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ABSTRACT The localization and segmentation of optic disc (OD) in fundus images is a crucial step in the
pipeline for detecting the early onset of retinal diseases, such as macular degeneration, diabetic retinopathy,
glaucoma, etc. In this paper, we are proposing a novel convolutional neural network architecture for the
precise segmentation of the OD in fundus images. We modify the basic architectures of DeepLab v3+
and U-Net models by integrating a novel attention module between the encoder and decoder to attain the
finest accuracy. We also use fully-connected conditional random fields to further boost the performance
of these architectures. We compare the results of our best proposed architecture against other established
architectures for optic disc segmentation on our private dataset, as well as on publicly available datasets,
namely, DRIONS-DB, RIM-ONE v.3, and DRISHTI-GS. The results obtained with the proposed method
outperforms the existing methods in the literature.

INDEX TERMS Optic disc, attention network, conditional random fields, deep learning, biomedical
imaging.

I. INTRODUCTION
Recent advancements in deep learning and computer vision
have shown the effectiveness of Convolutional Neural Net-
works (CNNs) in solving challenging tasks such as image
classification, image segmentation, image captioning, object
detection and tracking, surpassing traditional algorithms, and
achieving state-of-the-art results. The success of CNNs is
attributed to their ability to progressively learn the abstract
representations from the raw input domain, without hand-
labeled features. The hierarchical architecture of CNNs
allows for shallower layers to grasp local information,
whereas deeper layers with larger receptive fields capture the
global information.

Segmentation is a significant medical imaging task, as the
automatic delineation of biological structures of importance
is required for the automatic detection of disease, computer-

The associate editor coordinating the review of this manuscript and

approving it for publication was Jeon Gwanggil .

assisted diagnosis, and interventions. Since a vast majority of
automated diagnostic data consists of 2D images, being able
to perform segmentation by taking the entirety of the image
content at once has an important relevance.

The precise segmentation of OD in fundus images is a
challenging problem primarily owing to the retinal diseases
bring in the pathological changes in the anatomy of the retina.
Diseases like optic disc edema, optic disc hemorrhages, and
glaucoma sometimes make the segmentation of OD very
hard [1]. Also, in many cases, the quality of fundus images
is not good enough to detect the OD precisely.The reasons
like image distortions, noise introduced, and lack of technical
expertise of the technician are the major causes of degraded
fundus image quality. Figure [something] shows three fundus
images having different levels of visibility of the OD with
respect to its appearance.

Accurate labeling in medical images is both an expensive
and time-consuming process. It requires skilled labor, and
being completely error-free isn’t possible in dense labels such
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as segmentation masks. Automating this process is desired
to increase the clinical work efficiency and to help with
diagnostic decisions through faster and automatic extraction
of regions of interest in the images.

Due to the difficulty in obtaining the medical images
and annotating them, medical image datasets often tend to
be quite small in numbers as compared to other computer
vision datasets [2], [3]. The same situation is exaggerated for
segmentation datasets due to more complex annotations as
compared to the classification annotations.

The U-Net [4] is a benchmark architecture for biomedical
image segmentation. It uses an encoder-decoder architec-
ture with skip-connections [5] from the encoder stage to the
corresponding decoder stage. To overcome the scarcity of
large annotated medical datasets, U-Net uses extensive image
augmentation to artificially increase the size of the dataset
with the use of affine transforms and elastic deformations to
mimic the natural biological variations found in biological
structures in the image.

The DeepLabv3+ [6] is an architecture that uses spa-
tial pyramid pooling module along with an encoder-decoder
structure that achieves excellent results in various image
segmentation tasks. The spatial pyramid pooling encodes
multi-scale information at differing rates and effective fields-
of-view. It is an extension of DeepLabv3 [7] with the addition
of a decoder network to refine and sharpen object boundaries
in the final output. The general modules of DeepLabv3+
can be incorporated with various other popular deep learning
networks like ResNet, MobileNet, etc. which act as backbone
networks.

Attention is one of the most influential ideas in the Deep
Learning community. Processing the entire image during the
subsequent training steps is time consuming. Attention mech-
anisms are efficiently employed to focus only on the target
features in the image during training. Attention gates help
the neural network to learn faster by highlighting the salient
features useful for a specific task.

