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ABSTRACT In this paper, we generalize the Hermite transform into a fractional case using the fractional
Fourier transform and the fractional convolution. The new methodology was evaluated using phytoplankton
images with different illumination patterns and fragmented images. We found that the fractional Hermite
transform had a better capability to recognize images. The discrimination coefficient was evaluated for the
fractional Hermite transform and the conventional Hermite transform, finding more noise tolerate with the
fractional Hermite transform. The Hermite fractional transform, in combination with the extreme phase filter,
showed in a study, using fragmented diatom images, a better ability to classify diatoms, even when these had

little information.

INDEX TERMS Fractional convolution, fractional Hermite transform, pattern recognition, Pearson

correlation.

I. INTRODUCTION

Over 50 years ago, Vander Lugt began a change in the way
of using the Fourier transform in optics by introducing a
methodology for filtering space and signal detection [1].
Recently the area of optics has been extended by using new
variations in transforms. Transforms that before were only
defined for whole cases have been generalized to fractional
cases. Such as the fractional Fourier transform [2]—[5], the
fractional Hilbert transform [6], [7], the Hankel transform,
[8], and the Hartley transform [9]. The fact of having gen-
eralized the transforms have allowed finding better results;
the fractional Hilbert transform can be applied to the detec-
tion of edges [10]-[13]. However, the most used fractional
transform has been the Fourier transform. It has applications
in different fields, such as Fourier optics [14], [15], convolu-
tion [16], image restoration [17], correlation [18]-[20], non-
linear optics [21], quantum mechanics [22] and, filtering [23],
recognition of objects [24], [25]. Another particularity of the
fractional Fourier transform is that from it, we can define
other fractional transforms, such as the fractional Hilbert
transform [6]. The correlation between the two functions is
more straightforward using the Fourier transform and the
frequential plane [26]. This property was extended to the frac-
tional Fourier transform, defining the fractional correlation
and the fractional convolution [3], [18]. Another transform
used is the Hermite transform, which is a particular case of the

polynomial transforms [27]. The Hermite transform appears
when the polynomials used in the transform are Hermite
polynomials [28]. This transform has applications in different
fields, has been used for iris recognition [29], estimation
in cardiac CT [30], and fetal echocardiography [31]. It has
been applied to noise reduction and image fusion [32], [33],
to make neural network correlation using simulated radar
signals [34]. In this article, we generalized the Hermite trans-
form into the fractional Hermite transform, and with this
increase, the ability to recognize patterns.

Il. 2-D HERMITE TRANSFORM

The Hermite transform is a particular case of polynomial
transforms; it can be considered as an image description
model. This transform is a technique of signal decomposition.
The analysis has two steps. First, an input signal L (x, y) is
multiplied by a window function,

v(x —p,y—q), (1

at the positions p and q.

The objective is achieving a complete description of the
signal; this process is repeated in several positions equidistant
from the window on the image, forming with these positions
a sampling grid S, where for each (x, y) the pixel coordinates
and the input signal is multiplied by the window function, and
the original signal is

The associate editor coordinating the review of this manuscript and L(x,y)= —— E L(x, y)vx —p,y—q), )
approving it for publication was Byung-Gyu Kim W(x,y) p.ges
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where,

W,y =Y vx—p,y—q), 3)

p.qeS

is a weighting function.

The only condition is that eq. (3) will be different from zero
in all (x, y).

Second, the signal in the window is described using a
weighting sum of G, ,—n, (x,y) with grades m and, n — m
respect to x, y.

The polynomials are defined by a window function,

o0 o0
/ f V25, )G (s ) X Gt (s Y)elxdy =SSt (4)

—00—00

where, n, I = 0,1,2,...,00;, m, k = 0,1,2,...,00,
81, Smi are the Kronecker function and, x is a point-by-point
multiplication.

The process of mapping the input signal into a weighted
sum of polynomials, called polynomial coefficients, is known
as a direct polynomial transform.

