architectures are probably the most
widely used CISC (Complex Instruction-Set Computing)
architectures [8]. Their instruction sets are rich and complex,
and most importantly, they support instructions of varying
length. Instruction lengths range from just one byte (i.e.,
instructions comprising just a one-byte opcode) to 15 bytes.

B. ASSUMPTIONS
We made the following assumptions.
Assumption 1: The distribution of the byte sequence from

x86 code is dissimilar to that from document files.
Assumption 2: The distribution of shellcode is the same as

that of common x86 code.
In other words, we expect to find shellcode by detecting any
x86 code.

We next describe Shannon entropy, conventional visual-
ization methods, and the deep learning models (multi-layer
perceptron (MLP) and CNN) used in the study.

C. SHANNON ENTROPY
We calculate the information entropy of each file fragment
using the Shannon entropy rate given by

H (X ) = −
1
8

255∑
i=0

P(X = i) log2 P(X = i), (1)

where X is a random variable over [0, 255]. The entropy rates
are real numbers between zero and one, where one means the
file fragment is uniformly random.

D. CONVENTIONAL VISUALIZATION METHODS
Visualizing a binary as an image is very helpful for getting
a quick overview of the file. In this section, we describe the
three conventional visualization methods.

1) GRAYSCALE
A technique for representing different files with grayscale
images was introduced by Conti et al. [2] and was applied
to automatic malware classification by Nataraj et al. [20].

2) BIT-IMAGE REPRESENTATION OF A BINARY FILE
Goto [5] implemented the visualization of a binary file as
a ‘‘bit-image’’ in a hex editor named ‘‘Stirling’’ in 1998. In
Stirling, a given binary is read as a vector of 8-bit unsigned
integers and then organized into a two-dimensional array.
This can be visualized as a bit-image in four colors: 0x00
(null) in white, 0x01-0x1F (control characters) in light blue,
0x20-0x7F (ASCII) in red, and 0x80-0xFF in black.

3) STRUCTURAL ENTROPY
Document files contain data of various kinds: metadata, text,
and packed data. All of these file areas differ not only in size

FIGURE 3. Schematic diagrams of a CNN and an MLP.

but also in the level of information entropy.When a document
file may be considered as a system of such elements, then we
can use the term structural entropy for its characterization.
Sorokin [23] built entropy diagrams by using the sliding win-
dow method. He selected 256 bytes for the window (block)
size and 128 bytes for the window (block) shift. In our experi-
ment, we used the same block size but changed the block shift
to 1 byte to provide more detail. We calculate the entropy
level at each offset and visualize the structural entropy as a
grayscale image.

E. MLP
A standard MLP neural network has a three-tier structure:
the input layer, the hidden layers, and the output layer. Every
layer in an MLP consists of nodes fully connected with the
nodes in the adjacent layer.

F. CNN
In our method for recognizing x86 native code, we use a
1d–CNN [14]. In contrast to an MLP, a CNN has limited
connections between each layer (see Figure 3) and nodes in
an intermediate layer receive only input from a localized part
of the previous layer, which is called the receptive field.

Tools based on CNN have now led to great results in
a wide range of vision tasks [13]. Generally, image data
are continuous data. So, when image data are input to a
CNN, high object recognition performance can be obtained
by adjusting CNN’s local receptive field. On the other hand,
program code is classified as discrete data when viewed one
byte at a time. Therefore, when binary data directly converted
into an image are input to a CNN, there is the possibility that
the benefit of the local receptive field cannot be obtained. On
the other hand, program code is a sequence of instructions,
whichmay reduce the variation, so the possibility of receiving
the benefit of CNN’s local receptive field is not entirely
ruled out.

Weight sharing is a mechanism in which all links to nodes
of a local receptive field have the same weight. In the case of
Figure 3, the three blue links have the same weight. Similarly,
the three red links have the same weight. By using the local
receptive field in this way, the result of some input data is
the same as a result of shifted input data. This allows us to
reflect all the data in intermediate layers despite the limited
connectivity to the input.
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FIGURE 4. Illustration of the one-dimensional convolutional architecture.

Several hyperparameters control the size of the output
volume of the convolutional layer (Figure 4): the kernel field
size, depth, stride, and zero-padding. We will ignore zero-
padding because we do not use it. The depth (D) of the
output volume controls the number of neurons in a layer
that connects to the same region of the input volume. The
stride (S) controls how depth columns around the spatial
dimensions (width and height) are allocated.

