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ABSTRACT DBSCAN is the most famous density based clustering algorithm which is one of the main
clustering paradigms. However, there are many redundant distance computations among the process of
DBSCAN clustering, due to brute force Range-Query used to retrieve neighbors for each point in DBSCAN,
which yields high complexity (O(n2)) and low efficiency. Thus, it is unsuitable and not applicable for
large scale data. In this paper, an improved DBSCAN based on neighbor similarity is proposed, which
utilizes and Cover Tree to retrieve neighbors for each point in parallel, and the triangle inequality to filter
many unnecessary distance computations. From the experiments conducted on large scale data sets, it is
demonstrated that the proposed algorithm greatly speedup the original DBSCAN, and outperform the main
improvements of DBSCAN. Comparing with ρ-approximate DBSCAN, which is the current fastest but
approximate version of DBSCAN, the proposed algorithm has two advantages: one is faster and the other is
that the result is accurate.

INDEX TERMS Clustering, DBSCAN, neighbor similarity, cover tree.

I. INTRODUCTION
Clustering analysis refers to the analysis process of grouping
a set of physical or abstract objects into multiple classes
composed of similar objects. Its goal is to classify the data
according to the similarity of the internal characteristics of
the data, and reveal the internal natural structure of the data.
In short, clustering refers to grouping abstract objects or
physical object sets, so that the similarity of objects in a group
is large, while the difference between different groups is
large. It is unnecessary to training data set, so that it is called a
kind of unsupervised machine learning method. Hence, it has
a more prominent advantage in the face of some unknown
distribution data sets, due to that it is capable of classifying a
large number of unknown data to reveal the connection and
difference between different categories.

The associate editor coordinating the review of this manuscript and
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As an important research direction in data mining, many
clustering algorithms have been widely used in various fields
of data processing and application, and plays an indispensable
role that is more and more important, such as Vehicle re-
identification [1], Road Extraction [2], Time Series process-
ing [3], image fusion [4] and image denoising [5] etc.

Currently, there are numerous of clustering algorithms,
among which density based clustering is one of the most
popular algorithms, such as DPeak [6]–[9] algorithm and
DBSCAN [10] algorithm. DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) algorithm is a clas-
sical and one of the most important density based clustering
algorithm. It can not only find noise points and outliers, but
also identify any shape distribution categories in the data,
which has strong adaptability to different data. At present,
DBSCAN algorithm has been applied to many fields such
as image processing [11], consumer market analysis, crime
detection, medicine and agriculture. For example, in the field
of online advertising, by clustering users with DBSCAN
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algorithm, businesses can customize targeted advertising
sales strategies for different types of users, which can not
only improve the user experience to a certain extent, but
also greatly improve the conversion rate of corresponding
advertising. Another example, is that DBSCAN can also be
used in credit card application review, network crime, tax
evasion and other fields by comparing ordinary user behavior
data for abnormal user identification, because outliers can be
figured out easily by DBSCAN.

Although DBSCAN algorithm has been widely used, there
are still some shortcomings in the algorithm itself. The input
parameters of DBSCAN algorithm include scanning radius
ε and density threshold MinPts. In the process of clustering,
it needs to calculate the density of each data point. According
to the definition of density inDBSCANalgorithm, the density
of a data point is related to the distance from this point to
all other points. Therefore, DBSCAN algorithm has a large
amount of calculations, and runs in O(n2) expected time.
In addition, due to the ‘‘curse of dimension’’ DBSCAN is not
suitable for high dimensional data.

In this paper, we deeply analyze and study the clustering
principle of DBSCAN, and find that the core problem in
DBSCAN is to find nearest neighbors for each point, then we
propose a fast density algorithm based on nearest neighbor
similarity (by triangle inequality) and fast nearest neighbor
search (by cover tree), which can effectively reduce the num-
ber of distance calculations in the clustering process, and
improve the clustering efficiency.

II. RELATED WORK
DBSCAN algorithm needs two parameters, one is scan radius
ε, the other is MinPts, which is used to determine whether a
point is the density threshold of the core point. As mentioned
above, the algorithm has high complexity and time consump-
tion of corresponding clustering. For low-dimensional data,
DBSCAN algorithm can effectively cluster the data; however,
with the increasing of data processing dimensions, the per-
formance of DBSCAN algorithm in clustering drops sharply.
Therefore, DBSCAN algorithm cannot show its advantages
in dealing with large scale data.