The polynomial coefficients Ly, ,—m (p, q) are calculated
by convolving the original image with the analysis filters

Donn—m(x, ¥) = Gy nm(x, Y (—x, =) Q)

that is, for everything, (p, g) € S,

Lm,n—m(pv Q):/ / L(x,y) XDm,n—m(x —p,y—q)dxdy. (6)

—00—00
where,
G - ! Ho( D) Hoow (L), @
m,n—m(xvy) = \/ﬁx m(;) n—m (;)» @)
x2+y2
v(x,y) = e 7, ®)

NN

where v(x, y) is a Gaussian window function, o is the stan-
dard deviation of the Gaussian window function and,

dn
Hy) = (—1)"e" e n=0,12,... (9
X

d

where H,(x) is the n-th Hermite polynomial.
Using the convolution form in eq. (6) it is defined as,

Linn-m(p. q) = L(x,y) % Din.n—m(x, y) (10)

Ill. CONVOLUTION
Convolution between two functions f(x,y) and g(x,y),
is defined as,

—00 —00

where &,n are the integration variables which do the
displacements.
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The convolution property [35] of the conventional Fourier
transform is given as,

F{f(x.»)"g(x.»)} = F(u,v)Gu, v), (12)

where, F is the Fourier transform operator, (x, y) are the space
variables and, (u, v) are the frequency variables.

It is possible to find the convolution between two functions
by the Fourier transform,

) g, y) = F7 {Fu, )G, v)}, (13)

and, in eq. (10), using L (x,y) = f(x,y) and, Dy p—m (x,y) =
g(x, y), it can be express as,

F{L (x,y)} x

F {Dm,nfm (x, y)}
Now, the Hermite transform will be express as a convolu-

tion between an input image L (x, y) and, the analysis filters
Dy, n—m (x,y), using the Fourier transform.

L n—m (P, q) =F‘1{ } (14)

IV. FRACTIONAL CONVOLUTION
An advantage of using Fourier formalism is that there is the
fractional Fourier transform [5], defined as follows,

F*(u) = F* {f ()} = /1 — cot

00
x einu2 cotgp / f (x) eimcz cotop 672inuxcsc¢> dx, (15)

—0oQ
The Eq.(15) is defined as the « order of the fractional Fourier
transform, with,
(%14
= —. 16
¢ > (16)
In this way, a fractional convolution can be generated using
the fractional Fourier transform [36]. Using (13) as follows,

F* {f (x, »)} x
F {g(x, )} } 17

As eq. (14), which represents the Hermite transform as a con-
volution, now using the fractional convolution the fractional
Hermite transform acquires an additional factor @ given by
the fractional convolution which modifies its behavior, this
fractional transform is represented as,

F {L (x, y)} x
F { Dy nm (x, )}

For the same values of m and n by varying the value of «
the convolution can be changed. The « value can be varied
from O to 1, where @« = O it is equivalent to multiplying
the input image by the filter associated with the order of the
Hermite transform and @ = 1 is the Hermite transform of
order m and n. For values between 0 and one, the Fractional
Transform of Hermite is obtained (Fig. 1).

The Hermite transform has been used to highlight edges,
this new parameter modifies the edges, and it could increase
the capability of image recognition. Different metrics were
used to test this additional factor, in which the « value was
adaptive to find the optimal order.

fx,y) *e glx,y) =F* {

Lm,n—m,(x @, (/I) =F" { } . (18)
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FIGURE 1. Different orders to the fractional Fourier transform, using the
order L; ; in Hermite transform.

V. METRICS
Different metrics quantify the ability of a methodology to
recognize an objective image. Among these metrics is the
Discrimination Coefficient (DC) and the peak-to-Correlation
Energy (PCE).

The discrimination coefficient evaluates the filtering skill
to detect an object immersed in noise. This coefficient is given
by [37],

2
pe =1 1G=# (19)
|Cr—1rl

where Cj_g is the maximum value of the correlation plane
between the target image and the background image (noise)
and Cj_jg is the maximum value of the correlation plane
between the target image and the target image affected by
noise. The maximum value of this metric is one when the
target image does not present noise. When the discrimination
coefficient value is zero or negative, it indicates a target image
very immersed in noise. Therefore, the filter cannot recognize
the target image.