The spatial size of the output volume can be computed as
a function of the input volumeW , the kernel field size of the
convolutional layer neuronsK , and the stride with which they
are applied S. The formula for calculating how many neurons
‘‘fit’’ in a given volume is given by (W − K )/S + 1.

III. RELATED WORK
Methods of analyzing malware can be divided into two types:
static analysis and dynamic analysis. We focus on static
analysis, as explained previously.

OfficeMalScanner [1] (OMS) is an analysis tool for doc-
ument files. OMS scans entire files for generic shellcode
patterns, an embedded signature of document files, or an
embedded executable file. Although this method incorporates
a fuzzy search, it is easy to avoid detection because the
number of search patterns is small.

MDScan [28] is a standalone malicious document scan-
ner. The tool analyzes PDF document files individually and
detects malicious code. The tool combines static analysis of
the document format representation and dynamic analysis
of the embedded script code. The method focuses only on
JavaScript in PDF files. Hence, the method does not work
well when the exploit code is not written in JavaScript.

There are several approaches to malware detection that
use binary or grayscale images (binary texture analysis [21],
malware images [20], support vector machines [12] and visu-
alization of binary files [7]). These approaches are aimed
toward the detection and the classification of malicious soft-
ware based on image processing techniques. Hence, they do
not focus on finding a small amounts x86 code, such as
shellcode, as we are doing here.

Binary fragment classification can visualize the location
of regions of interest. The fragment size needs as small
as the size of shellcode to find it. Xu et al. [30] treated

TABLE 1. Number of elements in each of our datasets.

FIGURE 5. Method for reproducing our datasets.

a 1024-byte file fragment as a grayscale image and used
an image classification method to classify file fragments.
They focused on file type classification for digital forensics.
It is difficult to make the fragment smaller because the texture
of its grayscale image becomes harder to analyze. Hence, it is
difficult to find shellcode using this method.

IV. TRAINING DATA
We prepared two categories of a dataset for training, both of
which can be gathered easily. One category is labeled ‘‘Pro-
gram’’ and comprises various sets of x86 code taken from
two sources: Github and Ubuntu 16.04. The other category
is called ‘‘Others’’ and consists of various document files
and portions of data extracted from them. The ‘‘Others’’ cat-
egory contains ‘‘CFB,’’‘‘OOXML,’’ and ‘‘PDF’’ files. CFB
stands for compound file binary [15], and it is used as a
container like the FAT16 file system. CFB is used in files
with the extensions ‘‘.doc,’’ ‘‘.xls,’’ ‘‘.ppt,’’ ‘‘.jtd’’ (used by
the ‘‘Ichitaro’’ Japanese word processor), ‘‘.hwp’’ (used by
the ‘‘Araea Han-geul’’ Korean word processor), and so on.
OOXML stands for Office Open XML [11], which is a zip
container in reality. OOXML is used in ‘‘.docx,’’ ‘‘.xlsx,’’ and
‘‘.pptx’’ files. PDF stands for portable document format [10],
which has the extension ‘‘.pdf.’’ For each category and source
or file type, we constructed three types of datasets: the whole
files, 256-byte blocks extracted from these files, and 2048-bit
segments of code extracted from the files. Table 1 shows an
outline of our datasets. How to make our datasets is shown
in Figure 5.
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TABLE 2. The keyword list for each label.

FIGURE 6. Distributions of the Shannon entropy rate for blocks in the two
categories of dataset.

The methods for making each of our types of dataset are as
follows.

A. FILE
The following procedure is conducted for making the ‘‘File’’
dataset in the ‘‘Program:GitHub’’ category.

• Gather various C/C++ source code files from
GitHub [3]

• Compile these files into x86 object files by using
gcc [26]

• Extract only the native code from these object files.

To make the file dataset in the ‘‘Program:Ubuntu’’ cate-
gory, we extracted program code from the elf files in the
‘‘/bin’’ and ‘‘/sbin’’ directories of Ubuntu 16.04 using the
header information.

Finally, to make the file datasets in the ‘‘Others’’ category,
we used a search engine to gather various open-source docu-
ment files. Table 2 shows the keywords used for this search.
We downloaded document files from the beginning of the list
of search results. We then checked these download files using
VirusTotal [29], and we removed suspicious files that were
detected as malware.