In medical imaging, fully-connected conditional ran-
dom fields (CRFs) are used in image post-processing to
refine the predictions. The usage of CRF results in much
smoother boundaries between different class predictions,
as well as correcting any noisy segmentation outputs of the
CNN.

Although CRFs have been extensively used in various
biomedical image segmentation tasks, recent advances in
deep learning models andmechanisms have made them obso-
lete due to their higher training and inference time, with the
gain in performance being rather minimal.We have compared
our modified U-Net architecture with and without CRFs to
examine both the accuracy of prediction and the complexity
of the model (in terms of time taken).

The contributions of this paper are two-fold. Firstly, with
our novel CNN, we achieve state-of-the-art OD segmentation
results on public fundus datasets (DRIONS-DB, RIME-ONE
v.3, DRISHTI-GS). Secondly, for the segmentation of OD,
we compare the results and performance of our CNN

architecture with other state-of-art CNN architectures which
are commonly used in biomedical image segmentation.

II. RELATED WORK
An automated segmentation of OD is a well-researched prob-
lem due to its very significance in detecting the other anatom-
ical structures present in retinal images. An OD in the color
retinal image has a defined boundary and is the brightest
region within the scope of the image.

Application of CNN has become a standard approach for
the OD segmentation in recent years. In 2014, Fully Convo-
lutional Networks by [8] popularized CNN architectures for
dense predictions without the need for any fully-connected
layers, which allowed segmentation maps to be generated for
image of any size and was also much faster compared to the
patchwise training [9]

Since we use semantic segmentation with CNNs combined
with attention-gates in deep learning for the segmentation of
OD, we are focusing on these related works in the literature
review.

A. SEMANTIC SEGMENTATION USING CNN
Semantic segmentation [10] is one of the vital problem areas
in the field of computer vision. It is a high-level task in
the image processing extensively used for complete scene
understanding. Due to the popularity and the advancements
in deep-learning algorithms in recent years, most of the
semantic segmentation problems are addressed by the deep-
learning architectures [11]. Convolutional Neural Networks
are the leading deep-learning architectures in terms of their
efficiency and accuracy [12].

The first of a kind CNN for the segmentation of OD and
optic cup (OC) in color fundus images is proposed by [13].
The authors used a unique entropy sampling method which
uses entropy filtering to calculate the entropy maps for each
color channel. As a step in the pre-processing, they are con-
verting the RGB fundus images into L * a * b color space
as it is closer to the human perseverance. As analyzing every
pixel in the image is time-consuming, they use entropy maps
to select only the dominant features in each channel and are
used for training their CNN model. The usage of entropy
maps during the training boosts the convolutional filters in
their network. As a part of the post-processing, the probability
map produced by the classifier is fed into the Graph Cut
algorithm [14] for smoothing it. A convex haul function
is applied to the smoothened mask to connect the disjoint
points in the OD and OC regions. The authors have come up
with their revised paper [15] explaining in detail about the
ensemble learning approach followed by their CNN to boost
the learning of filters.

The transfer learning technique was utilized by authors
in [16] with pre-trained VGG [17] network for the image
classification. In their modified VGG network, the fully
connected layers at the end are removed, and only the pre-
trained convolutional layers are retained for the generation of
segmentation mask. To deal with the feature maps of different
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size produced by the convolutional layers, they are using the
inception architecture of GoogLenet [18]. Their results have
set a new benchmark for OD and optic nerve segmentation in
color fundus images.

The automated, simultaneous segmentation of OD, blood
vessels and fovea using a single 7-layer CNN is proposed
in [19]. The authors have considered a pixel as an effective
point in the fundus image if it lies in any of the three features
to be segmented. The network is trained on DRIVE public
database and evaluated with sensitivity, specificity and over-
lap metrics.

The U-net architecture [4] has been a benchmark model
in the biomedical image segmentation. A modified U-net
architecture is proposed in [20] for the segmentation of
both OD and OC to detect the presence of glaucoma. As a
preprocessing step, the input image is first passed to the
CLAHE [21] method which improves the contrast across the
image. The enhanced image is then passed to the modified
U-Net network. The proposed method has very few trainable
parameters in the network and is very much light-weighted in
terms of memory requirement compared to the original U-Net
model.

