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ABSTRACT The asymptotically stable equilibrium points of asymmetric evolutionary games for multiple
groups with multiple game strategies are obtained. The evolution of four groups and more multiple groups
in open electricity market are described by the replicator dynamics. Multiple game strategies of the power
generation enterprises in open electricity market are studied. Besides, the corresponding asymptotic stability
conditions are given by the Lyapunov stability criterion.

INDEX TERMS Asymptotically stable, evolutionary game theory, multiple game strategies, open electricity
market.

I. INTRODUCTION
Game theory has been applied into numerous fields, such as
economics [1], energy management [2], and communication
[3]. In a real game system, the players may be bounded
by rationality, uncertainty, complexity, and opportunism [4].
Thus, the asymmetric games of multi-agent systems have
been studied [5]. The players in a game system with con-
ventional game theory should be intelligent at every time in
the iteration game process to obtain the suitable strategies for
their interests. Nevertheless, the player could not be intelli-
gent at every time.

The players in a group could be stay in the game system
with a long time; All these game groups in the game system
could be balanced with long term. Therefore, the equilibrium
state of the game groups will be more important than the
game process. The equilibrium points of a grouped gamewith
three groups and two strategies have been calculated in open
electricity market [6]. However, the strategies of the game
groups in open electricity market are more than two strategies
in a real open electricity market. Hence, the equilibrium
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points of a grouped game with multiple groups and multiple
strategies should be calculated.

With the developments of technology (e.g. storage and
demand side response), electricity consumers in open elec-
tricity market are evolved into energy prosumers [7], [8],
which are combined energy consumers and energy produc-
ers. The emergence of prosumers has changed the structure
of the open electricity market. Furthermore, the opening
degree of the open electricity power market is continuously
improving [9], [10]. The reasonable market mechanism can
play a positive role in the development of the competitive
power market [11], which is conducive to guiding market
participants to make correct decisions and maintaining the
stability of market operation [12]. A huge challenge that is
how to find the equilibrium state to balance the interests of all
parties in an open electricity market under the new situation.
At present, the two-group game and the three-group game in
the open electricity market have been studied by scholars [6].
However, the equilibrium stability of asymmetric evolution-
ary games with multi-group with multi-strategy game has not
been studied. Therefore, the equilibrium points of multiple
groups with multiple strategies in the open electricity mar-
ket are calculated. Replicator dynamics is applied to solve
the evolution dynamics of quadripartite groups in the open
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electricity market, i.e., power generation enterprise groups
(PGEG), power grid groups (PGG), prosumers, and power
user groups (PUG). Then, the number of groups for evolu-
tionary game is extended to n. Furthermore, the equilibrium
points and the asymptotic stability conditions of the evolu-
tionary game are solved.

The rest of the paper is organized as follows: Section II
introduces the relevant knowledge about evolutionary game
theory. In Section III, the evolutionary game model of four
groups in open power market is established. In Section IV,
the evolutionary equilibrium points and the asymptotic sta-
bility conditions of four-dimensional game under replicator
dynamics are solved. Section V calculates the evolutionary
equilibrium points and their asymptotic stability conditions of
n-group game. In Section VI, the evolutionary game model of
three power generation enterprises is established. Section VII
briefly concludes this paper.

II. EVOLUTIONARY GAME THEORY
A. ELEMENTS OF EVOLUTIONARY GAME
An evolutionary game model is a strategic interaction that
includes the following elements [13], [14].

1) Populations: individuals with similar characteristics
with a group (Population). Each group has its own set
of strategies.

2) Payoff function: the income corresponding to some
kind of action is related to the chosen strategy by
the participant and the proportion distribution of the
current different strategies.

3) Dynamics: the dynamics reflect the learning and
imitation process of the game participants. Under the
influence of evolutionary dynamics, lower payment
strategies will be replaced by higher payment strategies
over time.

4) Equilibrium: the equilibrium is the convergence and
stability of the evolution.

B. REPLICATOR DYNAMICS
Replicator dynamics was first proposed by Peter D. Taylor
and Leo B. Jonker (1978) [15] and named by Peter Schuster
and Karl Sigmund (1983) [16].