B. BLOCK
‘‘Block’’ datasets are made by extracting 256-byte blocks by
random sampling from every file in a ‘‘File’’ dataset. We cal-
culated Shannon entropy rates (Equation (1)) for each block
in the ‘‘Block’’ datasets. The distributions of the entropy rates
for blocks in the ‘‘Program’’ and ‘‘Others’’ categories are
shown in Figure 6.

In Figure 6, ‘‘Program’’ has a peak near 0.7 on the
x-axis. The program binary looks like a uniformly random

FIGURE 7. A sample of disassembling a native-code or CFB file.

byte sequence, but in fact, the machine language instruc-
tion sequence is slightly biased such that it contains many
null bytes for various reasons such as immediate operands.
Therefore, the expected entropy rate of the machine codes is
lower than that of uniformly distributed data such as encryp-
tion/compression. On the other hand, ‘‘Others’’ has two peaks
near 0.3 and 0.9 on the x-axis. The first peak is mainly caused
by plain text strings. The document file contains various plain
text strings. For example, the body text stored in a doc file,
additional information stored before various object bodies in
a PDF file. The second peak is caused by mainly encryp-
tion/compression typically found in images in document files
or zip compressed data in docx containers.

C. CODE
The following procedure is used to make ‘‘Code’’ datasets.
First, we treat the files of a ‘‘File’’ dataset as x86 code
files, whether they come from the ‘‘Program’’ category or
the ‘‘Others ’’ category. Second, we separate these files
into ‘‘instructions’’ (i.e., disassemble the real or pretended
x86 code). Third, we convert each instruction into a 128-bit
fixed-length instruction by padding it with ‘‘0x00.’’ Finally,
packing 16 randomly selected fixed-length instructions into
one set, we make a 2048-bit sequence.

The reason we padded instructions to 128 bits (16 bytes) is
the following. According to the specification of the x86 archi-
tecture [8], 15 bytes is basically the maximum length of one
instruction. Thus we padded each instruction with null bytes
to convert into a fixed length of 16 bytes (one byte larger
than the maximum instruction length) and combined 16 of
these padded instructions to form a code segment that has
a convenient length for our analysis. Although 15 bytes is
the basic maximum length of instruction, longer instructions
could appear in theory (particularly when the file being inter-
preted as x86 code is actually a document file).3 However,
we did not find any instruction longer than 15 bytes in our
experiment. A sample of disassembling x86 native code and
a CFB file is shown in Figure 7. The average of the lengths of
each ‘‘instruction’’ is 2.95 bytes for the‘‘ Program’’ category

3The following sentence appears in the specification.

Exceeding the instruction length limit of 15 bytes (this only can
occur when redundant prefixes are placed before an instruction).
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FIGURE 8. Distributions of instruction lengths in files from the ‘‘Program’’
and ‘‘Others’’ categories. The total number of instructions in each
category is over 600,000.

and 2.38 bytes for the‘‘ Others’’ category. As shown in the
figure, there are various lengths of instruction in x86 CPU
architecture, which appear to have no regular pattern. The
frequencies of each instruction length in files from each
category are shown in Figure 8.

In the case of variable-length instruction set architecture,
we can make a sample not only at actual instruction offsets
but at any point, including operand. This operation derives
from the self-repairing [22] property of the x86 code instruc-
tion set. We can obtain correct disassembled instruction
sequence after very few incorrect disassembled instructions,
even if we disassemble binary sequences at wrong instruction
offsets.

V. PROPOSED VISUALIZATION METHODS
In this section, we propose three visualization meth-
ods: o-glasses (1d-CNN), o-glasses (MLP), and
o-glasses (Entropy), which are based on a 1d-CNN,
anMLP, and entropy, respectively. Thesemethods classify the
input block as either ‘‘Program’’ or ‘‘Others’’ and visualize
the input block as an image in two colors (‘‘Program’’ is
shown in red, ‘‘Others’’ is shown in green). Figure 9 shows
the result of visualizing ‘‘notepad.exe’’ using our methods
and three conventional methods. The details of each method
are as follows.

