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ABSTRACT This paper presents fixed-time adaptive neural tracking control for a class of uncertain nonlinear
pure-feedback systems. To overcome the design difficulty arising from the nonaffine structure of nonlinear
pure-feedback systems, the mean value theorem is introduced to separate the nonaffine appearance of
nonlinear pure-feedback systems. Radial basis function (RBF) neural networks are employed to approximate
designed unknown functions f̂i(Zi). By combining RBFs and Lyapunov functions, a novel fixed-time
controller is designed, and semiglobal uniform ultimate boundedness of all signals in the closed-loop control
system is guaranteed in a fixed time. Sufficient conditions are given to ensure that the system has semiglobal
fixed-time stability. The main purpose of this paper is to design a controller for an unknown nonlinear pure-
feedback system so that the system output y can track the reference signal yd . The simulation experiments
indicate that the selection of sufficient design parameters makes the tracking error converge on a domain of
the origin. Compared with the existing finite-time control and fixed-time control, the proposed fixed-time
control scheme reduces the size of the tracking error.

INDEX TERMS Adaptive neural network, fixed-time control, nonlinear pure-feedback systems.

I. INTRODUCTION
Compared with general nonlinear systems such as lower-
triangular systems or strict feedback nonlinear systems,
the nonlinear pure-feedback system [1]–[3] is a more general
system better reflecting actual situations. It has thus attracted
considerable attention and been a focus of extensive research
in recent years.

Neural networks have been widely applied in machine
learning, image processing, nonlinear systems, and other
fields since the first neural network model [4] based on
single neuron construction was proposed in the 1940s.
Among such work, the research and application of BP neu-
ral networks and RBF neural networks have significantly
promoted the development of nonlinear systems. In 1995,
Kanellakopoulos and other researchers [5], [6] proposed
backstepping, which has been a powerful method in nonlinear
system research. Backstepping adaptive control and neural
network adaptive control have been rapidly developed and
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applied. Recent research on RBF neural network adaptive
control has attracted considerable attention [7]–[15], and a
method for analyzing the stability of neural network adaptive
control based on the Lyapunov method reported elsewhere
[16]–[18] has been proposed.

In the study of the nonlinear system tracking control, it has
been found that both system stability and system transient
performance should be considered. In recent years, finite-
time stability has been a hot research topic in nonlinear
systems, in which much progress has been made [19]–[24].
Although finite-time control ensures that the system con-
verges within a finite time, the convergence time is generally
related to the system’s initial state. If the initial state devi-
ates from the equilibrium point, the convergence time of the
system will be much longer. To eliminate the dependence of
the convergence time on the initial state, fixed-time control
was proposed [25]–[28]. Polyakov et al. first proposed the
problem of fixed-time control and defined fixed-time sta-
bility [27]. In recent years, fixed-time control has attracted
considerable attention; for example, in the literature [29],
fast fixed-time nonsingular terminal sliding mode control
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has been proposed for the chaos suppression problem in
power systems. In addition, fixed-time adaptive neural net-
work tracking control for a class of uncertain nonlinear sys-
tems has been suggested [30], along with fixed-time tracking
control based on backstepping for strict feedback nonlinear
systems [31]. In the literatures [25]–[31], nonstrict or strict
feedback nonlinear systems have mostly been considered,
which do not solve the problem of fixed-time control for more
general nonlinear systems. Compared with these approaches,
nonlinear pure-feedback systems are more general nonlinear
systems. The purpose of this paper is to solve the problem of
fixed-time control based on nonlinear pure-feedback systems
and present sufficient conditions and design procedures that
ensure semiglobal fixed-time stability.

The main contributions of this paper can be summarized as
follows.

1) Introducing the concept of fixed-time control in non-
linear pure-feedback systems for the first time and
extending the theory of fixed-time control to more gen-
eral systems. Compared with strict or nonstrict feed-
back nonlinear systems reported elsewhere [25]–[31],
the nonlinear pure-feedback system is a more general
nonlinear system.

2) By introducing the RBF neural network and the fixed-
time control theory, a fixed-time control algorithm for
nonlinear pure-feedback systems is designed in this
paper so that the RBF neural network can approximate
the unknown functions and some functions that are
difficult to calculate in the process of designing the
fixed-time controller.

3) To design the virtual controllers αi and the actual con-
troller u, and present sufficient conditions and design
procedures that ensure the semiglobal fixed-time
stable.

The rest of this paper is arranged as follows. In section II,
problem description and preliminaries are presented.
In section III, which is aimed at resolving the problem of
fixed-time tracking control, fixed-time adaptive neural track-
ing control for a class of uncertain nonlinear pure-feedback
systems is proposed by adopting backstepping, RBF neural
network, and Lyapunov function. In section IV, the stability of
the closed-loop system and the semiglobal uniform ultimate
boundedness of all signals in the closed-loop control system
are proven. In section V, the correctness of the proposed con-
trol scheme is proven by simulation studies. The conclusion
of this work is presented in section VI.

II. PROBLEM DESCRIPTION AND PRELIMINARIES
A. PROBLEM STATEMENT
Consider the following nonlinear pure-feedback system:

ẋi(t) = fi(x̄i(t), xi+1(t))
ẋn(t) = fn(x̄n(t), u(t))
y(t) = x1(t)

(1)

where i = 1, . . . , n, x̄i = [x1(t), . . . , xi(t)]T ∈ Ri with
i = 1, . . . , n, u(t) ∈ R, and y(t) ∈ R are system state
variables, system input, and system output ,separately; fi(.)
are unknown smooth nonaffine functions.

Using the mean value theorem [32], we have [33]

fi(x̄i, xi+1) = fi(x̄i, xi0)+ hiµi · (xi+1 − xi0) (2)

fn(x̄n, u) = fn(x̄n, xn0)+ hnµn · (u− xn0) (3)

where hiµi := hi(x̄i, xµi ) = ∂fi(x̄i, xµi )/.∂xµi with
i = 1, 2, . . . , n, xn+1 = u, xµi = µixi+1 + (1 − µi)xi0,
0 < µi < 1, and xi0 are known at a given time t0.
Then, system (1) can be rewritten as

ẋi = fi(x̄i, xi0)+ hiµi · (xi+1 − xi0)
ẋn = fn(x̄n, xn0)+ hnµn · (u− xn0)
y = x1

(4)

It can be seen from system (4) that the mean value theorem
separates x̄i and xi+1. It also separates system state variable
x̄n and system control input u for the controller whose design
is presented in the next part of this paper.

The main purpose of this paper is to design fixed-time
adaptive neural tracking control for a class of unknown non-
linear pure-feedback systems, so that the system output y can
track the reference signal yd , and all signals in the closed-loop
system are uniform and ultimately bounded. For this purpose,
the vector functions are defined as ȳd,i = [yd , y

(1)
d , . . . , y

(i)
d ]T ,

i = 1, . . . , n, where y(i)d is the ith derivative.
Assumption 1 [33]: Unknown smooth nonlinear functions

hi(.) are bounded, and there are known positive constants, b
and c, that satisfy 0 < b ≤ |hi(.)| < c < ∞, ∀(x̄i, xi+1) ∈
Ri × R. Without loss of generality, we assume 0 < b ≤ hi(.),
i = 1, . . . , n.
Assumption 2 [33]: The reference signal vector functions

ȳdi are known, continuous, and bounded, ȳdi ∈ �di ⊂Ri+1

with �di being known compact sets, i = 1, . . . , n.