Let 1 = {(x1, x2, . . . , xm)|
m∑
i=1

xi = 1, xi ≥ 0 for i = 1,

2, . . . ,m} denote the strategy of a group in the evolutionary
game, i.e., the strategy set of this population (group) is com-
posed ofm strategies, and the ratio of selecting the ith strategy
in the group is xi. Strategy 1 is a pure strategy if and only if
∃xi = 1(i = 1, 2, . . . ,m), i.e., all individuals in this group
choose the same strategy in the game.

Therefore, replicator dynamics of a group can be repre-
sented as follows

dxi
dt
=xi ·(Ei−Eav), i = 1, 2, . . . ,m. (1)

where Ei denote expected revenue corresponding to the ith

pure strategy; Eav =
m∑
i=1

xi · Ei represent average expected

revenue of the group. When the revenue of a strategy is
higher than the average revenue, the number of individuals
selected in the strategy policy will increase in the group [17].
Over time, low-expectation revenue strategy will be replaced
by high-expectation revenue strategy.

According to (1), the final equilibrium state of a group
is related to the distribution of the payment parameters in
the game.

C. EVOLUTIONARILY STABLE STRATEGY
Inspired by the idea of biological evolution, J. Maynard
Smith and G. R. Price introduced the idea of evolution in
biological theory into game theory, and presented the concept
of evolutionarily stable strategy (ESS) in evolutionary game
theory [18], [19]. Ever since ESS was proposed, evolutionary
game theory has developed rapidly. In a two-group symmetric
game, strategy x∗ ∈ 1 is an ESS if and only if
1) Nash equilibrium condition: E(x, x∗) ≤ E(x∗, x∗);
2) Stability condition: E(x∗, x) > E(x∗, x∗) if E(x, x∗) =

E(x∗, x∗).
where x ∈ 1 and x 6= x∗, E(x∗, x) represents the ben-
efits derived from the selection of strategy x∗ and strategy
x by two groups, respectively. In the asymmetric game,
the definition of ESS is similar to that of the symmetric
game [20], [21].

In symmetric two-group games, a strategy is an ESS if and
only if this strategy is an asymptotically stable [22]. Studying
the asymptotic stability of the equilibrium point would be
more appropriate than ESS, in some cases.

III. FOUR-DIMENSIONAL GAME IN TYPICAL SCENARIO
OF OPEN ELECTRICITY MARKET
A. GROUPS IN GAME SYSTEMS
In the typical scenario of an open electricity market, the game
groups are assumed to be set as follows. (1)

1) Power generation enterprise groups (PGEG): the large
power plant groups, e.g. fossil-fuel power stations,
hydroelectric power stations, nuclear power plants,
wind farms, photovoltaic power plants, etc.

2) Power grid groups (PGG): the groups for transporting
electrical energy.

3) Prosumers: the economically motivated entities that
consume, produce, store energy, and transport electric-
ity. Prosumers maximize their benefits by optimizing
their economic decisions regarding energy utilization.

4) Power user groups (PUG): a collection of individu-
als or units that consume electrical energy (excluding
prosumers).

B. TRADING STRATEGY
The power flow of electric energy during the trading process
is shown in FIGURE 1. The arrow direction in FIGURE 1
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FIGURE 1. Power flow diagram for power trading rules.

indicates the possible power flow of electric energy during
the transaction.

Suppose that the executable strategies of the PGEG,
the PGG, prosumers and PUG are {Sa1, Sa2}, {Sb1, Sb2},
{Sc1, Sc2}, {Sd1, Sd2}, respectively.

1) Strategies for PGEG: Strategy Sa1 means that PGEG
sell electricity to PGG, the probability of choosing this
strategy is x (0 ≤ x ≤ 1). Strategy Sa2 means that
PGEG directly sell electricity to PUG in direct power
supply mode, the probability of choosing this strategy
is (1− x).

2) Strategies for PGG: Strategy Sb1 means that PGG
purchase electricity from PGEG and prosumers, sell
electricity to PUG, the probability of choosing this
strategy is y (0 ≤ y ≤ 1). Strategy Sb2 means that
PGG purchase electricity from PGEG, sell electricity
to PUG, while the probability of choosing this strategy
is (1− y).