The authors of M-Net [22] jointly segment OD and OC
using a four-layered architecture. The authors use the method
given in [23] to detect the OD and its center. The first layer of
the network performs the polar transformation of the fundus
image by considering the center of the OD and sends it to
the second layer which is a modified U-Net network. The sec-
ond layer produces the multi-label prediction maps for OD
and OC regions in the transformed image. The third layer is
a slide-output layer that acts as a classifier and assigns each
output instance to multiple binary labels. The inverse polar
transformation is finally applied to recover the segmentation
map in its original Cartesian form.

The recent work by authors in [24] used full-resolution
residual networks (FRRN) [25] and atrous convolutions [7] in
their deep CNN for the segmentation of OD. They call their
unique network Fine-net. FRRN architectures are memory
intensive and to overcome this, the authors are using atrous
convolutions in FRRN units instead of conventional convolu-
tions. They have assessed their network with five-fold cross-
validation on three commonly used public databases, and the
segmentation result is one of the best compared to the existing
methods.

Another popular architecture for image segmentation is
DeepLabV3+ [6] which uses a atrous spatial pyramid pooling
module along with a decoder module to refine the segmenta-
tion masks along the boundary between objects of different
classes. This achieves accurate segmentation maps, and the
underlying backbone architecture can be changed based on
the trade-off between speed of inference and accuracy.

B. ATTENTION IN DEEP LEARNING
The use of attention, especially soft-attention, has shown
great promise in the field of deep learning. The authors
[26] applied attention network in the domain of NLP for

machine translation to achieve state-of-the-art results in
English-French translation. They used an attention module
in the LSTM encoder-decoder for the alignment between
the English and French words introducing the concept of
trainable soft-attention.

Soft-attention allows a neural network to learn a feature-
selector based on some external gating information or in
contrast; it uses its own feature maps to learn a gating mech-
anism [27]. The benefit of soft-attention lies in its ability
to train the feature selection mechanism in an end-to-end
manner using backpropagation, and without the need for
Monte-Carlo sampling [28] as in the case of hard-attention
mechanism. Soft-attention module is both computationally
and memory efficient compared to a hard-attention module
making it easily integrated with the pre-existing deep learning
models.

Following the success of [26], the authors of [29] utilized
attention in a CNN along with an LSTM encoder-decoder
for improving the accuracy of image captioning. They classi-
fied attention modules into three separate domains: spatial,
channel-wise, and multi-layer attention. They used spatial
and channel-based attention on the feature map of each CNN
layer to create an attention vector. This attention vector is
used to create an ‘‘attended’’ output, which is obtained by
the weighted average of the attention vector and the feature
maps of the same layer. This output is fed as the input to the
next CNN layer.

The spatial and channel-wise attention is used in a residual
network for image classification [30]. In this work, the atten-
tion mechanism is used as a feature selector in the forward
propagation, and as a gradient filter in the backpropagation
for an end-to-end trainingmodel. The attention residual learn-
ing introduced in this work is used to train a very deep
attention network.

Attention module that requires no external gating infor-
mation and which uses its own feature mapped input to
generate a contextual attention vector is called self-attention
module. Self-attention is a very powerful mechanism that
is used as a standalone attention module or in conjunction
with other attention modules to extract the significant fea-
tures during training a deep network. The authors in [31]
have used only the self-attention layers in their network
and excluded the expensive recurrent and convolutional lay-
ers to train their sequence-to-sequence translation model.
The result of their model outperforms traditional sequence-
to-sequence models in different translation tasks. In the
field of medical image segmentation, self-attention is used
to capture contextual information across multi-scales with-
out the need for explicit multi-scale training. The better
contextual information allows the network to better corre-
late the features of interest from local-level to the global
level.

III. METHODOLOGY
In this section, we will outline our architecture, dataset, and
training procedure in detail.
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FIGURE 1. Modified U-Net architecture.