B. FIXED-TIME
Definition 1 [30]: Consider the following nonlinear system:

ẋ(t) = f (x(t)) (5)

where x(t) ∈ Rn is a system variable, and f (x(t)) is a
smooth nonlinear function. Assuming that system (5) satisfies
stability under Lyapunov meaning, for any initial condition
x(0) ∈ �, the solution of system converges on � in a finite
time Ts, that is, the finite convergence time Ts ≤ Tmax
is bounded, where Tmax represents the upper bound of the
convergence time.
Lemma 1 [34]: Consider the system (5). If there are design

parameters φ1 > 0, φ2 > 0, α ∈ (1,+∞), and β ∈ (0, 1) to
make

V̇ (x) ≤ −φ1V α(x)− φ2V β (x) (6)

where V (x) is a continuous differentiable positive definite
function, then system (5) is global fixed-time stable, and the
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TABLE 1. Sufficient conditions and convergence time for finite-time and
fixed-time stability.

fixed convergence time satisfies

T ≤ Tmax :=
1

φ1(α − 1)
+

1
φ2(1− β)

. (7)

The advantage of the fixed-time control over the finite-time
control is that the upper bound of the convergence time of
fixed time has nothing to do with the initial conditions, only
with the design parameters. Table 1 shows the convergence
time of fixed-time control and finite-time control.

It can be seen from Table 1 that the convergence time of the
finite-time control is related to the initial state V (x(0)), while
the convergence time of the fixed-time control is only related
to the design parameters.
Lemma 2 [30]: If there are some design parameters φ1 > 0,

φ2 > 0, α ∈ (1,∞), β ∈ (0, 1),τ ∈ (0,∞), and $ ∈ (0, 1)
such that

V̇ (x) ≤ −φ1V α(x)− φ2V β (x)+ τ. (8)

then the trajectory of this system (5) is practical fixed-time
stable and the fixed time T can be estimated by

T ≤ Tmax :=
1

φ1$ (α − 1)
+

1
φ2$ (1− β)

. (9)

The residual set of the solution of system ẋ = f (x) is given
by

x ∈ {V (x) ≤ min{(
τ

(1−$ )φ1
)
1
α , (

τ

(1−$ )φ2
)
1
β }}. (10)

Lemma 3 [35]: Let x1, x2, . . . , xn ≥ 0. Then
n∑
i=1

xρi ≥

(
n∑
i=1

xi

)ρ
, if 0 < ρ ≤ 1. (11)

n∑
i=1

xρi ≥ n1−ρ
(

n∑
i=1

xi

)ρ
, if 1 < ρ ≤ ∞. (12)

Lemma 4 [36]: For x ∈ R and any positive constant κ ,
satisfying

0 ≤ |x| < κ +
x2

√
x2 + κ2

. (13)

Lemma 5: For y ≥ x > 0, x, y ∈ R and any positive
constant χ , then the following is satisfied

y
√
y+ χ

≥
x

√
x + χ

. (14)

Proof:
y

√
y+ χ

−
x

√
x + χ

=
y+ χ
√
y+ χ

−
x + χ
√
x + χ

−
χ

√
y+ χ

+
χ

√
x + χ

= (
√
y+ χ −

√
x + χ )+ (

χ
√
x + χ

−
χ

√
y+ x

)

≥ 0.

C. GAUSSIAN RADIAL BASIS NETWORKS
An RBF neural network [37], [38] is applied in this paper to
approximate arbitrary continuous function. Themathematical
expression of the RBF neural network is as follows:

ϕ̂ = W T S(Z ) (15)

where W = [w1,w2, · · ·,wl]T ∈ Rl represents weight
vector, l > 1 is the node number, Z ∈ �Z ⊂

Rq is input vector, q is input dimension, S(Z ) =

[s1(Z ), s2(Z ), . . . , sl(Z )]T ∈ Rl is basis vector function, si(Z )
is the output of the ith node, and the selection principle
of si(Z ) is as described in the literature [39]. Generally,
the selected basis functions si(Z ) are the following Gauss
functions:

si(Z ) = exp(
−(Z − ξi)T (Z − ξi)

r
), i = 1, . . . , l (16)

where r is the width of the basis function, and ξi =

[ξi1, ξi2, · · · , ξiq]T is the center of the basis function.
Selecting sufficient node number l, the RBF neural net-

work can approximate arbitrary continuous function ϕ(Z ) in
compact set �Z ∈ Rq with arbitrary accuracy ε.

ϕ(Z ) = W ∗T S(Z )+ δ(Z ), ∀Z ∈ �Z ∈ Rq (17)

where δ(Z ) is an approximation error and satisfies |δ(Z )| ≤ ε,
and W ∗ is a given ideal constant weight vector. For all Z ∈
�Z , W ∗ is the value of W that makes approximation error
δ(Z ) the smallest, whose definition is

W ∗ = arg min
W∈Rl

sup
Z∈�Z
{|ϕ(Z )− ϕ̂(Z )|}.

In this paper, let θi = max{‖W ∗i ‖
2/b, i = 1, 2, . . . , n},

θ̃i = θi − θ̂i, where θ̂i is the estimation of unknown constant
θi, W ∗i is the ideal weight vector of the RBF neural network
in i(1 ≤ i ≤ n)step, b is the positive design parameter, b is
related to Assumption 1, and ‖·‖ represents the norm.
Assumption 3: There are unknown constants Qi, which

make |θ̃i| ≤ Qi, i = 1, 2, . . . , n.
Lemma 6 [40]: Consider the Gaussian RBF networks (15)

and (16). ‖S(Z )‖ has an upper bound, such that

‖S(Z )‖ ≤
∑∞

k=0
3q(k + 2)q−1e−2p

2k2/r2
:= s

where p = 1/2 (mini 6=j‖ξi−ξj‖).

III. DESIGN OF FIXED-TIME CONTROLLER
In this section, fixed-time adaptive neural tracking control
for a class of unknown nonlinear pure-feedback systems is
designed on the basis of backstepping. The coordinate trans-
formation is as follows:

z1 = x1 − yd , zi = xi − αi−1, i = 2, . . . , n (18)

where αi represents the virtual controller of the ith subsystem.
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An RBF neural network is applied in this paper to approx-
imate unknown functions f̂i(Zi),

f̂i(Zi) = W ∗Ti Si(Zi)+ δi(Zi). (19)

According to Young’s inequality, Lemma 3, and Complete
Square Formula, we have the following inequalities:

ziδi(Zi) ≤ bki3z2i +
ε2i

4bki3
(20)

ziW ∗Ti Si(Zi) ≤
bθi
2η2i

STi (Zi)Si(Zi)z
2
i +

η2i

2
(21)

− bki1((
1
2
z2i )

β
+ (

bθ̃2i
2γ

)β ) ≤ −bki1(
1
2
z2i +

bθ̃2i
2γ

)β

− bki2((
1
2
z2i )

2
+ (

bθ̃2i
2γ

)2) (22)

≤ −bki2(
1
2
z2i +

bθ̃2i
2γ

)2 +
ki2b2θ̃4i
4γ

+
ki2b2z4i
4γ

(23)

where Z1 = [x1, θ̂i, yd , ẏd ] ∈ �Z1 ⊂ R3+1 and Zi =
[x1, x2, . . . , xi, θ̂1, θ̂2, . . . , θ̂i, ȳdi] ∈ �Zi ⊂ R3i+1 with 2 ≤
i ≤ n are input vectors; ηi, ki1, ki2, ki3, and γ are positive
design parameters; Si(Zi) are RBF basis function vectors; and
δi(Zi) are approximation errors and satisfy |δ(Zi)| ≤ εi.
Step 1: According to z1 = x1 − yd and (18), we obtain