3) Strategies for prosumers: Strategy Sc1 means that pro-
sumers sell electricity to PGG and PUG, the probability
of choosing this strategy is z (0 ≤ z ≤ 1). Strategy Sc2
means that prosumers purchase electricity from PGG,
sell electricity to PUG, the probability of choosing this
strategy is (1− z).

4) Strategies for PUG: Strategy Sd1 means that PUG pur-
chase a large amount of electricity from PGEG, and
purchase a small amount of electricity from PGG and
prosumers; the probability of choosing this strategy
is w (0 ≤ w ≤ 1). Strategy Sd2 means that PUG
only purchasing electricity from PGG and prosumers;
the probability of choosing this strategy is (1− w).

C. PAYOFF DISTRIBUTION
Set {Sai, Sbi, Sci, Sdi} (i ∈ {1, 2}) is the strategy set, when the
four groups (i.e., PGEG, PGG, prosumers, and PUG) choose
strategy Sai, Sbi, Sci, and Sdi, respectively. And the payoff
distribution of these four groups is given in TABLE 1.

TABLE 1. Payoff distribution of strategy set for four groups.

IV. SOLUTION OF FOUR-DIMENSIONAL GAME
OF OPEN ELECTRICITY MARKET
A. SOLUTION STEPS

All the strategies in a population satisfy
m∑
i=1

dxi
dt = 0.

Each group has only two strategies that assumed to be in
Section III-B. Hence, replicator dynamics of each group can
be expressed by a differential equation, and four differential
equations are included in the game.

Let the value of each differential equation 0, the equilib-
rium points of the game can be found, which mean that the
state of the system does not change without disturbance. The
asymptotic stability of the equilibrium points can be judged
by Lyapunov indirect method. Let J be the Jacobian matrix
of replicator dynamics. For each equilibrium point, if all the
real parts of the eigenvalues of the matrix J are less than 0;
this equilibrium point is an asymptotically stable equilibrium
point (ASEP); and the system is in an asymptotically stable
state. If the matrix J has at least one eigenvalue on the
imaginary axis; the system is in a critical stable state and its
stability needs to be determined by other methods. Otherwise,
this equilibrium is an asymptotically unstable equilibrium
point (AUEP); and the system is in an asymptotically unstable
state.

The steps for solving the ASEP of replicator dynamics can
be summarized as follows.
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1) Establish replicator dynamics based on the payoff dis-
tribution and solving the equilibrium points;

2) Establish the Jacobian matrix of replicator dynamics;
3) If the real part of the eigenvalue of the Jacobian matrix

corresponding to the equilibrium point is negative
value, the equilibrium point is an ASEP.

B. REPLICATOR DYNAMICS OF
FOUR-DIMENSIONAL GAME
The replicator dynamics of the four-group (dimensional)
game can be shown as

dx
dt
=xx̃D1

dy
dt
=yỹD2

dz
dt
=zz̃D3

dw
dt
=ww̃D4,

(2)



D1= (a1−a9)yzw+ (a2−a10)yzw̃
+(a3−a11)yz̃w+ (a4−a12)yz̃w̃
+(a5−a13)ỹzw+ (a6−a14)ỹzw̃
+(a7−a15)ỹz̃w+ (a8−a16)ỹz̃w̃

D2= (b1−b5)xzw+ (b2−b6)xzw̃
+(b3−b7)xz̃w+ (b4−b8)xz̃w̃
+(b9−b13)x̃zw+ (b10−b14)x̃zw̃
+(b11−b15)x̃ z̃w+ (b12−b16)x̃ z̃w̃

D3= (c1−c3)xyw+ (c2−c4)xyw̃
+(c5−c7)xỹw+ (c6−c8)xỹw̃
+(c9−c11)x̃yw+ (c10−c12)x̃yw̃
+(c13−c15)x̃ỹw+ (c14−c16)x̃ỹw̃

D4= (d1−d2)xyz+ (d3−d4)xyz̃
+(d5−d6)xỹz+ (d7−d8)xỹz̃
+(d9−d10)x̃yz+ (d11−d12)x̃yz̃
+(d13−d14)x̃ỹz+ (d15−d16)x̃ỹz̃,

(3)


x̃=1−x
ỹ=1−y
z̃=1−z
w̃=1−w.