A. o-glasses (1D-CNN)
First, we consider the o-glasses based on a 1d-CNN.

1) LOCAL RECEPTIVE FIELD FOR THE X86
INSTRUCTION SET
We aim to make our model specialize in recognition of
native program code. If you directly input binary, such as
an x86 instruction set, into a convolutional layer, you cannot
identify single instructions as expected. The input data consist
of instructions serialized as one-dimensional data.We convert
the input data into N-bit fixed-length instructions to obtain

FIGURE 9. The result of visualizing ‘‘notepad.exe.’’ In the case of the
grayscale image, we adopted the conventional conversion techniques [2],
[20] except for fixing a 128-pixel (byte) image width. In the case of the
structural entropy image, we selected 256 bytes for the block size. Our
methods classify the input block as either ‘‘Program’’ (red) or
‘‘Others’’ (green). The block sizes are 256 in o-glasses
(Entropy) and o-glasses (MLP), and 16 instructions
in o-glasses( 1d-CNN). The block shifts are 1 byte in
all the methods.

features of the instructions. Additionally, the kernel field size
and the stride should be adjusted to N . We selected 128
(16 bytes) as the value of N , because this is a convenient
size that is just larger than the maximum size (15 bytes) of
an x86 instruction. In the 1d-CNN, the first layer consists of
local receptive fields against each instruction. Therefore, it is
expected that the next layer obtains the relationships among
instructions.

2) OUR 1D-CNN
In order to compare our 1d-CNN with other methods,
we designed our network as simple as possible. Hyper param-
eters are chosen to produce the best results through several
experiments with different parameters. The whole of our 1d-
CNN is shown in Figure 10. We serialize a set of 16 fixed-
length instructions into an array of 2048 bit values as input
data. The first layer is a convolutional layer (Bit-CNN). We
apply 96 layers of 128 bit-filters to a 2048 input volume.
Choosing a stride of 128, the output volume is 16 × 96.
The second layer is also a convolutional layer (Instruction-
CNN). We apply 256 2-filters to a 16×96 input volume with
a stride of 1. We expect that the second layer will obtain the
features of the relationship between two adjacent instructions.
Our 1d-CNN does not contain any Pooling layer. The 3rd to
the 5th layers are fully connected. Their output volumes are
400, 400, and 2, respectively. We add two batch normaliza-
tion [9] layers before the 1st and 2nd fully connected layers to
speed up and stabilize the learning process. After each layer
except the last one, we apply a ReLU [4] layer. The ReLU
layer applies the function f (u) = max(u, 0) to all of the values
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FIGURE 10. Outline of our 1d-CNN.

in the input volume. The softmax function is used in the final
layer of our network.

yk ≡ z(L)k =
exp(u(L)k )∑K
j=1 exp(u

(L)
j )

, (2)

where K = 24 and k ∈ {1, 2}. Our network is trained under
a cross-entropy regime. The cross-entropy function for one
training sample (xn, tn) for n ∈ [1,N ] is

En(w) = −
K∑
k=1

tnk log ynk (xn,W), (3)

where the input data is xn ∈ {0, 1}2048, the true label is
tn ∈ {0, 1}K , and the number of output units is K . The sum of
the errors En calculated from each training sample is the total
error function E :

E(w) =
N∑
n=1

En(w), (4)

where the number of samples is N .

3) STOCHASTIC GRADIENT DESCENT
We use the stochastic gradient descent (SGD) method to min-
imize the error function in the backpropagation algorithm. To
economize on the computational cost of each iteration, SGD
samples a subset of summand functions at every step. This
is very effective in the case of large-scale machine learning
problems.

The current weightwt is updated towt+1 using the follow-
ing equation.

wt+1
← wt

− η
∂E(w)
∂w

∣∣∣∣
w=wt

, (5)

where η is the learning rate.
A compromise between computing the true gradient and

the gradient of a single example is to compute the gradient

4K = 2 is a special case where a simple sigmoid function can be
applied. Here, we chose Softmax function for ease of extending to multi-
class classification (K > 3). Both are equivalent when K = 2

TABLE 3. Performance of our methods to detect x86 code.

against more than one training example (called a ‘‘mini-
batch’’) at each step.

Em(w) =
1
|Nm|

∑
n∈Nm

En(w), (6)

where Nm is a subset of the index set {1, . . . ,N } such that⊔
m N

m
= {1, . . . ,N } and Nmi ∩ Nmj = ∅ for i 6= j.

B. o-glasses (MLP)
Like the previous method, this method focuses on each block
of the target file. The input data size is one block (a 256-
byte sequence), and the block shift is 1 byte. The network
containing hidden layers and the output layer is the same as
fully connected layers 3–5, shown in Figure 10, for the 1d-
CNN (see Section V-A).