A. ARCHITECTURE
In the field of semantic segmentation in recent days, a pop-
ular class of deep learning architecture used is the encoder-
decoder network. The encoder maps from the image space to
a smaller latent space with convolutions, activation functions,
and pooling layers. The decoder part of the network maps
from this latent space to the label space with transpose con-
volutions, activation functions, and up-scaling layers. We are
modifying the existing U-Net [4] and DeepLabv3+ [6] archi-
tectures for segmenting OD in fundus images. As an improve-
ment to these architectures, we are using conditional random
fields (CRFs) and a novel attention gatingmechanism (AG) to

boost the segmentation accuracy. The following subsections
give an insight into the custom modifications and enhance-
ment mechanisms applied to these architectures.

1) MODIFIED U-NET
We use five 3× 3 convolutional layers in each of the encoder
and decoder modules. The encoder uses max pooling oper-
ation after each convolutional layer to reduce the size of
the feature map. The decoder uses bi-linear interpolation to
up-sample the feature maps after each convolutional layer.
We also use batch normalization after each convolutional
layer in both encoder and decoder modules. Between each
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FIGURE 2. DeepLabv3+ architecture from [6].

skip connection from the encoder to the decoder, we replace
the conventional concat operator with our proposed atten-
tion gate. Fig. 1 shows the proposed modified U-Net
architecture.

2) MODIFIED DeepLabv3+
TheDeepLabv3+ architecture works by using different back-
bone models depending on the computational constraints.
We experiment with DeepLabv3+ as described in [6] with
ResNet backbone and MobileNet backbone. ResNet uses
the residual connections to allow the training of very deep
networks without facing the problem of vanishing-gradients,
and hence allowing for much more robust and expressive
learning leading to many state-of-the-art results in computer
vision benchmarks. MobileNet was designed for efficient
computation, particularly, on mobile devices that use a low
powered processor. It achieves this by replacing regular con-
volutions with depth separable convolution which requires far
fewer FLOPS to compute. In our tests, the MobileNet based
network achieved an inference speed that is 10× faster than
the ResNet based model but with lower accuracy. We follow
the same architecture as specified in [6] which is shown
in Fig.2, but also add the proposed attention gate between
the encoder and decoder modules similar to the previously
described modified U-Net model.

For both modified U-Net and modified DeepLabv3+
architectures, we use Leaky ReLU as the activation function
with α set to 0.1 to prevent the problem of dead neurons [33].
The final output of both these networks is passed through the
sigmoid activation function σ (x) to scale the network output

between (0, 1) to represent the probability of a pixel being
part of the OD.

B. ATTENTION GATE
We use both spatial attention and channel-wise attention in
our attention gating module but, instead of applying both
one after the other, we compute each attention feature map
separately and add them together at the end. We use additive
attention because of its superior performance to multiplica-
tive attention. The complete architecture of our proposed
attention gate is shown in Fig. 3

The general formula of additive attention used in spatial
attention and channel-wise attention is given by the equations
(1), (2) and (3) respectively.

a = W T
a (σ1(W

T
x x +W

T
g g+ bg))+ ba (1)

α = σ2(a) (2)

y = α × x (3)

For spatial attention,Wa,Wx andWg in the equation (1) are
1×1 2D conv layers that linearlymap the feature vector xi and
gating vector gi from (F,H ,W ) into matrices of (F ′,H ,W )
where F ′ is the number of intermediate feature channels.
The functions σ1 and σ2 in equation(1) are Leaky ReLU and
sigmoid activation functions respectively. The result is the
spatial attention vector αs which is multiplied element-wise
across the channels of x resulting the output ys. The spatial
attention gate captures the important feature across the spatial
dimensions of the feature vector x using g as the gating vector.
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FIGURE 3. Proposed attention gate.

For channel-wise attention, Wa, Wx and Wg are fully con-
nected dense layers. x and g are first mean pooled resulting in
vectors of size (F), and the dense layers convert the vectors
into (F ′) where F ′ is size of the intermediate vector. The
functions σ1 and σ2 in the equations are the Leaky ReLU
and softmax activation functions respectively. The result is
the channel attention vector αc which is multiplied with x
resulting in the channel attention output yc. The channel
attention gate assigns weights to each channel which capture
different semantic features of the vector.