The PCE value is a relation of the energy at the origin,
which compares the total energy of the correlation plane with
the value of the correlation peak energy,

2
PCE = M (2())

Efice ne}

where the numerator is the square module of the expected
value of the intensity of the correlation peak and, C(0, 0) is
the correlation plane center, in which the correlation value has
its maximum value.

The denominator is the square module of the expected
value of the average energy in the correlation plane at pixels
(x, ) [38].

The noise added to the images were Gaussian and impul-
sive, to visualize these noises were applied in letter E (Fig. 2).
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Variance & Density

Gaussian

Impulsive

FIGURE 2. The image of the letter E is shown with different values of
variance and density for the Gaussian and impulsive noises respectively.

VI. METHODOLOGY

Comparisons were made between three methodologies to
know the capacity of each one. The first case consisted of
doing the conventional correlation, which takes the input
images, then applied the Fourier transform to the images,
do the point-by-point multiplication, applied the inverse
Fourier transform to the result and, finally obtain the correla-
tion plane. The second case was using the Hermite transform
L1,; with which better correlation values are obtained [39],
in this case, the input images are modified using the Hermite
transform before applying the Fourier transform and do the
correlation. In the third case, the fractional Hermite transform
with the optimal order was used for each image before the
Fourier transform.

To find the optimal fractional order of the Hermite trans-
form L ; the values .61 < o« < 1.0 in (18) were applied.
For each value of «, an auto-correlation was performed, and
the correlation value was calculated. Use ¢ > 0.61 ensures
a correlation more representative than use small « values in
which not enough information is obtained. The optimal order
selected corresponds to the maximum correlation value for
each target.

VII. RESULTS

The discrimination coefficient for Gaussian and impulsive
noises were calculated comparing the Hermite transform to
the Hermite fractional transform (order « = 0.61). Also,
it was obtained the discrimination coefficient for the image
with classical correlation.

With the Gaussian noise, using a noise variance up to 5,
the three methodologies were capable of recognizing the
input image. The classic filter was used to probe the discrim-
ination coefficient; this produced a better noise tolerance in
the conventional correlation, which has a DC of 0.98 with a
variance of 5. Using the same parameters with the Hermite
transform L; 1, and the fractional Hermite transform L; i,
the DC values obtained were 0.75 and 0.88, respectively.

With the impulsive noise, the three methodologies showed
an acceptable tolerance. The DC value was close to one to
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FIGURE 3. Phytoplankton species. Species 1 is Acanthogonyaulax spinifera. Species 2 is Ceratium gravidum. Species 3 is Dinophysis
hastata. Species 4 is Diplosalopsis orbicularis. Species 5 is Histioneis. Species 6 is Lingolodinium polyedrum. Species 7 is Ornithocercu
armata. Species 8 is Ornithocercus magnificus. Species 9 is Oxytoxum scolapax. Species 10 is Podolampas bipes 1. Species 11 is
Podolampas spinifer 1. Species 12 is Podolampas bipes 2. Species 13 is Podolampas palmipes. Species 14 is Podolampas spinifer 2.
Species 15 is Protoperidinium. Species 16 is Dinophysis rapa. Species 17 is Dinophysis hastate. Species 18 is Ceratocorys horrida 1.
Species 19 is Ceratocorys horrida 2. Species 20 is Ceratium furca. Species 21 is Ceratium Iltinula. Species 22 is Ceratium hexacantum.
Species 23 is Ceratium praelongum. Species 24 is Ceratium breve. Species 25 is Asterolampra marylandica. Species 26 is Hemidiscus
cuneiformis. Species 27 is Thalassionema nitzschioides. Species 28 is Pyrocystis. Species 29 is Hemidiscus. Species 30 is Dinoflagellata.

a) Correlation plane without transform b} Correlation plane using Hermite transform L1 1

0.5~ 0.5

oo 100

Correlation plane using fractional Hermite transform

FIGURE 4. Correlation plane using three different methodologies. Using a) Classic correlation. b) Hermite correlation. c)
Fractional Hermite correlation « = 0.75.

a noise density of 90% using the conventional correlation, The conventional case showed higher tolerance to
in the case of using Hermite transform L; 1, the DC remained Gaussian and impulsive noise, due that the classic filter was
close to one until a noise density of 75% and the fractional used and had a better noise tolerance. However, a comparison
Hermite transform until 80%. between the Hermite transform and the fractional Hermite
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Correlation values of phytoplankton species
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FIGURE 5. Correlation values between 30 phytoplankton species using species 15 as a filter.