C. o-glasses (Entropy)
The method detects program code based on whether the
entropy of the block lies within a given range. When appro-
priate range criteria are selected, this method achieves rea-
sonable accuracy in the detection of program code.

VI. EVALUATION
A. RECOGNITION PERFORMANCE
We investigated the detection rates of program code by our
methods using the training datasets described in Section IV.
Table 3 shows an overview of the results.
In the comparison of the different algorithms, we use the

F-measure (F1) defined by

F1 =
2 · Precision · Recall
Precision+ Recall

. (7)

In this calculation, precision is given by

Precision =
TP

TP+ FP
, (8)
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TABLE 4. Confusion matrix.

FIGURE 11. Learning curve of o-glasses (MLP).

and recall is given by

Recall =
TP

TP+ FN
, (9)

where TP is the true positive rate, FP is the false positive rate,
FN is the false negative rate, and TN is the true negative rate
(see Table 4).

1) o-glasses (Entropy)
We examined many ranges for the entropy rate-based binary
classifier and chose the range that gives the maximum
F-measure for the training dataset. The F-measure for entropy
in Table 3 was calculated using this ‘‘range’’ parameter (also
shown in the table) against the test dataset.

2) o-glasses (MLP) AND o-glasses (1D-CNN)
To train and test our network, 10-fold cross-validation was
used. After 200 epochs, we calculated the F-measure, the pre-
cision, and the recall of the test data.

Here is our parameter configuration:
• learning rate(η) = 0.001
• mini-batch size = 100
The learning curves of the error are shown in Figs. 11

and 12. The blue areas indicate the range of possible values
of the training errors in the 10-fold cross-validation process.
The solid blue lines indicate the average of the training errors
in the 10-fold cross-validation process. The red areas indicate
the range of possible values of the test errors in the 10-fold
cross-validation process. The solid red lines indicate the aver-
age of the test errors in the 10-fold cross-validation process.
From this figure, it can be seen that our 1d-CNNmethod does
not cause over-fitting.

FIGURE 12. Learning curve of o-glasses (1d-CNN).

B. EXPERIMENTS WITH MALICIOUS DOCUMENTS
In this section, we visualize three malicious document files to
discuss the effectiveness of our methods. Table 5 shows the
overview of the malicious document files. The first malicious
document file contains 127 bytes of x86 code. The second
malicious document file contains 29 bytes of x86 code. The
third malicious document file does not use vulnerabilities,
and does not have any x86 code. These files are referred
to in the following discussion as File 1, File 2, and File 3,
respectively.

The parameters used in these experiments are the same as
those described in the previous section. After 200 epochs of
training using all our datasets, we visualized the three files.

1) FILE 1: CVE-2014-7247
File 1 contains a compressed executable. If we can analyze
the file dynamically, it is easy to output the executable.
However, this file is a.jtd document file for Ichitaro, which
is a Japanese word processing software similar to Microsoft
Word. The old version of Ichitaro had a vulnerability called
CVE-2014-7247, which this document targets. So, we need
the old version for dynamic analysis. When we do not have
the old version, we must find the decoder for the executable
file to output it. Therefore, we need to find the shellcode.

This document file contains 127 bytes of x86 code. The
code is split two sequences; the size of the first sequence is
77bytes, and the size of the second sequence is 50 bytes. The
first sequence is code for jumping to the second sequence.
OMS could detect the entry point of the first sequence code.

Figure 13 shows the result of visualizing File 1. The
o-glasses (1d-CNN)method shows an x86 code sequence
at almost the same location as the first sequence. However,
the method could not locate the second sequence.

2) FILE 2: CVE-2012-0158
File 2 contains an executable file encoded with a 2-byte-
key xor. This document file is a Word (.doc) document
file and attacks a vulnerability called CVE-2012-0158.
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TABLE 5. The overview of the malicious document files and the detection results of shellcode by OfficeMalScanner (OMS.) The rightmost check shows
that OMS could detect the shellcode in File 1. While o-glasses could indicate the locations of the suspected shellcodes in File 1-2 (as demonstrated
in Figures 13-14).

FIGURE 13. Results of visualizing File 1 by various methods.

FIGURE 14. Results of visualizing File 2 using various methods.