ż1 = f1(x̄1, x10)+ h1µ1 (x2 − x10)− ẏd . (24)

Construct the following Lyapunov function as

V1 =
1
2
z21 +

bθ̃21
2γ

. (25)

The time derivative of V1 is

V̇1 = z1f1(x̄1, x10)+ z1h1µ1 (x2 − x10)− z1ẏd −
bθ̃1
˙̂
θ1

γ
. (26)

Substituting z2 = x2 − α1 into (24) yields

V̇1 = z1f1(x̄1, x10)+ z1h1µ1z2 + z1h1µ1α1

− z1h1µ1x10 − z1ẏd −
bθ̃1
˙̂
θ1

γ
. (27)

The virtual controller α1 is designed as

α1 = −k11(
1
2
z21)

β

/z1 − k12(
1
2
z21)

2
/z1

−
θ̂1

2η21
ST1 (Z1)S1(Z1)z1 − k13z1

−
bk12
4γ

z31 + x10 (28)

where k11, k12, k13, and η1 are positive design parameters.
Remark 1: The virtual controllers αi and the actual con-

trollers u designed in [30] and [41]–[43] have similar power
function z2q−1, where the positive constant q meets 0 <

q < 1; when q is not selected properly, singularity will
occur. For example, if q = 1/3, z2q−1 is meaningless at
z = 0; meanwhile, if q = 3/4, z2q−1 is meaningless at

the negative domain. To prevent the controller from being
meaningless in the origin and negative field, we make the
following restrictions on β:

β =
q1
q2

(29)

where β ∈ (0.5, 1), q1 ∈ (0,+∞), q2 ∈ (0,+∞), and q2 is
odd.
Remark 2: In Lemma 1, the stability of the system depends

on the values of the power exponents α and β. In the field of
fixed-time control and finite-time control, there are no rules
for selecting the power exponents α and β, so in order tomake
the system stable, the values of α and β are generally selected
by a cut-and-try method. The experimental results show that
the stability of the system is sensitive to the values of α and β.
Generally speaking, there are two power exponents α and β
in the fixed-time control, while only one power exponent
β exists in the finite-time control, so it is more convenient
to select the power exponent β for the finite-time control.
To solve this problem, this paper fixes the value of power
exponent α and uses Complete Square Formula to make α
equal to 2; so, we only need to consider the influence of the
value of the power exponent β on the system.
Substituting α1 into (27) yields

V̇1 = z1 f̂1(Z1)+ z1h1µ1z2 −
bθ̃1
˙̂
θ1

γ
− bk11(

1
2
z21)

β

− bk12(
1
2
z21)

2
−
bθ̂1
2η21

ST1 (Z1)S1(Z1)z
2
1

− bk13z21 −
b2k12
4γ

z41 (30)

where f̂1(Z1) = f1(x̄1, x10) − ẏd . An RBF neural net-
work (19) is applied to approximate f̂1(Z1) and introduce
inequalities (20) and (21), then (30) can be written as

V̇1 =
bθ1
2η21

ST1 (Z1)S1(Z1)z
2
1 +

η21

2
+

ε21

4bk13

+ z1h1µ1z2 −
bθ̃1
˙̂
θ1

γ
− bk11(

1
2
z21)

β

− bk12(
1
2
z21)

2
−
bθ̂1
2η21

ST1 (Z1)S1(Z1)z
2
1

−
b2k12
4γ

z41. (31)

Adding

−bk11(
bθ̃21
2γ

)β − bk12(
bθ̃21
2γ

)2 + bk11(
bθ̃21
2γ

)β + bk12(
bθ̃21
2γ

)2

to the right of (31) obtains

V̇1 =
bθ1
2η21

ST1 (Z1)S1(Z1)z
2
1 +

η21

2
+

ε21

4bk13

+ z1h1µ1z2 −
bθ̃1
˙̂
θ1

γ
− bk11(

1
2
z21)

β
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− bk12(
1
2
z21)

2
−
bθ̂1
2η21

ST1 (Z1)S1(Z1)z
2
1

− bk11(
bθ̃21
2γ

)β −
b2k12
4γ

z41 − bk12(
bθ̃21
2γ

)2

+ bk11(
bθ̃21
2γ

)β + bk12(
bθ̃21
2γ

)2. (32)

Substituting (22) and (23) into (32) and combining
Assumption 3 yields

V̇1 ≤ −bk11(
1
2
z21 +

bθ̃21
2γ

)β − bk12(
1
2
z21 +

bθ̃21
2γ

)2

+
bθ̃1
γ

(
γ

2η21
ST1 (Z1)S1(Z1)z

2
1 −
˙̂
θ1)

+ z1h1µ1z2 + σ1 + β1 (33)

where σ1 =
η21
2 +

ε21
4bk13

and β1 =
k12b2Q4

1
4γ + bk11(

bQ2
1

2γ )β +

bk12(
bQ2

1
2γ )2.

The adaptive law is designed as

˙̂
θ1 =

γ

2η21
ST1 (Z1)S1(Z1)z

2
1 − λθ̂1 (34)

where λ is a design positive parameter.
Substituting (34) into (33) yields

V̇1 ≤ −bk11(
1
2
z21 +

bθ̃21
2γ

)β − bk12(
1
2
z21 +

bθ̃21
2γ

)2

+ z1h1µ1z2 + C1 (35)

where λbθ̃1θ̂1
γ
≤

λb
γ
(
θ21
2 −

θ̃21
2 ) ≤

λb
2γ θ

2
1 and C1 = α1 + β1 +

λb
2γ θ

2
1 .

Step 2: From z2 = x2 − α1, we obtain

ż2 = f2(x̄2, x20)+ h2µ2 (x3 − x20)− α̇1

where

α̇1 =
∂α1

∂x1
ẋ1 +

∂α1

∂yd
ẏd +

∂α1

∂θ̂1

˙̂
θ1. (36)

Construct the Lyapunov function as

V2 = V1 +
1
2
z22 +

bθ̃22
2γ

.

The derivative of V2 is written as

V̇2 ≤ −bk11(
1
2
z21 +

bθ̃21
2γ

)β − bk12(
1
2
z21 +

bθ̃21
2γ

)2

+ z2 f̂2(Z2)+ z2h2µ2z3 + z2h2µ2α2

− z2h2µ2x20 − z2
∂α1

∂θ̂1

˙̂
θ1 −

bθ̃2˙̂θ2
γ

+ z2M1(Z2)+ C1 (37)

where

f̂2(Z2) = f2(x̄2, x20)−
∂α1

∂x1
f1(x̄1, x10)

−
∂α1

∂yd
ẏd + z1h1µ1 −M1(Z2). (38)

Remark 3: M1(Z2) is a smooth function, being used to
overcome the design difficulty of ˙̂θ1∂α1/∂θ̂1.
Next, use RBF neural network (19) to approximate f̂2(Z2)

and introduce inequalities (20) and (21). (37) can be written
as

V̇2 ≤ −bk11(
1
2
z21 +

bθ̃21
2γ

)β − bk12(
1
2
z21 +

bθ̃21
2γ

)2

+ z2h2µ2z3 +
bθ2
2η22

ST2 (Z2)S2(Z2)z
2
2 + bk23z

2
2

+
ε22

4bk23
− z2

∂α1

∂θ̂1

˙̂
θ1 + z2h2µ2α2 +

η22

2

− z2h2µ2x20 −
bθ̃2
˙̂
θ2

γ
+ z2M1(Z2)+ C1. (39)