(4)

C. SOLUTION OF THE EQUATIONS
There are 34 or 81 types of solutions in (2), i.e., the game
consists of 81 types equilibrium points. With the aim of
solving (2), a total of two situations are discussed as follows.

1) Situation 1 (pure strategy): ∀a ∈ {x, y, z,w} ⇒ a ∈
{0, 1}, this situation has 24 or 16 types of solutions;

2) Situation 2 (mixed strategy): ∃a ∈ {x, y, z,w} ⇒
a /∈ {0, 1}, this situation has (34 − 24) or 65 types of
solutions.

In the situation 1, according to the steps described in
Section IV-A, the equilibrium points and their asymptotic

TABLE 2. Equilibrium point and its asymptotic stability condition.

stability conditions (TABLE 2) can be obtained. For each
equilibrium point, the condition of the asymptotically stable
equilibrium is composed of four inequalities. For instance,
if the state of the system is at the equilibrium point (0, 0, 0, 1)
and satisfies the condition (a7 < a15, b11 < b15, c13 <

c15, d16 < d15), the system is in an asymptotically stable
state. At one point, the parameters of the system changed
to make the d15 < d16, (0, 0, 0, 1) is not the ASEP of the
system. In fact, if the parameter distribution of the system at
this time satisfies (a7 < a15, b11 < b15, c13 < c15, d16 >
d15), the equilibrium state of the asymptotic stability of the
system can be changed from (0, 0, 0, 1) to (0, 0, 0, 0), or from
(0, 0, 0, 1) to (0, 0, 1, 0), etc. The system may end up with
12 final evolutionary states. Adding another 11 inequality
conditions can be inferred, i.e., a total of 15 corresponding
inequality conditions so that the ASEP of the system can
eventually evolve from (0, 0, 0, 1) to (0, 0, 0, 0).
In the situation 2, any of the equilibrium point of mixed

strategies in a two-strategy multi-group game is a critical
stable equilibrium point or an AUEP which will be proven
in Section V-B.

V. THE N-DIMENSIONAL GAME IN THE TYPICAL
SCENARIO OF ELECTRICITY MARKET
Suppose that all the n (n ≥ 3, n ∈ Z ) groups have two pure
strategies, i.e., {S i0, S i1} (i = 1, 2, . . . , n). For the ith group,
its strategy S i0, S i1 chosen at a probability of pi, (1 − pi),
respectively.

A. REPLICATOR DYNAMICS SYSTEM OF THE N-GROUP
GAME AND ITS JACOBIAN MATRIX
For strategy set {S1,m1 , S2,m2 , . . . , Sn,mn} (mi ∈ {0, 1}, i =
1, 2, . . . , n). The payoff of strategy Si,mi can be expressed as

ai,M (M=
n∑
k=1

mk×2n−k+1). (5)
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The replicator dynamics of the n-group game can be shown
as 

dp1
dt = p1(1− p1)D1
dp2
dt = p2(1− p2)D2

...
dpj
dt = pj(1− pj)Dj

...
dpn
dt = pn(1− pn)Dn,

(6)

Di=
∑

[(ai,j−ai,j+2n−i )
n∏

k=1,k 6=i

pk1−xk (1−pk )xk ]

j=
n∑

k=1

xk×2n−k+1;

xk ∈{0, 1};
xi=0;
i = 1, 2, . . . , n.

(7)

The Jacobian matrix of replicator dynamics is shown as

Jn

=



(1−2p1)D1 p1(1−p1)
∂D1

∂p2
. . . p1(1−p1)

∂Dn
∂pK

p2(1−p2)
∂D2

∂p1
(1−2p2)D2 . . . p2(1−p2)

∂D2

∂pn
...

...
. . .

...

pn(1−pn)
∂Dn
∂p1

pn(1−pn)
∂Dn
∂p2

. . . (1−2pK )Dn


.