The final attention output y is a sum of both the spatial ys
and channel yc attention gates.
In the U-Net architecture, x is the feature vector in the

main branch from the decoder and g is the skip-connection
from the encoder. Since the dimensions of x and g are the
same, we need no interpolation for matching the size of αs
and x. In DeepLabv3+, we use the attention gate between the
encoder and decoder, where x is the concated spatially pooled
vector, and g is the intermediate vector. We use bilinear
interpolation to make sure that the dimension of αs and x
match.

After trying out a range of value for F ′, we used
16 channels for both spatial and channel attention. This was a
good trade off between the GPUmemory required for training
the models and the gain in accuracy.

Attention gates also reduce the number of parameters in
the network since the output vector of the attention gate has
the same number of channels as the input, as opposed to the
previous concat operator which doubles the number of layers.
In our implementation of the base MobileNet model we used
the summation operator instead of concat to reduce variables
as much as possible.

C. CONDITIONAL RANDOM FIELDS
CRFs are mostly used on the final segmentation masks gen-
erated by the segmentation networks to refine the boundaries
between different objects. The authors in [7] used a fully-
connected CRF to overcome the limitations of short-range

CRFs to smooth the output masks further rather than recov-
ering detailed local structures.

The CRF model employs the energy function (4) as given
in [7]:

E(x) =
∑
i

θi(xi)+
∑
ij

θij(xi, xj) (4)

where xi is the label for ith pixel. The unary potential is given
by: θi(xi) = − logP(xi), where P(xi) is the label assignment
probability. The pairwise potential θij(xi, xj) has a form that
allows for efficient inference as in [7], [34], which take
probability values (Grayscale values) of the pixels as well
as their positions into the consideration. E(x) forces pixels
with similar position and color to have similar labels while
ensuring that spatial proximity is considered for smoothness.

However, the need for CRFs in OD segmentation is not
very necessary due to two reasons. Firstly, the ground truth
masks are often smooth with little to no sharp deforma-
tion; secondly, our proposed networks capture the boundary
between the OD and the retinal background quite distinctly,
hence further minimizing the need for the CRFs.We nonethe-
less report the segmentation result using CRFs in the post-
processing step.

To reduce computational load, we resize the prediction of
the network from 720× 576 to 180× 144 and then feed it to
the CRF during training and inference.

D. DATASET
We have trained both the proposed networks on our private,
labeled dataset consisting of 300 fundus images with a res-
olution of 720 × 576. The boundary of OD is labeled by an
expert for 3 different times for each image and then averaged
to get the ground truth.

Fig. 4 shows few samples from our private dataset with
some illustrated labels for better visualization.

The dataset is split into 250 images for training, and
50 for testing. Since the dataset is so small, and convolu-
tional networks require thousands of samples to converge
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FIGURE 4. Sample images and labels form our private dataset.

successfully without overfitting, we make use of intense
data-augmentation to increase the size of the training set
artificially.

The following data augmentation techniques are used:

• Horizontal flips
• Random rotation between −10◦ to +10◦

• Random perturbation to the contrast of the image
• Random perturbation to the color of the image

All augmentations are applied during run-time for training
of networks. The images are also divided by 255, to normalize
the network’s input.

Random elastic affine deformations of the images is a key
concept used to train a segmentation network with very few
labelled images. We generate displacement vectors on a 3×3
grid from a Gaussian distribution with a standard deviation
of 10 pixels. The displacement vectors are used for smooth
deformations with bi-cubic interpolation for calculating per-
pixels displacements.

E. LOSS FUNCTION
The output mask generated by the network has a size of 720×
576, with each pixel value ranging between 0 to 1, which is
the probability of that pixel lying in the OD. During training,
the probabilistic output mask ŷ is compared with the ground
label y for the loss calculation.

Since the output and the ground truth are probabilities of
having or not having an OD, wemay use binary cross-entropy

loss function during the network training given in (5).