The virtual controller α2 is designed as

α2 = −k21(
1
2
z22)

β/z2 − k22(
1
2
z22)

2/z2

−
θ̂2

2η22
ST2 (Z2)S2(Z2)z2 − k23z2

−
bk22
4γ

z32 + x20 (40)

where k21, k22, k23, and η2 are positive design parameters.
The adaptive law is designed as

˙̂
θ2 =

γ

2η22
ST2 (Z2)S2(Z2)z

2
2 − λθ̂2. (41)

Substituting (40) and (41) into (39) yields

V̇2 ≤ −b
2∑
j=1

kj1(
1
2
z2j +

bθ̃2j
2γ

)β

− b
2∑
j=1

kj2(
1
2
z2j +

bθ̃2j
2γ

)2

+

2∑
j=1

Cj + z2h2µ2z3

+ z2(M1(Z2)−
∂α1

∂θ̂1

˙̂
θ1) (42)

where λbθ̃2θ̂2
γ
≤

λb
γ
(
θ22
2 −

θ̃22
2 ) ≤

λb
2γ θ

2
2 andC2 = σ2+β2+

λbθ22
2γ .

It can be seen from (42) that one of the difficulties is how
to design the smooth function M1(Z2), such that

M1(Z2)−
∂α1

∂θ̂1

˙̂
θ1 ≤ 0.

Through Lemma 4, Lemma 5, Lemma 6, and (31),
we obtain

−z2
∂α1

∂θ̂1

˙̂
θ1 ≤ −z2

∂α1

∂θ̂1
(
γ

2η21
ST1 (Z1)S1(Z1)z

2
1 − λθ̂1)

≤

z22(
∂α1
∂θ̂1

)2( γ
2η21

ST1 (Z1)S1(Z1)z
2
1)

2√
z22(

∂α1
∂θ̂1

)2( γ
2η21

ST1 (Z1)S1(Z1)z
2
1)

2 + ζ 22,1
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+ z2
∂α1

∂θ̂1

≤

z22(
∂α1
∂θ̂1

)2( γ
2η21

s2z21)
2√

z22(
∂α1
∂θ̂1

)2( γ
2η21

s2z21)
2 + ζ 22,1

+ z2
∂α1

∂θ̂1
λθ̂1. (43)

Therefore, M1(Z2) can be designed as

M1(Z2) = −
z2(

∂α1
∂θ̂1

)2( γ
2η21

s2z21)
2√

z22(
∂α1
∂θ̂1

)2( γ
2η21

s2z21)
2 + ζ 22,1

− λ
∂α1

∂θ̂1
θ̂1.

(44)

Substituting (44) into (42) yields

V̇2 ≤ −b
2∑
j=1

kj1(
1
2
z2j +

bθ̃2j
2γ

)β

− b
2∑
j=1

kj2(
1
2
z2j +

bθ̃2j
2γ

)2

+

2∑
j=1

Cj.+ z2h2µ2z3. (45)

Step k (3 ≤ k ≤ n− 1) : From zk = xk − αk−1, we have

żk = fk (x̄k , xk0)+ hkµk (xk+1 − xk0)− α̇k−1

where

α̇k−1 =

k−1∑
j=1

∂αk−1

∂xj
ẋj +

∂αk−1

∂ ȳd,k−1
˙̄yd,k−1 +

k−1∑
j=1

∂αk−1

∂θ̂j
θ̂j.

(46)

Constructing the Lyapunov function Vk = Vk + z2k/2 +
bθ̃2k /2γ , we have

V̇k ≤ −b
k−1∑
j=1

kj1(
1
2
z2j +

bθ̃2j
2γ

)β

− b
k−1∑
j=1

kj2(
1
2
z2j +

bθ̃2j
2γ

)

2

+

k−1∑
j=1

Cj + zk f̂k (Zk )

+ zkhkµk zk+1 + zkhkµkαk

− zkhkµk xk0 − zk
k−1∑
j=1

∂αk−1

∂θ̂j

˙̂
θ j

−
bθ̃k
˙̂
θk

γ
+ zkMk−1(Zk ) (47)

where

f̂k (Zk ) = fk (x̄k , xk0)−
k−1∑
j=1

∂αk−1

∂xj
fj(x̄j, xj+1)

−
∂αk−1

∂ ȳd,k−1
˙̄yd,k−1 + zk−1hk−1/µk−1

−Mk−1(Zk ). (48)

The RBF neural network (19) can be used to approximate
f̂k (Zk ) and introduce inequalities (20) and (21). Then (47) can
be written as

V̇k ≤ −b
k−1∑
j=1

kj1(
1
2
z2j +

bθ̃2j
2γ

)β

− b
k−1∑
j=1

kj2(
1
2
z2j +

bθ̃2j
2γ

)2

+

k−1∑
j=1

Cj +
bθk
2η2k

STk (Zk )Sk (Zk )z
2
k

+
η2k

2
+ bkk3z2k +

ε2k

4bkk3
+ zkhkµk zk+1

+ zkhkµkαk − zkhkµk2xk0 − zk
k−1∑
j=1

∂αk−1

∂θ̂j

˙̂
θ j

−
bθ̃k
˙̂
θk

γ
+ zkMk−1(Zk ). (49)

The virtual controller αk is designed as

αk = −kk1(
1
2
z2k )

β

/zk − kk2(
1
2
z2k )

2
/zk

−
θ̂k

2η2k
STk (Zk )Sk (Zk )zk − kk3zk

−
bkk2
4γ

z3k + xk0 (50)

where kk1, kk2, kk3, and ηk are positive design parameters.
The adaptive law is designed as

˙̂
θk =

γ

2η2k
STk (Zk )Sk (Zk )z

2
k − λθ̂k . (51)

Substituting (50) and (51) into (49) yields

V̇k ≤ −b
k∑
j=1

kj1(
1
2
z2j +

bθ̃2j
2γ

)β

− b
k∑
j=1

kj2(
1
2
z2j +

bθ̃2j
2γ

)2

+

k∑
j=1

Cj + zkhkµk zk+1

+ zk (Mk−1(Zk )−
k−1∑
j=1

∂αk−1

∂θ̂j

˙̂
θ j) (52)

28872 VOLUME 8, 2020



C. He et al.: Fixed-Time Adaptive Neural Tracking Control for a Class of Uncertain Nonlinear Pure-Feedback Systems

where

Ck = σk + βk +
λbθ2k
2γ

.

Then, the smooth functionMk−1(Zk ) is designed, such that

Mk−1(Zk )−
k−1∑
j=1

∂αk−1

∂θ̂j

˙̂
θ j ≤ 0.

Through Lemma 4, Lemma 5, Lemma 6, and (51), we have

Mk−1(Zk ) = −
k−1∑
j=1

zk (
∂αk−1

∂θ̂j
)
2
( γ
2η2j

s2z2j )
2

√
z2k (

∂αk−1

∂θ̂j
)
2
( γ
2η2j

s2z2j )
2
+ ς2k,j

− λ

k−1∑
j=1

∂αk−1

∂θ̂j
θ̂j. (53)

Substituting (53) into (52) yields

V̇k ≤ −b
k∑
j=1

kj1(
1
2
z2j +

bθ̃2j
2γ

)β

− b
k∑
j=1

kj2(
1
2
z2j +

bθ̃2j
2γ

)2

+

k∑
j=1

Cj + zkhkµk zk+1. (54)

Step n: From zn = xn − αn−1, we have

żn = fn(x̄n, xn0)+ hnµn (u− xn0)− α̇n−1

where

α̇n−1 =

n−1∑
j=1

∂αn−1

∂xj
ẋj +

∂αn−1

∂ ȳd,n−1
˙̄yd .n−1 +

n−1∑
j=1

∂αn−1

∂θ̂j

˙̂
θ j.