Case 9

Case 10

Case 11 Case 12

FIGURE 6. Illumination patterns used in the phytoplankton species images.

transform showed a better noise tolerance to the fractional
one.

To probe the methodologies images of phytoplankton
species with the black background of 320 x 320 pixel size
were used, these are shown in Fig. 3.

For each species, the optimal order of the fractional Her-
mite transform was calculated using the maximum correlation
value as a parameter; the optimal values are shown in Table 1.

Correlations were made with a classic filter and, with the
correlation values obtained, the three methodologies were
compared.

Using a classic filter, species 1 was auto-correlated in the
conventional form, also using the Hermite transform L |
and, the fractional Hermite transform with « = 0.75. The
correlation plane showed the correlation value and the PCE
for each case; the conventional correlation produces a lower
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Auto-correlation values with different illumination patterns
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FIGURE 7. Correlation values of species 1 with different illumination
patterns.

PCE (Fig. 4a), which indicates a weak capacity of recognition
in comparison with the Hermite transform, which produces
a better PCE (Fig. 4b), therefore a higher ability to identify
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Species R

Species G

Species N
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FIGURE 8. Fossilized diatoms, Species A: Actinocyclus ingens. Species B: Azpeltia sp. Species C: Azpeltia nodulifera.
Species D: Actinocyclus ellipticus. Species E: Actinocyclus ellipticus var. Moronensis. Species F: Denticulopsis pradimorpha.
Species G: Nitzchia praereinholdii. Species H: Bogorovia praepaleacea. Species I: Thalassiosira oestruppii var 1.

Species J: Thalassiosira oestruppii var 2. Species K: Tralassiosira domifacta. Species L: Asteromphalus imbricatus.

Species M: Pseudotriceratium cinnamomeum. Species N: Thalassiosira kozlovii. Species O: Coscinodiscus radiatus.
Species P: Diploneis bombus. Species Q: Stephanodiscus sp. Species R: Actinoptychus undulatus. Species S: Actinoptychus
bipunctatus. Species T: Actinoptychus splendens. Species U: Nitzschia reinholdii.

TABLE 1. Optimal order to each species using the fractional Hermite transform.

Species | Optimal order | Species | Optimal order | Species | Optimal order | Species | Optimal order | Species | Optimal order
(o) (o) (o) (o) (o)
1 0.75 7 0.82 13 0.75 19 0.86 25 0.79
2 0.82 8 0.84 14 0.78 20 0.70 26 0.73
3 0.68 9 0.87 15 0.77 21 0.66 27 0.75
4 0.71 10 0.72 16 0.86 22 0.65 28 0.78
5 0.94 11 0.80 17 0.89 23 0.81 29 0.85
6 0.77 12 0.81 18 0.87 24 0.75 30 0.95
TABLE 2. Optimal order of fractional Hermite transform for each diatom species.
Species A 0.74 Species H  0.79 Species O 0.74
Species B 0.76 SpeciesI  0.79 Species P 0.72
Species C  0.77 SpeciesJ  0.77 Species Q  0.75
SpeciesD  0.83 Species K 0.79 Species R 0.73
Species E 0.61 Species L 0.67 Species S 0.77
Species F 0.62 Species M 0.74 Species T  0.70
Species G 0.73 Species N 0.77 Species U 0.76

the input image. This behavior is the same as the fractional
Hermite transform, which has a high PCE value (Fig. 4¢).

For the 30 species, the correlation value was plotted to
find that the fractional Hermite transform produces excel-
lent results in comparison with those obtained with the
conventional correlation. We can distinguish every species
using the three methods. However, the cross-correlation
results obtained with Hermite and fractional Hermite trans-
form are smaller than using conventional correlation; these
smaller correlation values produce a higher reliability level
(Fig. 5).