LBCE = −y log(ŷ)− (1− y) log(1− ŷ) (5)

However, LBCE only acts as a proxy to the true objec-
tive that we’re trying to optimize for, i.e., mean-IoU score.
To overcome this problem with LBCE , a soft-dice loss func-
tion [35] given by (6) can be used to train the networkwhich is
quite similar to the Sorensen-Dice coefficient [36] extended
to work for non-binary vectors.

LDICE = 1− 2
|yŷ|

y2 + ŷ2
(6)

Using LDICE also takes care of the class-imbalance prob-
lem, but the gradients when using LDICE are more complex
compared to using LBCE . This leads to unstable training,
which may not converge smoothly.

To train the network, we use a combined loss function
Lcomb that is a weighted sum of LBCE and LDICE as given
in (7).

Lcomb = αLDICE + (1− α)LBCE (7)

where α = 0.3 gives us the best results.

F. TRAINING
For optimization, we used Adam with an initial learning rate
of 10−2 and a momentum of 0.9. The higher than usual
learning rate is due to the high batch size afforded by using a
Google Cloud TPU.We used a batch size of 256 for the U-Net
based networks, and 128 for DeepLab-v3+ based networks.

Since the dataset is small, apart from batch normalization,
we also use L2 regularization (8) to prevent overfitting:

Lfinal = Lcomb + λ‖θ‖2 (8)

where θ is the weight vector of the model, and λ is the
regularization model, set to 10−6.

All hyperparameters are tuned on the validation set using
random grid searches. The model’s parameters are initialized
using the popular Xavier Initialization scheme.

We also tried to use the moving average of the weights
during optimization as the final network weights, but this did
not yield better results.

G. TESTING
The probability output mask ŷ of the network is converted to
a binary mask using Otsu’s method [37].

In traditional binary thresholding, a fixed value is used to
differentiate between the two different class. The value is usu-
ally chosen to be 0.5, where all values less than 0.5 become
0, and all values greater than or equal to 0.5 become 1. This
value is independent of the mask, and remains constant.

In Otsu’s method we exhaustively search for the threshold
value that minimizes the intra-class variance, defined as a
weighted sum of variances of the two classes as given by (9).

σ 2
w(t) = w0(t)σ 2

0 (t)+ w1(t)σ 2
1 (t) (9)
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FIGURE 5. Otsu’s method.

Weights w0 and w1 are the probabilities of the two classes
separated by a threshold t , and σ 2

0 and σ 2
1 are the variances of

these two classes.
In Fig. 5, we can see the predicted mask before and after

applying Otsu’s method.
The performance metrics used for the evaluation of seg-

mentation accuracy are the Jaccard Index or mean-IoU (10),
and the Dice coefficient (11).

JC(A,B) =
|A ∩ B|

|A| + |B| − |A ∩ B|
(10)

DC(A,B) =
2|A ∩ B|
|A| + |B|

(11)

where A and B are binary vectors representing the predicted
and ground truth mask, respectively.

H. RADIUS OF OPTIC DISC
Once we obtain the binary segmentation mask of the optic
disc, a beneficial metric to calculate is the diameter of the
optic disc. However, since the optic disc is better represented
as an ellipse instead of a circle, we use the method proposed
in [32] to fit an ellipse to the mask, and report the measure of
semi-major and semi-minor axis lengths in pixels.

IV. RESULTS
We are following a twofold experimentation method to eval-
uate the performance of proposed modified architectures.
Firstly, we use our private dataset to check how these architec-
tures perform on awide range of fundus images with differing
qualities. Secondly, we compare the architecture performing
best on our private dataset with other benchmark methods on
publicly available OD segmentation datasets.

We report both Dice Coefficient and Jacard Index metrics
for parity between other works. All results are averaged over
5 runs to ensure reproducibility. We also report the time taken
for inference on a GTX 1080Ti GPU system.

A. COMPARISON OF PROPOSED ARCHITECTURES ON
THE PRIVATE DATASET
Table 1 shows the performance of our proposed architectures
on our private dataset. As mentioned previously, the use
of CRF added a very little boost in performance, and they
are also significantly slower at inference due to the extra

TABLE 1. Proposed methods on our private dataset.

TABLE 2. Drishti-GS.

TABLE 3. RIM-ONEv3.