(55)

Constructing the Lyapunov function Vn = Vn + z2n/2 +
bθ̃2n /2γ , we have

V̇n ≤ −b
n−1∑
j=1

kj1(
1
2
z2j +

bθ̃2j
2γ

)β

− b
n−1∑
j=1

kj2(
1
2
z2j +

bθ̃2j
2γ

)

2

+

n−1∑
j=1

Cj + zn f̂n(Zn)

+ znhnµnu− znhnµnxn0

− zn
n−1∑
j=1

∂αn−1

∂θ̂j

˙̂
θ j −

bθ̃n
˙̂
θn

γ

+ znMn−1(Zn) (56)

where

f̂n(Zn) = fn(x̄n, xn0)−
n−1∑
j=1

∂αn−1

∂xj
fj(x̄j, xj+1)

−
∂αn−1

∂ ȳd,n−1
˙̄yd,n−1 + zn−1hn−1µn−1

−Mn−1(Zn). (57)

The RBF neural network (19) is used to approximate f̂n(Zn)
and inequalities (20) and (21) are introduced. Then (56) can
be written as

V̇n ≤ −b
n−1∑
j=1

kj1(
1
2
z2j +

bθ̃2j
2γ

)β

− b
n−1∑
j=1

kj2(
1
2
z2j +

bθ̃2j
2γ

)2

+

n−1∑
j=1

Cj +
bθn
2η2n

STn (Zn)Sn(Zn)z
2
n

+
η2n

2
+ bkn3z2n +

ε2n

4bkn3
+ znhnµnu

− znhnµnxn0 − zn
n−1∑
j=1

∂αn−1

∂θ̂j

˙̂
θ j

−
bθ̃n
˙̂
θn

γ
+ znMn−1(Zn). (58)

The actual controller u is designed as

u = − kn1(
1
2
z2n)

β

/zn − kn2(
1
2
z2n)

2
/zn

−
θ̂n

2η2n
STn (Zn)Sn(Zn)zn

− kn3zn −
bkn2
4γ

z3n + xn0 (59)

where kn1, kn2, kn3, and ηn are positive design parameters.
The adaptive law is designed as

˙̂
θn =

γ

2η2n
STn (Zn)Sn(Zn)z

2
n − λθ̂n. (60)

Substituting (59) and (60) into (58) yields

V̇n ≤ −b
n∑
j=1

kj1(
1
2
z2j +

bθ̃2j
2γ

)β

− b
n∑
j=1

kj2(
1
2
z2j +

bθ̃2j
2γ

)

2

+

n∑
j=1

Cj + zn(Mn−1(Zn)

−

n−1∑
j=1

∂αk−1

∂θ̂j

˙̂
θ j) (61)
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where

Cn = σn + βn +
λbθ2n
2γ

.

The method of processing Mn−1(Zn) is the same
as (43).

Mn−1(Zn) = −
n−1∑
j=1

zn(
∂αn−1

∂θ̂j
)
2
( γ
2η2j

s2z2j )
2

√
z2n(

∂αn−1

∂θ̂j
)
2
( γ
2η2j

s2z2j )
2
+ ς2n,j

− λ

n−1∑
j=1

∂αn−1

∂θ̂j
θ̂j. (62)

Substituting (62) into (61) yields

V̇n ≤ −b
n∑
j=1

kj1(
1
2
z2j +

bθ̃2j
2γ

)β

− b
n∑
j=1

kj2(
1
2
z2j +

bθ̃2j
2γ

)2 + τ (63)

where
∑n

j=1 Cj = τ .
Set φ1 = min(bk12, bk22, . . . , bkn2), φ2 = min(bk11,

bk12, . . . , bkn1), and according to Lemma 3,
we have

−b
n∑
j=1

kj1(
1
2
z2j +

bθ̃2j
2γ

)β ≤ −φ2(
n∑
j=1

(
1
2
z2j +

bθ̃2j
2λ

))

β

(64)

−b
n∑
j=1

kj2(
1
2
z2j +

bθ̃2j
2γ

)2 ≤ −
φ1

n
(
n∑
j=1

(
1
2
z2j +

bθ̃2j
2γ

))

2

. (65)

Substituting (64) and (65) into (63) yields

V̇n ≤ − φ2(
n∑
j=1

(
1
2
z2j +

bθ̃2j
2γ

))

β

−
φ1

n
(
n∑
j=1

(
1
2
z2j +

bθ̃2j
2γ

))

2

+ τ

= −φ2V βn −
φ1

n
V 2
n + τ. (66)

At this point, the design of the controller is
complete.

IV. STABILITY ANALYSIS
Theorem 1: For system (1), if the system satisfies
Assumption 1-3 and adopts the virtual controller (50),
the actual controller (59), and the adaptive law (51),
the semiglobal uniform ultimate boundedness of all signals
in the closed-loop system (1) will be guaranteed in a fixed
time.

According to Lemma 2, proper parameters kj1 > 0, kj2 >
0, kj3 > 0, and Cj > 0, j = 1, . . . , n, are designed so that (63)
satisfies the following situation.

Case 1:
If Vn > (τ/(1− φ)φ2 )β , $ ∈ (0, 1), (63) can be written

as

V̇n ≤ −$φ2V βn −
φ1

n
V 2
n . (67)

The solution of system(1) converges on the following com-
pact set

x ∈ {V (x) ≤ (
τ

(1−$ )φ2
)
1
β }. (68)

Fixed convergence time is

T ≤ Tmax :=
n
φ1
+

4
$φ2

. (69)

Case 2:
If Vn > (τn/(1−$ )ϕ1 )

1/2 , (63) can be written as

V̇n ≤ −φ2V βn −$
φ1

n
V 2
n . (70)

Then, the solution of system (1) converges on the following
compact set

x ∈ {Vn(x) ≤ (
m

(1−$ )φ1
)
1
2 }. (71)

Fixed convergence time is

T ≤ Tmax :=
n

$φ1
+

4
φ2
. (72)

Combining case 1 and case 2, the system’s solution con-
verges on

x ∈ {Vn(x) ≤ min{(
τ

(1−$ )φ2
)
1
β , (

m
(1−$ )φ1

)
1
2 }}. (73)

Fixed convergence time is

Ts ≤ Tmax :=
n

$φ1
+

4
$φ2

. (74)

It can be seen from (67) and (70) that Vn is bounded, so zj
and θ̃j are bounded. As θ̂j = θj − θ̃j, θ̂j are also bounded,
j = 1, . . . , n. As z1 = x1 − yd , z1 and yd are bounded, x1
is bounded. As α1 is the function of z1, yd , ẏd , and θ̂1, α1
is bounded. As z2 = x2 − α1, x2 is bounded. In the same
way, we can deduce that αj−1 and xj, j = 1, .., n are bounded.
Therefore, all signals in the closed-loop system are bounded.
Remark 4: The fixed-time control algorithm for the nonlin-

ear pure-feedback system is different from previous nonlinear
fixed-time control algorithms. The differences are as follows.

1) The unknown nonstrict nonlinear system proposed in
[30] did not solve the nonaffine structure problem
of system input u(t). However, the fixed-time control
algorithm proposed in this paper solves this problem.