This document file contains only 29 bytes of x86 code. This
is the code which we mentioned in the Introduction. OMS
could not detect the shellcode but could detect a decoy doc-
ument embed the document file. Figure 14 shows the results
of visualizing File 2. The o-glasses (1d-CNN) method
could not locate the decoder. However, it found a sequence of
‘‘nop’’ instructions located just before the decoder.

3) FILE 3: VBA SCRIPT DONWLOADER
Unlike the other two files, File 3 does not contain any exe-
cutable file. Additionally, this document file does not attack
any vulnerabilities. Instead, a VBA script in this document
file downloads an executable file from the Internet and runs it.
Therefore, this document file does not contain any x86 code.
Hence, OMS could not detect the shellcode but could detect
a API string which is often used in exploits. As shown in

FIGURE 15. Results of visualizing File 3 by various methods.

Figure 15, o-glasses (1d-CNN) correctly reports no
x86 code in this document, while the other methods
report many false-positive blocks. Thus, human examiners
can confidently focus on the positive blocks reported by
o-glasses (1d-CNN) to search for real shellcode in mali-
cious documents.

VII. DISCUSSION
In this section, we discuss the usage and limitations of our
methods, and areas for future work.

A. EASILY COLLECTIBLE TRAINING DATASETS
One of the most significant problems using machine learning
is how to prepare the training dataset. Even an excellent
model cannot demonstrate its performancewithout large sam-
ples. Many studies of malware using machine learning have
sometimes struggled to collect samples because they need
hard-to-collect malware. In contrast, our approach does not
need malware for the training dataset. Since all we need to
collect is x86 code and normal document files, it is possible
for anyone to create training datasets from easily accessi-
ble sources. Surprisingly, in spite of this fact, our method,
o-glasses(1d-CNN), can find the locations of shellcode
almost exactly. Therefore, our proposed methods suggest a
possible beneficial effect for professional malware analysis.
On the other hand, some shellcode is known to contain
garbage code. We did not consider such cases, and therefore
our dataset needs to be improved.

B. HIGH RECOGNITION RATE FOR X86 CODE
In this paper, we have presented a method of recognizing
program code in document files using a 1d-CNN. Using a
local receptive field and weight sharing, our 1d-CNN can
capture important features of instructions. Thus, even if the
input instruction sequence is shifted, our network can recog-
nize program code with a high degree of success, as measured
by the F-measure rate.

The result of our experiments, inputting 16 opcodes into
our network, is that the F-measure rate reaches about 99.95%.
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While this value seems to be very high at first glance, it means
that, when the target file size is 100 KB, about 50 bytes of
noise is generated in the visualization result. When look-
ing for a small program like shellcode, this noise becomes
an obstacle to analysis. Although our method has already
achieved a real-use level of performance for human analysts,
it still needs further improvement for automatic shellcode
detection.

C. VISUAL ANALYSIS TO SUPPORT ANALYSTS
In this paper, we visualized several malicious document files
and showed that we could find some small programs like
shellcode. Furthermore, in the case of a document file which
does not contain any x86 native code, other methods do not
provide convincing evidence that x86 native code was not
present. But, by using our method, we can be fairly confident
that a file does not contain x86 native code.

However, some malicious document files do not con-
tain x86 native code, but contain interpreted code such as
JavaScript. Our methods do not cover such files. For these
files, it is necessary to analyze the malware by another
method, which may be combined with our o-glasses
(1d-CNN) method.

D. BLACK BOX PROBLEMS
Deep learning has achieved success in various fields, includ-
ing binary analysis. However, many methods containing ours
cannot form the basis of the decision, and they are often
called ‘‘black boxes’’. This problem may become a barrier
to the use of these methods in fields requiring trust. In
such a background, XAI (Explainable Artificial Intelligence)
researches are famous recently. For example, Guo et al. pro-
posed LEMNA [6], which can determine the relevance of
features contributing to a prediction by approximating the
decision function of a neural network. Therefore, a combi-
nation of our method and XAI approaches might defeat the
Black Box problemes. The study of the combination is part
of our future work.

VIII. CONCLUSION
In this paper, we proposed a 1d-CNN for detecting program
code in document files. We observed that a local recep-
tive field for a 128-bit fixed-length instruction is effectively
formed in the first layer of our network. We can balance both
high precision rate and high recall rate for detecting program
code by using our network. Our network can narrow down a
target for human static analysis of unknown malware. Future
work includes increasing the number of malicious document
files used to check the validity of our proposed method.
Another task is to combine our network with various analysis
methods for unknown malware.
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