28686

Applying 12 different illumination patterns were contem-
plated to evaluate the recognition capability of the method-
ologies (Fig. 6).

It was found that the fractional methodology is more
tolerant in the worst illumination. In the illumination pat-
tern 8, it can be seen that the fractional Hermite transform
has a higher correlation value than the other methodologies
(Fig. 7).

Table 1 shows the different optimal order for each species,
every order highlight component of each species since every
species has an optimal order, this order helps to highlight
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TABLE 3. Minimum information required to identify each diatom species.

Species Filter MRF MPRC MPRH MPR | Species Filter MRF MPRC MPRH MPR
A 1.08% 1.08% 0.46% L . 1.93% 1.93%  0.70%
g

B 297% 297% 1.12% | M . 5.96% 596%  1.71%
C 205% 2.05% 205% | N 18.7% 187%  5.74%
D 592% 592% 151%| O . 1.98% 1.98%  0.66%
E 42%  42% 0.94% P - 7.9% 7.9% 2.47%
F 10.8% 10.8% 10.8% | Q . 8.21% 821%  0.59%
G 729% 729% 729% | R . 7.19% 7.19%  0.80%
H 461% 4.61% 3.70% S . 10.96%  10.96%  0.73%
1 21.48% 21.48% 1339%| T . 4.9% 4.9% 1.14%
J 496% 496% 398% | U . 4.05% 405%  1.82%
K 25.36% 25.36% 15.03% | *MREF is the minimal fragment required using the fractional Hermite transform.

MPRC is the minimal percent required with conventional correlation.

MPRH is the minimal percent required with Hermite transform.

MPR is the minimal percent corresponding to MRF.

the components of his species and identify the species with
higher confidence.

Twenty-one species of fossilized diatoms (Fig. 8) with 50
fragmented variants per species were used (Fig. 9).

For each diatom species, the optimal order of fractional
Hermite transform was calculated, these orders increase the
capability of species identification even with fragmented
images (Table 2).

VOLUME 8, 2020

Correlations were made with the three methodologies. For
each species, the correlation value from the complete sample
to the 50th sample was selected, and it was verified that
the maximum cross-correlation value was not higher than
the minimum correlation value between the same species.
This limit corresponds to the ability to distinguish the target
species when it is fragmented. The values of this capacity are
shown in Table 3.
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Fragment 25

Fragment 30

Fragment 35

Fragment 40 Fragment 45

FIGURE 9. Some diatoms fragments used in correlations.

The fragment number required to identify each species
is minimal using the extreme phase filter and fractional
Hermite transform results shown in Table 3. Since the frac-
tional Hermite transform highlights the edges and has a
higher noise tolerance compare with Hermite transform, its
ability to recognized fragmented diatoms is better.

Table 3 shows a higher capacity to recognized fragmented
diatoms even with a little information comparing with other
methodologies; this raises the confidence level of diatoms
classification.

The Hermite transform highlights the edges in the image
that was applied; now, the optimal o« value also pro-
vides a specifically highlighted edges to each species; this
increases the capability of recognizing species even with few
fragments.

The results obtained by conventional correlation and using
the Hermite transform are equals because the extreme phase
filter produces similar correlation values in both correlations.

VIIl. CONCLUSION

In this work were evaluated three correlation methodolo-
gies, one used a control methodology which only had the
Fourier transform and two based on the Hermite transform
and the fractional Hermite transform. The results show that
exist different optimal orders to each image in which the
fractional Hermite transform could support more noise inten-
sity than the conventional Hermite transform and produces
a higher PCE value than the conventional correlation. The
fractional Hermite transform could identify all the phyto-
plankton species with a sufficient discrimination capacity,
even when the images had different illumination patterns,
shown a better identification capacity than the classical cor-
relation and conventional Hermite transform. The fractional
methodology responds better than the others when it was
tested with fragmented diatoms. Using extreme phase filter

28688

was possible to identify all the fragmented diatoms even with
a little part of the information. The new fractional correlation
presented has more noise tolerance and identification power
than using conventional transforms.
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