2) The structure of some systems is too complex to use
fi(x) directly to design controllers. The RBF neural net-
work is used in this paper to approximate the unknown
functions fi(·), so that there is no need to know the
information of fi(x̄i, xi+1). The avoids difficulties in the
design of controllers resulting from the complex system
structure.
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3) To overcome the difficulties of designing∑k−1
j=1 (∂αk−1/∂θ̂j )

˙̂
θ j, Mk−1(Zk ) are added in this

paper. Designing Mk−1(Zk ) makes
n∑
j=1

∂αn−1

∂θ̂j

˙̂
θ j −Mn−1(Zn) ≤ 0, k = 2, . . . , n.

V. SIMULATION RESULTS
Two simulation examples are studied in this section to verify
the controller designed as described in the above paragraphs.
Example 1: Numerical example.
Consider the following nonlinear pure-feedback system:

ẋ1 = 1−e−x1
1+e−x2

+ x32 + x2e
−1−x21

ẋ2 = x21x
2
2 + 0.15(x21 + x

2
2 )u

3
+ 0.1x31x

2
2u

y = x1

(75)

where x1 and x2 are the state variables, u is the system input,
and y is the system output. Choose the reference signal as
yd = sin(0.5t)+0.5 sin(1.5t). The purpose of this example is
to design the virtual controller, the actual controller, and the
adaptive law so that the system output y tracks the reference
signal yd in a fixed time.
For system (75), the design is as follows:

α1 = −k11(
1
2
z21)

β

/z1 − k12(
1
2
z21)

2
/z1

−
θ̂1

2η21
ST1 (Z1)S1(Z1)z1

− k13z1 −
bk12
4γ

z31 + x10 (76)

u = − k21(
1
2
z22)

β

/z2 − k22(
1
2
z22)

2
/z2

−
θ̂2

2η22
ST2 (Z2)S2(Z2)z2

− k23z2 −
bk22
4γ

z32 + x20 (77)

˙̂
θ1 =

γ

2η21
ST1 (Z1)S1(Z1)z

2
1 − λθ̂1 (78)

˙̂
θ2 =

γ

2η22
ST2 (Z2)S2(Z2)z

2
2 − λθ̂2 (79)

where z1 = x1 − yd , z2 = x2 − α1, Z1 = [x1, θ̂1, yd , ẏd ], and
Z2 = [x1, x2, θ̂1, θ̂2, yd , ẏd , ÿd ], choosing initial conditions as
[x1(0), x2(0)]T = [0.3, 05]T and [θ̂1(0), θ̂2(0)]

T
= [0, 0]T .

Design parameters are chosen as follows: β = 3/4 , k11 =
5,k12 = 5,k13 = 5,k21 = 5, k22 = 5, k23 = 5, γ = 5,
η1 = 0.25, η2 = 0.25, λ = 0.1, b = 2, x10 = 0.2 and
x20 = 0.5. We select a small number of Gauss function
nodes. The width of the RBF neural network is set to 4.
W1S1(Z1) includes seven nodes and W2S2(Z2) includes five
nodes. Gauss function center is set as

ξ1 =


−2 −1.5 −1 0 1 1.5 2
−2 −1.5 −1 0 1 1.5 2
−2 −1.5 −1 0 1 1.5 2
−2 −1.5 −1 0 1 1.5 2



ξ2 =



−2 −1 0 1 2
−2 −1 0 1 2
−2 −1 0 1 2
−3 −2 0 2 3
−3 −2 0 2 3
−3 −2 0 2 3
−3 −2 0 2 3


Figure 1 displays the system output y and the reference

signal yd . It can be seen that the output y can effectively
track the reference signal yd . Figure 2 displays the system
state variables x1 and x2. Figure 3 displays the system actual
controller u. Figure 4 displays the system adaptive laws θ̂1
and θ̂2. Figure 5 displays the error between the system output
y and the reference signal yd .
It can be seen from Figures 1-5 that the system state

variables x1 and x2 are bounded, the actual controller u is
bounded, and the adaptive parameters θ̂1 and θ̂2 are bounded,
so all signals in the closed-loop system (75) are bounded.
Example 2: Physical example.

FIGURE 1. System output y and reference signal yd .

FIGURE 2. State variables x1 and x2.
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FIGURE 3. Actual control u.

FIGURE 4. Adaptive parameters ˆθ1 and ˆθ2.

Consider the following electromechanical system [41]:
ẋ1 = x2
ẋ2 = e21x2x23 + e22 sin x1 + e23x2 − e23x

2
2x

3
3

ẋ3 = e31u+ e32x2 + e33x23 − e33x
2
2 sin x3

y = x1

(80)

where e21 = 1/M , e22 = −N/M , e23 = −B/M , e31 = 1/L,
e32 = −KB/L, and e33 = −R/L. For the descriptions of
M , N , B, L, KB, and R, refer to [44]. The parameters are
chosen as follows: M = 0.0642, N = 1.1408, B = 0.0181,
L = 0.025, KB = 0.9, and R = 5.0. Choose the reference
signal as yd = sin(0.5t) + 0.5 sin(t). The purpose of this
example is to design a fixed-time controller to make the
system output y track the reference signal yd in a fixed time.
For system (80), the design is as follows:

˙̂
θ2 =

γ

2η22
ST2 (Z2)S2(Z2)z

2
2 − λθ̂2 (81)

˙̂
θ3 =

γ

2η23
ST3 (Z3)S3(Z3)z

2
3 − λθ̂3 (82)

FIGURE 5. Tracking error y− yd .

FIGURE 6. System output y and reference signal yd .

α1 = −k11(
1
2
z21)

β

/z1 − k12(
1
2
z21)

2
/z1 −

bk12
4γ

z31 (83)

α2 = − k21(
1
2
z22)

β

/z2 − k22(
1
2
z22)

2
/z2

−
θ̂2

2η22
ST2 (Z2)S2(Z2)z2

− k23z2 −
bk22
4γ

z32 + x20 (84)

u = −k31(
1
2
z23)

β

/z3 − k32(
1
2
z23)

2
/z3

−
θ̂3

2η23
ST3 (Z3)S3(Z3)z3

− k33z3 −
bk32
4γ

z33 + x30 (85)

where zi = xi − αi−1 with i = 1, 2, 3.
To show the effectiveness of our designed fixed-time con-

troller, the controller is compared with previously designed
the fixed-time controller [30] and the traditional finite-time
controller [41].We apply the three controllers separately
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FIGURE 7. State variables x1, x2 and x3.

FIGURE 8. Actual control u.

to an electromechanical system (80). For fair comparison,
we choose the same design parameters as in [41], as follows:
k11 = k12 = 10, k21 = k22 = 10, k31 = k32 = 10,
k23 = k33 = 60, x10 = x20 = x30 = 0.1, and b = 10. The ini-
tial conditions are [x1(0), x2(0), x3(0)]T = [0.15, 0.15, .15]T

and [θ̂2(0), θ̂3(0)] = [0.3, 0.3]T . The design of RBF neural
network is the same as in [41].
Remark 5: The design parameters of the controller

designed in this paper increase k12, k22, k23, k32, and k33 com-
pared with those in [41], and increase k23 and k33 compared
with those in [30]. Therefore, when the design parameters of
the controller are the same as in [30] and [41], the controller
designed in this paper has two more design parameters k23
and k33. Under the premise of system stability, the tracking
error of the system is reduced continuously only by increasing
the values of k23 and k33. Therefore, the controller designed
in this paper is more flexible.

Figure 6 displays the system output y and the reference sig-
nal yd . It can be seen that the system output y can effectively
track the reference signal yd . Figure 7 displays the system
state variables x1, x2, and x3. Figure 8 displays the system

FIGURE 9. Adaptive parameters ˆθ2 and ˆθ3.