In order to solve or alleviate the shortcomings of DBSCAN
algorithm and improve the efficiency of dealing with large
scale data, many researches have put forward strategies to
improve the algorithm. At present, there are mainly two ways
to improve.

The first method is to build index structure for data, such as
k-d tree [12] (and improved k-d tree [13]), Cover Tree [14],
Semi-Convex Hull Tree [15] and SS-tree [16]. This kind
of method is more efficient when the data dimension is
less than 20. The research of this method shows that the
time complexity of DBSCAN algorithm with these index
structures is O(nlog(n)). However, it turns out to be a false
statement. Gunawan [17] points out that no matter how ε

and MinPts are taken, the worst complexity of DBSCAN
is actually O(n2). However, this erroneous claim is widely
accepted in many research papers and textbooks, such as

literature [18]–[20], etc. In addition, because of the so-called
‘‘curse of dimension’’, that is, DBSCAN has little effect
on the high-dimensional data, when processing the high-
dimensional data (for example, more than 20 dimensions),
these index structures are difficult to achieve the purpose of
acceleration, or even degenerate into linear search.

Wu et al. [21] proposed a linear DBSCAN algorithm based
on LSH (Locality-Sensity Hashing). The principle of LSH
is to map the original data points to the hash bucket by
establishing multiple hash functions. The mapping process
needs to meet that the original data with similar distance
is still similar after mapping. LSH can effectively reduce
the data dimension and perform the nearest neighbor query
in linear time complexity. From the algorithm proposed by
Wu et al., we can analyze two parts: the first part is resume
LSH index; the second part is to execute DBSCAN algorithm
based on LSH index. The advantage of this algorithm is to
reduce the time complexity to O(nlog(n)); the disadvantage
is to increase the parameters, and it is difficult to set the value
of the parameters.

The second improvement is to partition the data set. There
are two ways to improve the method of data set partition. One
method is to divide large data sets into many smaller data sets,
and then use DBSCAN algorithm to cluster small data sets.
In the preprocessing stage, k-means algorithm is often used to
divide the initial data set into some independent small parts.
Thismethod reduces the data size of each processing, controls
the scale of the problem, occupies a small cache, but sacrifices
a certain algorithm accuracy.

There are also methods to divide data space into small
grids. This kind of method is to process the data in the small
grid first, and then merge the processed results in the large
grid, so as to improve the performance of the algorithm by
reducing the query time. Mahrand and Mahar [22] intro-
duced an algorithm called GriDBSCAN, which improves
the performance of DBSCAN by using grid division and
merging, thus producing high performance with high paral-
lelism. However, because the influence of redundancy in this
algorithm increases exponentially with the dimension, this
technique is not suitable for high-dimensional data. Similarly,
Gunawan [17] proposed a Fast-DBSCAN fast algorithm to
improve DBSCAN algorithm in two-dimensional data space.
The algorithm creates a virtual grid t in two-dimensional
space, in which each cell of T has a side length of ε/

√
2.

If a non-empty cell contains at leastMinPts points, the cell is
called a core cell; moreover, because the maximum distance
in the cell is ε, all points in the cell are core points, so it
is not necessary to calculate the density of each point in
the core cell. Based on fast DBSCAN algorithm, Gan and
Tao proposed ρ-approximate DBSCAN [23] algorithm. The
algorithm achieves an excellent complexity of O(n) in low
dimension. However, if the dimension D is very large, such
that d > log(n), then the algorithm degenerates to be anO(n2)
algorithm. Chen et al. proposed KNN-BLOCK DBSCAN
[24] and NQDBCAN [25], which are both simple but fast,
based on two points, the first one is that the key problem
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DBSCAN is a kNN problem, and the second is that a point
has a similar type its neighbors.

In addition to the above two improved methods,
Lulli et al. [26] proposed an extensible DBSCAN algorithm;
Han et al. [27] accelerated DBSCAN by using spark parallel
computing technology; Kumar and Reddy [28] proposed an
improved DBSCAN algorithm based on group. These works
use various techniques, which are different from the proposed
algorithm, to purse high performance of DBSCAN.