(8)

B. EQUILIBRIUM POINTS OF THE N-GROUP GAME
The equilibrium points of this system can be obtained from
the (9). 

p1(1− p1)D1 = 0
p2(1− p2)D2 = 0

...

pj(1− pj)Dj = 0
...

pn(1− pn)Dn = 0

(9)

Equation (9) contain 3n types of solutions (3n types of the
equilibrium points). Similar to the approach in Section IV-C,
a total of two situations are discussed as follows. (1)

1) Situation 1 (pure strategy): ∀pi ∈ {0, 1}, i ∈
{1, 2, . . . , n}, this situation has 2n types of solutions.

2) Situation 2 (mixed strategy): ∃pi /∈ {0, 1}, i ∈
{1, 2, . . . , n}, this situation has (3n− 2n) types of solu-
tions.

In the situation 2, at least one of the values in pi (i =
1, 2, . . . , n) is not 0 or 1. Suppose {pl,1, pl,2, . . . , pl,n1} ⊂
{p1, p2, . . . , pn} and ∀pl,i (i = 1, 2, . . . , n1) /∈

{0, 1}, according to Eq. (9), Dl,i = 0. Then, assume
{pz,1, pz,2, . . . , pz,n1} ⊂ {p1, p2, . . . , pn} and ∀pz,i (i =
1, 2, . . . , n − n1) ∈ {0, 1}. pl,1, pl,2, . . ., pl,n1 , pz,1, pz,2, . . .,
pz,n−n1 is a new arrangement of p1, p2, . . ., pn.

The characteristic polynomial of (8) is (10).

|λE−Jn|

=

n−n1∏
j=1

(λ−(−1)pz,jDz,j)
∣∣λE−Jn1 ∣∣=0 (10)

Jn1

=



0 hl,1
∂Dl,1
∂pl,2

. . . hl,1
∂Dl,1
∂pl,n1

hl,2
∂Dl,2
∂pl,1

0 . . . hl,2
∂Dl,2
∂pl,n1

...
...

. . .
...

hl,n1
∂Dl,n1
∂pl,1

hl,n1
∂Dl,n1
∂pl,2

. . . 0


(11)

hl,j
= pl,j(1− pl,j), j = 1, 2, . . . n1 (12)

where
∣∣λE − Jn1 ∣∣ = 0 is a unitary n1-degree polyno-

mial equation with n1 complex roots. According to (11),
n1∑
j=1
λj = tr(Jn1 ) = 0, λ1, λ2, . . ., λn1 are the eigenvalues of

Jn1 . Then, ∃Re(λt ) ≥ 0 (t = 1, 2, . . . , n1). And all of the
eigenvalues of Jn1 are also the eigenvalues of Jn. Therefore,
Jn has one real non-negative eigenvalue at least. In the situ-
ation 2, any the equilibrium point of the system is a critical
stable equilibrium point or an AUEP.

In the situation 1, when ∀pi ∈ {0, 1}, i ∈ {1, 2, . . . , n},
i.e., the components of the equilibrium point all take values
of 0 or 1, the Jacobian matrix can be expressed as

J ′n = diag{(−1)p1D1, (−1)p2D2, . . . , (−1)pnDn}. (13)∣∣λE−J ′n∣∣= 0 (14)

The characteristic polynomial of J ′n is (14). For the equi-
librium points in the situation 1, each polynomial in (7) is the
sum of 2n−1 parts, and the value of 2n−1 − 1 parts is 0. All
eigenvalues of J ′n are real numbers, and the conditions that the
values of the eigenvalues are negative can be expressed as

(−1)pi (ai,t+1−ai,t+2n−i+1)<0
i=1, 2, . . . , n

t=
n∑

k=1,k 6=i

(1−pk )×2n−k .
(15)

In a n-group game, if each group has only two pure
strategies, the asymptotically stable equilibrium points are
{p1, p2, . . . , pn} (pi ∈ {0, 1}, i = 1, 2, . . . , n), when the
conditions in (15) are satisfied. Similar to the discussion in
Section IV-C, when a certain equilibrium point satisfies n
inequality conditions in (15), this equilibrium point is an
ASEP. However, when the distribution of the payoff param-
eters of the system is changed, the equilibrium state of the
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system may evolve into another equilibrium state or unsta-
ble state. Therefore, the government policy to monitor the
electricity market can change the distribution of the pay-
ment parameters and the ASEP of n groups in the electricity
market.