FIGURE 10. Tracking error y− yd .

FIGURE 11. Tracking error y− yd .

actual controller u. Figure 9 displays the system adaptive
parameters θ̂2 and θ̂3. Figure 10 displays the tracking error
of the controller designed in this paper and the controller
designed in [30]. Figure 11 displays the tracking error of the
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controller designed in this paper and the controller designed
in [41].

As can be seen from Figures 6-11, the system state vari-
ables x1, x2, and x3 are bounded, the actual controller u
is bounded, the tracking error is bounded, and adaptive
parameters θ̂2 and θ̂3 are bounded, so all signals in the
closed-loop system (80) are bounded. It can be seen from
Figures 10 and 11 that the proposed scheme has higher track-
ing performance with higher accuracy.

VI. CONCLUSION
In this paper, fixed-time control is applied to the nonlinear
pure-feedback system, effectively solving difficulties in the
design of a fixed-time controller arising from the nonaffine
structure. The fixed-time controller designed in this paper
enables the system output to track the reference signal in
a fixed time, and the tracking error converges on a small
domain of the origin in a fixed time. The final simulation
further demonstrates the correctness of the design method
used in this paper. In the next paper, we will delve into the
problem of controller futility in the origin and negative fields
and propose solutions.

REFERENCES
[1] Z. Li, T. Li, G. Feng, R. Zhao, and Q. Shan, ‘‘Neural network-based

adaptive control for pure-feedback stochastic nonlinear systems with time-
varying delays and dead-zone input,’’ IEEE Trans. Syst., Man, Cybern.,
Syst., to be published, doi: 10.1109/tsmc.2018.2872421.

[2] W. Liu, Q. Ma, G. Zhuang, J. Lu, and Y. Chu, ‘‘An improved adaptive
neural dynamic surface control for pure-feedback systems with full state
constraints and disturbance,’’ Appl. Math. Comput., vol. 358, pp. 37–50,
Oct. 2019.

[3] Y. M. Sun, B. Chen, F. Wang, S. W. Zhou, and H. H. Wang, ‘‘A novel
adaptive control method for a class of stochastic switched pure feedback
systems,’’ Neurocomputing, vol. 367, pp. 337–345, Nov. 2019.

[4] W. Mcculloch and W. Pitts, ‘‘A logical calculus of the ideas immanent in
nervous activity,’’ Bull. Math. Biol., vol. 52, nos. 1–2, pp. 99–115, 1990.

[5] I. Kanellakopoulos, P. Kokotovic, and A. Morse, ‘‘Systematic design
of adaptive controllers for feedback linearizable systems,’’ IEEE Trans.
Autom. Control, vol. 36, no. 11, pp. 1241–1253, Nov. 1991.

[6] M. Krstić, I. Kanellakopoulos, and P. Kokotović, ‘‘Adaptive nonlinear
control without overparametrization,’’ Syst. Control Lett., vol. 19, no. 3,
pp. 177–185, Sep. 1992.

[7] W. Bai, T. Li, and S. Tong, ‘‘NN reinforcement learning adaptive control for
a class of nonstrict-feedback discrete-time systems,’’ IEEE Trans. Cybern.,
to be published, doi: 10.1109/tcyb.2020.2963849.

[8] Z. Namadchian and M. Rouhani, ‘‘Observer-based adaptive neural control
for switched stochastic pure-feedback systems with input saturation,’’
Neurocomputing, vol. 375, pp. 80–90, Jan. 2020.

[9] R. Rahimilarki, Z. Gao, A. Zhang, and R. Binns, ‘‘Robust neural network
fault estimation approach for nonlinear dynamic systems with applications
to wind turbine systems,’’ IEEE Trans. Ind. Informat., vol. 15, no. 12,
pp. 6302–6312, Dec. 2019.

[10] Q. Guo, Y. Zhang, B. G. Celler, and S. W. Su, ‘‘Neural adaptive back-
stepping control of a robotic manipulator with prescribed performance
constraint,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 12,
pp. 3572–3583, Dec. 2019.

[11] S.-L. Dai, S. He, M. Wang, and C. Yuan, ‘‘Adaptive neural control of
underactuated surface vessels with prescribed performance guarantees,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 12, pp. 3686–3698,
Dec. 2019.

[12] S. Zhao, H. Liang, P. Du, and Y. Pan, ‘‘Adaptive neural network con-
trol for a class of discrete-time nonlinear interconnected systems with
unknown dead-zone,’’ J. Franklin Inst., vol. 356, no. 18, pp. 11345–11363,
Dec. 2019.

[13] F. Zouari, ‘‘Neural network based adaptive backstepping dynamic surface
control of drug dosage regimens in cancer treatment,’’ Neurocomputing,
vol. 366, pp. 248–263, Nov. 2019.

[14] M. Li and Z. Xiang, ‘‘Adaptive neural network tracking control for a
class of switched nonlinear systems with input delay,’’ Neurocomputing,
vol. 366, pp. 284–294, Nov. 2019.

[15] C.-F. Hsu and W.-F. Kao, ‘‘Perturbation wavelet neural sliding mode
position control for a voice coil motor driver,’’ Neural Comput. Appl.,
vol. 31, no. 10, pp. 5975–5988, Oct. 2019.

[16] T. Zhang and S. Ge, ‘‘Adaptive neural network tracking control of MIMO
nonlinear systems with unknown dead zones and control directions,’’ IEEE
Trans. Neural Netw., vol. 20, no. 3, pp. 483–497, Mar. 2009.

[17] S. H. Yu and A. M. Annaswamy, ‘‘Adaptive control of nonlinear dynamic
systems using θ -adaptive neural networks,’’ Automatica, vol. 33, no. 11,
pp. 1975–1995, 1997.

[18] S.-H. Yu and A. M. Annaswamy, ‘‘Stable neural controllers for nonlinear
dynamic systems,’’ Automatica, vol. 34, no. 5, pp. 641–650, May 1998.

[19] C. Hua, Y. Li, and X. Guan, ‘‘Finite/fixed-time stabilization for nonlinear
interconnected systems with dead-zone input,’’ IEEE Trans. Autom. Con-
trol, vol. 62, no. 5, pp. 2554–2560, May 2017.

[20] M. M. Zirkohi, ‘‘Finite-time adaptive fuzzy backstepping control of drug
dosage regimen in cancer treatment,’’ Trans. Inst. Meas. Control, vol. 41,
no. 12, pp. 3526–3535, Aug. 2019.

[21] K. Li and S. Tong, ‘‘Observer-based finite-time fuzzy adaptive control
for MIMO non-strict feedback nonlinear systems with errors constraint,’’
Neurocomputing, vol. 341, pp. 135–148, May 2019.

[22] Y. Li, K. Li, and S. Tong, ‘‘Finite-time adaptive fuzzy output feedback
dynamic surface control for MIMO nonstrict feedback systems,’’ IEEE
Trans. Fuzzy Syst., vol. 27, no. 1, pp. 96–110, Jan. 2019.

[23] C. Wang and Y. Wu, ‘‘Finite-time tracking control for strict-feedback
nonlinear systems with full state constraints,’’ Int. J. Control, vol. 92, no. 6,
pp. 1426–1433, Jun. 2019.

[24] Q. Hui, W. M. Haddad, and S. P. Bhat, ‘‘Finite-time semistability and con-
sensus for nonlinear dynamical networks,’’ IEEE Trans. Autom. Control,
vol. 53, no. 8, pp. 1887–1900, Sep. 2008.