III. DBSCAN AND COVER TREE REVISITED
A. DBSCAN
In DBSCAN, there are some important concepts and terms,
where some of terms are used in the previous paragraphs,
such as core point, directly density-reachable, density reach-
able, density-connected and border point, and then cluster and
noise are defined according to these terms as below.
Definition 1 [10]: The ε-neighborhood of a point p,

denoted by Nε(p), is defined by Nε(p) = {q|q ∈ P, dp,q ≤ ε},
where P is a set of points and dp,q is a distance function e.g.
Euclidian distance, between p and q.
Definition 2 [10]: The density of a point p, denoted by
|Nε(p)|, is the total number of points within Nε(p).
Definition 3 [10]: A point p is a core point if
|Nε(p)| ≥ MinPts, where MinPts is the density threshold.
Definition 4 [10]: A point p is directly density-reachable

from a point q with respect to ε and MinPts if p ∈ Nε(q) and
q is a core point.
Definition 5 [10]:A point p is a border point if p is directly

density-reachable from a core point q and |N (p)| < MinPts.
Definition 6 [10]: A point p is density-reachable from a

point q with respect to ε and MinPts if there is a chain of
points p1, p2, . . . , pn, with p1 = q and pn = p such that pi+1
is directly density-reachable from pi.
Definition 7 [10]:A point p is density-connected to a point

q with respect to ε and MinPts if there is a point o such that
both p and q are density-reachable from o.
Definition 8 [10]: A point p is a noise if it is neither a

core point nor a border point. This implies that noise does
not belong to any clusters.
Definition 9 [10]:A cluster C with respect to ε andMinPts

is a non-empty subset of P satisfying the following condi-
tions:

(1) ∀p, q : if p ∈ C and q is density-reachable from p with
respect to ε and MinPts, then q ∈ C . (Maximality)
(2) ∀p, q ∈ C : p is density-connected to q with respect to

ε and MinPts. (Connectivity)

B. COVER TREE
Cover Tree [14] is an efficient nearest neighbor search algo-
rithm, which is based on a special hierarchical tree. The data
structure requires O(n) space regardless of the metric’s struc-
ture yet maintains all performance properties of a navigating
net, and can be constructed inO(c6n log n) time. Furthermore,
nearest neighbor queries require time aboutO(c12 log n) time.

There are three important properties in the cover tree data
structure as below:

(1) Nesting: if ci is the ith layer, then ci ∈ ci−1;
(2) Coverage: ∀p ∈ ci−1 has ∃q ∈ ci to dp,q ≤ 2i, and at

least one parent node with q as p;
(3) Separation: ∀p, q ∈ ci−1 we have dp,q > 2i.
The brief process of cover tree is: Firstly, the algorithm

build a hierarchical covering tree for the source data set in the
offline state. Secondly, for a batch of queries, the algorithm
also establishes a query hierarchy tree for them. Thirdly,
based on the tree properties, cover tree launches parallel
searching algorithm through the two trees build above.

IV. THE PROPOSED ALGORITHM
According to the advantages and disadvantages of various
improved DBSCAN algorithms mentioned above, in this
paper, we propose a new version of DBSCAN, it is based on
nearest neighbor similarity and fast parallel nearest neighbor
search, where the former reduces larger amounts of redundant
distance computation, and the later speedup the process of
searching neighbors for each point by parallel range query
technique, i.e., by cover tree.

First of all, P is the set containing N d-dimensional data
points, i.e. P ⊂ <D; pi ∈ P is the ith point; di,j represents
a certain distance from pi to pj (e.g. Euclidean distance,
Hamming distance, for the convenience of explaining that
the distance mentioned below refers to Euclidean distance);
r means scanning radius, and Nr (pi) is the r-neighborhood of
data point pi.
Definition10: The density of pi in r-neighborhood is

defined as:

ρi,r =

N∑
k=1

χ (di,k ≤ r) (1)

where χ (x) =

{
1, x is true
0, else.

This definition means that the density of a point is the total
number of neighbors within its r-neighborhood.

A. PROPERTIES OF TRIANGULAR INEQUALITY
Similar to KNN-BLOCKDBSCAN [24], we have an opinion
that a point should have similar density with its neighbors,
where triangular inequality may determine the type of that
point in some case. Hence, in the proposed algorithm, we ran-
domly select a data point pk which is used as a reference point
to filter some unnecessary distance computations for other
points. The detail is shown as below.