Consequently, each participant is effectively integrated
into the open competitive electricity market, so that the open
electricity market can develop healthily and sustainably.

VI. THREE-GROUP AND MULTI-STRATEGY GAME
IN THE TYPICAL SCENARIO OF OPEN
ELECTRICITY MARKET
In this section, the number of strategies for each group
is expanded to sixty. Set {Sai, Sbj, Sck} (i, j, k = 1, 2,
3, . . . , 60) is the strategy set, when the three groups choose
strategy Sai, Sbj, Sck , respectively.
The payoffs corresponding to the strategy set {Sai, Sbj, Sck}

are {aH , bH , cH } (H = 3600i + 60j + k − 3660), respec-
tively. Then, evolutionary game theory is used to simulate
the process of market clearing on the power generation enter-
prises (PGEs).

A. PURE STRATEGY EQUILIBRIUM POINTS OF
MULTI-STRATEGY EVOLUTIONARY GAME
The replicator dynamics of the three-group andmulti-strategy
game can be shown as

dxi
dt
= xi(Eai − Ēa)

dyi
dt
= yi(Ebi − Ēb)

dzi
dt
= zi(Eci − Ēc),

i = 1, 2, 3, . . . , 60 (16)



Ēa = Ea60 +
59∑
i=1

xi(Eai − Ea60)

Ēb = Eb60 +
59∑
i=1

yi(Ebi − Eb60)

Ēc = Ec60 +
59∑
i=1

zi(Eci − Ec60).

(17)

where xi, yi, zi (i = 1, 2, 3, . . . , 59) represent the prob-
ability of the 1th-group, the 2th-group, and the 3th-group
choose strategy Sai, Sbi, Sci, respectively. The probabilities
of choosing strategy Sa60, Sb60, Sc60 for the three groups are
1−

∑59
i=1 xi, 1 −

∑59
i=1 yi, and 1 −

∑59
i=1 zi, respectively.

Benefits Eai, Ebi, and Eci denote the expected benefits of
the 1th-group, the 2th-group and the 3th-group, when the
1th-group, the 2th-group and the 3th-group choose Sai, Sbi
and Sci, respectively. Benefits Ēa, Ēb, Ēc mean the aver-
age expected benefits of the three groups. The equilibrium
points of pure strategy

{
xi = 1, yj = 1, zk = 1

}
(i, j, k = 1,

2, . . . , 60) can be obtained from the (16) and the (17).
The Jacobian matrix of the (16) is shown as the (18),

as shown at the bottom of the next page. The order of the
Jacobian matrix J3 is 117, and the matrix J3 consists of nine

sub-blocks of the 59-order matrix. The non-diagonal sub-
blocks of the matrix J3 are all zero matrices.
The asymptotic stability conditions of the equilibrium

point {xi = 1, yj = 1, zk = 1} (i, j, k = 1, 2, . . . , 60)
can be obtained from (18) and expressed in (22). For each
equilibrium point, each group has 59 inequality constraints,
i.e., 177 constraints which can be represented by the max
function to ensure its asymptotic stability, and the num-
ber of constraints corresponds to the order of the Jacobian
matrix.

max{a3600i1+60j+k−3660}<aH ,
(i1=1, 2, . . . , 59; i = 60).

max{a3600i1+60j+k−3660}<a212340+60j+k<aH ,

(i1=1, 2, . . . , 59; i1 6= i; i<60).

max{b3600i+60j1+k−3660}<bH ,
(j1=1, 2, . . . , 59; j = 60).

max{b3600i+60j1+k−3660}<b3600i+k−60<bH ,
(j1=1, 2, . . . , 59; j1 6= j; j<60).

max{c3600i+60j+k1−3660}<cH ,
(k1=1, 2, . . . , 59; k=60).

max{c3600i+60j+k1−3660}<c3600i+60j−3600<cH ,
(k1=1, 2, . . . , 59; k1 6=k; k<60).