TABLE 4. DRIONS-DB.

optimization step of minimizing the energy function of the
fully-connected CRF. Table 5 shows the outputs of various
models on selected images from our private test set. The
segmentation of OD in Image 4 is a failure case due to no
clear delineation of the optic disc boundary and its improper
label.

The effect of attention gates (AG) is more evident in
the case of U-Net as opposed to DeepLabv3+, and this is
due to DeepLabv3+’s spatial pyramid pooling module that
does a great job of capturing multi-scale information and
thus making the attention gating mechanism redundant. The
MobileNet backbone with AG has the fastest inference time
of all the models without sacrificing accuracy too much. This
model would be useful if the model is deployed for auto-
matic segmentation in low powered devices such as mobile
phones. The ResNet backbone with AG achieved the best
OD segmentation accuracy on our private dataset. We select
this modified architecture as our best proposed architecture
(DeepLabV3+ ResNet + AG) for the comparison with other
existing benchmark OD segmentation methods.

To compare the complexity of the various models, we have
also listed the number of trainable weights in each network
in Table 1. The more the number of weights, the longer it
takes to train and for inference. However, a fully deep learning
based model (the ones without CRFs) can be easily GPU
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TABLE 5. Outputs from various models on selected images of private dataset.
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TABLE 6. Visualization of activation maps of intermediate attention gates for the Unet backbone.

accelerated by modern deep learning libraries (TensorFlow,
PyTorch, etc.) but CRFs are not easily GPU accelerated and

are trained using CPU only, and this leads to their slower
performance.
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B. COMPARISON OF BEST ARCHITECTURE WITH
BENCHMARK METHODS ON THE
PUBLIC DATASETS
Table 2, 3 and 4 shows the performance of our best pro-
posed architecture against other benchmark methods for
the OD segmentation on three popular datasets: Drishti-GS,
RIM-ONEv3 and DRIONS-DB.

The proposed architecture performs as well or better than
the existing benchmark methods across the datasets. Some
of the listed works do both optic disc as well as optic cup
segmentation, whereas we only measure the optic disc seg-
mentation accuracy.

V. DISCUSSION AND LIMITATION
To ensure that the attention gates in our network are actu-
ally learning features of the optic disc, we have visualized
the activation maps of the spatial attention branch (αs) as
shown in Table 6. We have used the attention gates of the
U-Net backbone for the result demonstration because of the
reason that U-Net uses the multiple hierarchical attention
gates which better shows the effectiveness of the gating
mechanism. The DeepLabv3+ also exhibits similar attention
activation however, it only has a single attention gate. αs is a
vector of values from [0, 1] so we multiply by 255 to create
a grayscale image. From the table, it is evident that each
successive attention gate more finely centres on and picks up
the bright spots of the image, until it narrows down on the
optic disc region.

The methodology suffers the same drawbacks as most
machine-learning based approaches [40]. If the distribution of
the training data differs from the testing data, then we have
degraded performance. A prominent case that we observed
in testing was when the boundary between the optic disc and
retinal background were not clearly delineated as in Image
4 of Table 5.

VI. CONCLUSION
In this paper, we show that attention mechanisms and CRFs
can be used to boost the performance of deep convolutional
neural network based models for OD segmentation. The pro-
posed architecture is generic and modular; as such, it can
be easily applicable to other biomedical segmentation tasks.
Experimental results have demonstrated that the proposed
network outperforms or matches the existing methods to
achieve state-of-the-art results on publicly available datasets.

In the future, we would like to experiment using vari-
ous gating structures and backbone architectures. We plan
to exploit Deformable convolutions [38], which are now
being more popularly used in encoder-decoder architectures
to dynamically learn the structure of the primary convolution
operator accounting for geometric distortions in the objects
of the image.

After a few more rounds of validation, we would also like
to publicly release our private training dataset to add another
benchmarking dataset for optic disc segmentation.

Fully-connected CRFs result in slow training and infer-
ence, and it would be beneficial to replace it with convolu-
tional CRFs [39] that reformulate the inference in terms of
convolutions, which can be efficiently implemented on GPUs
leading to much faster training and inference.
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