[25] A. Polyakov, ‘‘Nonlinear feedback design for fixed-time stabilization of
linear control systems,’’ IEEE Trans. Autom. Control, vol. 57, no. 8,
pp. 2106–2110, Aug. 2012.

[26] F. Gao, Y. Wu, and Z. Zhang, ‘‘Global fixed-time stabilization of switched
nonlinear systems: A time-varying scaling transformation approach,’’
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 66, no. 11, pp. 1890–1894,
Nov. 2019.

[27] A. Polyakov, D. Efimov, and W. Perruquetti, ‘‘Finite-time and fixed-time
stabilization: Implicit Lyapunov function approach,’’ Automatica, vol. 51,
pp. 332–340, Jan. 2015.

[28] J. Liu, Y. Zhang, Y. Yu, and C. Sun, ‘‘Fixed-time event-triggered consensus
for nonlinear multiagent systems without continuous communications,’’
IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 11, pp. 2221–2229,
Nov. 2019.

[29] J. Ni, L. Liu, C. Liu, X. Hu, and S. Li, ‘‘Fast fixed-time nonsingular
terminal sliding mode control and its application to chaos suppression in
power system,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 2,
pp. 151–155, Feb. 2017.

[30] D. Ba, Y.-X. Li, and S. Tong, ‘‘Fixed-time adaptive neural tracking control
for a class of uncertain nonstrict nonlinear systems,’’ Neurocomputing,
vol. 363, pp. 273–280, Oct. 2019.

[31] J. Li, Y. Yang, C. Hua, and X. Guan, ‘‘Fixed-time backstepping control
design for high-order strict-feedback non-linear systems via terminal slid-
ing mode,’’ IET Control Theory Appl., vol. 11, no. 8, pp. 1184–1193,
May 2017.

[32] T. M. Apostol, Mathematical Analysis. Reading, MA, USA: Addison-
Wesley, 1963.

[33] M. Wang, S. S. Ge, and K.-S. Hong, ‘‘Approximation-based adap-
tive tracking control of pure-feedback nonlinear systems with multiple
unknown time-varying delays,’’ IEEE Trans. Neural Netw., vol. 21, no. 11,
pp. 1804–1816, Nov. 2010.

[34] Z. Zuo, B. Tian, M. Defoort, and Z. Ding, ‘‘Fixed-time consensus tracking
for multiagent systems with high-order integrator dynamics,’’ IEEE Trans.
Autom. Control, vol. 63, no. 2, pp. 563–570, Feb. 2018.

[35] Z. Zhu, Y. Xia, and M. Fu, ‘‘Attitude stabilization of rigid spacecraft with
finite-time convergence,’’ Int. J. Robust Nonlinear Control, vol. 21, no. 6,
pp. 686–702, Apr. 2011.

28878 VOLUME 8, 2020

http://dx.doi.org/10.1109/tsmc.2018.2872421
http://dx.doi.org/10.1109/tcyb.2020.2963849


C. He et al.: Fixed-Time Adaptive Neural Tracking Control for a Class of Uncertain Nonlinear Pure-Feedback Systems

[36] C. Wang and Y. Lin, ‘‘Decentralized adaptive tracking control for a class
of interconnected nonlinear time-varying systems,’’ Automatica, vol. 54,
pp. 16–24, Apr. 2015.

[37] S. S. Ge, C. C. Hang, T. H. Lee, and T. Zhang, Stable Adaptive Neural
Network Control. Boston, MA, USA: Kluwer, 2001.

[38] H. Du, H. Shao, and P. Yao, ‘‘Adaptive neural network control for a class of
low-triangular-structured nonlinear systems,’’ IEEE Trans. Neural Netw.,
vol. 17, no. 2, pp. 509–514, Mar. 2006.

[39] C. A. Michelli, ‘‘Interpolation of scattered data: Distance matrices and
conditionally positive definite functions,’’ Constructive Approx., vol. 2,
no. 1, pp. 11–22, Feb. 1986.

[40] C. Wang, D. J. Hill, S. Ge, and G. Chen, ‘‘An ISS-modular approach for
adaptive neural control of pure-feedback systems,’’ Automatica, vol. 42,
no. 5, pp. 723–731, May 2006.

[41] Y. Sun, B. Chen, C. Lin, and H. Wang, ‘‘Finite-time adaptive control for a
class of nonlinear systems with nonstrict feedback structure,’’ IEEE Trans.
Cybern., vol. 48, no. 10, pp. 2774–2782, Oct. 2018.

[42] F. Wang, X. Zhang, B. Chen, C. Lin, X. Li, and J. Zhang, ‘‘Adaptive finite-
time tracking control of switched nonlinear systems,’’ Inf. Sci., vol. 421,
pp. 126–135, Dec. 2017.

[43] F. Wang, B. Chen, X. Liu, and C. Lin, ‘‘Finite-time adaptive fuzzy tracking
control design for nonlinear systems,’’ IEEE Trans. Fuzzy Syst., vol. 26,
no. 3, pp. 1207–1216, Jun. 2018.

[44] D. Dawson, J. Carroll, and M. Schneider, ‘‘Integrator backstepping control
of a brush DC motor turning a robotic load,’’ IEEE Trans. Control Syst.
Technol., vol. 2, no. 3, pp. 233–244, Sep. 1994.

CHENG HE received the B.Sc. degree in automa-
tion from the Tongda College, Nanjing University
of Posts and Telecommunications, China, in 2018.
He is currently pursuing the M.Sc. degree in
control engineering with Nanchang Hangkong
University, China. His research interests include
adaptive control and nonlinear pure-feedback
systems.

JIAN WU received the B.Sc. degree in electrical
engineering and automation and the M.Sc. and
Ph.D. degrees in control theory and engineering
from Air Force Engineering University, Xi’an,
China, in 2000, 2003, and 2006, respectively. He
is currently a Professor with Nanchang Hangkong
University. His research interests include adaptive
control and flight simulation.

JIYANG DAI received the B.Sc. andM.Sc. degrees
from the Nanjing University of Aeronautics and
Astronautics, Nanjing, China, in 1988 and 1991,
respectively, and the Ph.D. degree from Beihang
University, Beijing, China, in 2001. Since 1991,
he has been a Professor with Nanchang Hangkong
University, Nanchang, China. His current research
interests include robust control theory and its
applications, intelligent controls, and helicopter
control.

ZHANG ZHE received the B.Sc. degree in elec-
tronic science from the Binhai College, Nankai
University, China, in 2018. He is currently pur-
suing the M.Sc. degree in control engineering
with Nanchang Hangkong University, China. His
research interests include task allocation and path
planning of multi UAV cooperation.

TIANCHI TONG received the B.Sc. degree in
automation from the Henan University of Urban
Construction, China, in 2016. He is currently pur-
suing the M.Sc. degree in control engineering
with Nanchang Hangkong University, China. His
research interests include cascading failures and
simulation analysis of complex networks.

VOLUME 8, 2020 28879


	INTRODUCTION
	PROBLEM DESCRIPTION AND PRELIMINARIES
	PROBLEM STATEMENT
	FIXED-TIME
	GAUSSIAN RADIAL BASIS NETWORKS

	DESIGN OF FIXED-TIME CONTROLLER
	STABILITY ANALYSIS
	SIMULATION RESULTS
	CONCLUSION
	REFERENCES
	Biographies
	CHENG HE
	JIAN WU
	JIYANG DAI
	ZHANG ZHE
	TIANCHI TONG