(22)

where H = 3600i+ 60j+ k − 3660.

B. EVOLUTIONARY GAME OF THE POWER GENERATION
SIDE MARKET CLEARING
Suppose that the three PGEs are the PGE1, the PGE2,
the PGE3 corresponding to the 1th-group, the 2th-group and
the 3th-group in Section VI-A, respectively.

The bidding price strategies of each power generation
enterprise are Pricei (i, j = 1, 2, 3, 4; Pricei < Pricej⇔ i < j).
And the bidding power strategies of each power generation
enterprise are Poweri (i, j = 1, 2, . . .,14,15; Poweri < Poweri
⇔ i < j). In the game, the bidding strategy of each power
generation enterprise is composed of the bidding price and
the bidding power. Hence, its strategy set has 4×15 or 60 ele-
ments. This paper assumes that each generator enterprise has
only one generator unit. The power generation cost C(P) of
the power generation enterprises can be fitted by quadratic
function approximate.

C(P)=

{
a·P2+b·P+c, P∈ [Pmin,Pmax]
0, P /∈ [Pmin,Pmax]

(23)

where Pmax, Pmin, and P are the upper and lower limits
of power generation capacity and the bidding power of the
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power generation companies, respectively; and a, b, c are
constants. The benefits of the power generation enterprises
after bidding can be expressed as Bclear ·P − C(P); Bclear
represents the uniform clearing electricity price.

Bidding mechanism:
1) Bidding stage: the bidding strategies of the PGE1,

the PGE2, the PGE3 are {B1,P1}, {B2,P2}, {B3,P3},
respectively; price Bi (i = 1, 2, 3) is the bidding price
of the PGEi and Pi denotes its bidding power;

2) Price settlement stage: the PGEs trade electricity in
the order of the bidding prices from low value to high
value, until the power supply to meet the load demand.
The bidding price of the last power generation enter-
prise to satisfy the load demand is called the marginal
electricity price, i.e., the uniform clearing electricity
price. When the bidding price of a power generation
enterprises is higher than the unified clearing electricity
price, the enterprise failed to bid. All the successful

J3 =

 Ja 0 0
0 Jb 0
0 0 Jc

 (18)

Ja=





Ea1−Eai 0 . . . 0 . . . 0
0 Ea2−Eai . . . 0 . . . 0
...

...
. . .

...
. . .

...

Ea60−Ea1 Ea60−Ea2 . . . Ea60−Eai . . . Ea60−Ea59
...

...
. . .

...
. . .

...

0 0 . . . 0 . . . Ea59−Eai


,

i = 1, 2, . . . , 59

diag(Ea1 − Ea60,Ea2 − Ea60, . . . ,Ea59 − Ea60),
i = 60.

(19)

Jb=





Eb1−Ebj 0 . . . 0 . . . 0
0 Eb2−Ebj . . . 0 . . . 0
...

...
. . .

...
. . .

...

Eb60−Eb1 Eb60−Eb2 . . . Eb60−Ebj . . . Eb60−Eb59
...

...
. . .

...
. . .

...

0 0 . . . 0 . . . Eb59−Ebj


,

j = 1, 2, . . . , 59

diag(Eb1 − Eb60,Eb2 − Eb60, . . . ,Eb59 − Eb60),
j = 60.

(20)

Jc=





Ec1−Eck 0 . . . 0 . . . 0
0 Ec2−Eck . . . 0 . . . 0
...

...
. . .

...
. . .

...

Ec60−Ec1 Ec60−Ec2 . . . Ec60−Eck . . . Ec60−Ec59
...

...
. . .

...
. . .

...

0 0 . . . 0 . . . Ec59−Eck


,

k = 1, 2, . . . , 59

diag(Ec1 − Ec60,Ec2 − Ec60, . . . ,Ec19 − Ec60),
k = 60.

(21)
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FIGURE 2. Schematic diagram of bidding for the power generation
enterprises.

bidding power generation enterprises sell electricity at
the unified clearing price.

3) Power settlement stage: the electricity sales of the
power generation enterprises whose bidding price is
lower than the clearing price are their bidding power.
When the total bidding power exceeds the load demand,
the transaction amount of electricity for each power
generation enterprise whose bidding price is equal to
the clearing price is P̃ei. Power Pei is the corresponding
bidding power for this power generation enterprise;
Load is load demand; and Ps is the cumulative trans-
action electricity of the power generation enterprises
whose bidding price is lower than the clearing price.
Considering the upper and lower limit constraints of
power, this paper assumes that when the transaction
electricity of a power generation enterprise is higher
than the upper limit of power, its adjusted trading
electricity is its upper limit of power. On the contrary,
when the transaction electricity is below the lower limit
of its capacity, the adjusted trading electricity of the
power generation enterprise is zero. Under the con-
dition of satisfying the constraint of upper and lower
limits of power, each successful power generation
enterprise adds electricity according to the proportion
of its bidding power value to meet the adjusted power
deficit.When the adjusted power failed tomeet the load
demand, all the power generation enterprises failed
to bid.

P̃ei=
Pei∑
Pei
·(Load−Ps) (24)

The schematic diagram of bidding for the power generation
enterprises is shown in FIGURE 2. Suppose that B1<B2<B3
and P1+P2 < Load < P1+P2+P3, the unified clearing
electricity price is B3. When the output power of the PGE3
meets its upper and lower bound constraints, the amount of
electricity traded by the PGE1, the PGE2, the PGE3 is P1, P2
and Load−P1−P2, respectively. The power generation cost
coefficients and power ranges of the three power generation
enterprises are shown in TABLE 3. And the price strate-
gies available for each power generator are 60 $/MW·h, 70
$/MW·h, 80 $/MW·h, 90 $/MW·h, respectively. The power

TABLE 3. Power generation enterprise parameters.

TABLE 4. Bidding strategy corresponding to game equilibrium point.

strategies available for each power generator are Pmax−Pmin
14

(i− 1)+Pmin (i = {1, 2, . . . , 15}).
When the Load is 100 MW·h and 300 MW·h, the optimal

bidding strategy corresponding to the equilibrium point of
the game of the three PGEs is shown in TABLE 4. The
transaction power corresponds to the trading power obtained
by the three power generation enterprises in the current sit-
uation. Payoff distribution is the main factor affecting the
distribution of equilibrium point and its asymptotic stability.
Under different trading mechanisms, the payoff distribution
of the power generation enterprises is different, resulting in
different distribution of the asymptotically stable equilib-
rium points. In complex games, the number of the asymp-
totically stable equilibrium points may be small or does
not exist. The market regulator makes a reasonable trans-
action mechanism. For example, trading mechanisms that
consider demand-side response or government regulation,
so that the payoff distribution and the equilibrium points
distribution of the game are evolving towards the desired
direction.

VII. CONCLUSION
This paper mainly discusses the asymptotic stability of
multi-group asymmetric evolutionary game in an open
electricity market. The two-strategy four-group game and
the two-strategy n-group game’s replicator dynamics sys-
tem are solved, respectively. And the asymptotically stable
equilibrium points and their asymptotic stability equilib-
rium conditions are obtained. The bidding behavior of three
power generation enterprises is simulated based on evolution-
ary game theory. Under the appropriate trading mechanism,
the game of three power generation enterprises can achieve an
asymptotically stable equilibrium state. In addition, the dis-
tribution of the asymptotically stable equilibrium points can
be changed by changing the distribution of payoff parameters
in the system. Decision makers are responsible for market
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design and interventions needed to achieve the goals, which
makes the evolution of power system more reasonable.

However, the discussion on the equilibrium stability of the
evolutionary game theory model established in the typical
scenario of the open electricity market is not very strict. In
the future, the game of the multi-agent continuous behavior
in the open electricity market could be studied. Furthermore,
the constraints of complex networks could be considered to
make the model more consistent with actual power systems.
At the same time, another equilibrium state, which makes the
stable equilibrium point of the game easier to be solved and
analyzed, will be considered.
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