Firstly, we calculate the distances from pk to all other
points and sort the distances, then establish two vectors
of pk :

(1) Indexing vector: pk,(1), pk,(2), . . . pk,(n−1), where pk,(i)
is the index of the ith nearest neighbor of pk .

(2) Distance vector: dpk,(1) , dpk,(2) , . . . , dpk,(n−1) , where dk,(i)
is the distance from pk to its ith nearest neighbor.
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Taking Euclidean distance into consideration, we have the
following theorems and properties according to triangular
inequality.
Theorem 1: Let pi,pj, pk be three points in the data space,

then we have
∣∣di,k − dj,k

∣∣ ≤ di,j ≤ di,k + dj,k .
Proof: (1) Right side of the inequality: di,j ≤ di,k + dj,k ,

obviously holds.
(2) Left side of inequality: according to the principle that

the sum of two sides of a triangle is greater than the third
side, we have di,k ≤ di,j + dj,k and dj,k ≤ di,j + di,k , then
di,k − dj,k ≤ di,j and dj,k − di,k ≤ di,j, hence it is obtained
that

∣∣di,k − dj,k
∣∣ ≤ di,j.

The inequality
∣∣di,k − dj,k

∣∣ ≤ di,j in Theorem 1 reveals
a very simple phenomenon, that is: Let points pi be close
to point pj, then (1) the distance from pj to pk should
be small if pi is close to pk ; (2) on the contrary, if pi
is far away from pk , pj should be far away from pk , too.
The following simple properties can be derived from this
theorem:
Property 1: If

∣∣di,k − dj,k
∣∣ > r , then di,j > r , that is, pi and

pj are outside the r-neighborhood of pj and pi, respectively.
Property 2: If dj,k − r ≤ di,k ≤ dj,k + r , then pi may be in

the r-neighborhood of pj.
Property 3: If di,k + dj,k ≤ r , then di,j ≤ r , that is, pi and

pj are within the r-neighborhood of pj and pi, respectively.
Let [ε, MinPts] be the two parameters of DBSCAN algo-

rithm, then according to Theorem 1 and properties mentioned
above, there are some theorems as below.
Theorem 2: (1) if dp,(MinPts) ≤ ε, then p is the core

point; (2) if dp,(i) > ε, then p is the non-core point, where
i ≤ MinPts.

Proof: (1) Because dp,(MinPts) ≤ ε, we have
dp,(1) ≤ dp,(2) ≤ . . . ≤ dp,(MinPts) ≤ ε, |Nε(p)| ≥ MinPts,
then according to the Definition 3, p is a core point.
(2) Because i ≤ MinPts and dp,(i) > ε, ε < dp,(i) ≤

dp,(MinPts), hence |Nε(p)| < MinPts, according to the Defi-
nition 3, p is a non-core point.
Theorem 3: Given a point p ∈ P, if |N2ε(p)| < MinPts,

then ∀q ∈ Nε(p) q is a non-core point.
Proof: Because |N2ε(p)| < MinPts and Nε(p) ⊆

N2ε(p), |Nε(p)| < |N2ε(p)| < MinPts, then according to the
triangle inequality we have: ∀q ∈ Nε(p) such that Nε(q) ⊆
N2ε(p), and then |Nε(q)| < |N2ε(p)| < MinPts. Hence,
∀q ∈ Nε(p), q is non-core point.

From Theorem 3, it is inferred that if |N2ε(p)| < MinPts
holds, then all points within Nε(p) are all non-core points.
Therefore, it is quite useful to identify a large number of non-
core points.

B. ALGORITHM DESCRIPTION
Based on the triangle inequality and cover tree mentioned
above, in this paper we improve the DBSCAN algorithm,
as shown in algorithm 1, the detail descriptions are list as
below.
Step 1 (Tree Building): it establishes a hierarchical cover-

ing tree, T1, for the source data set;

Step 2 (Initialization): initializes unprocessed data, set the
neighbors of each point as NULL, and set the label for each
data point as ‘‘-2’’ which means unlabeled or unprocessed.
Step 3 (Querying): The algorithm selects seedsnum data

points (for example, 1000 or more) from the unprocessed
data, UD, as queries, and build a query tree, TQ, for them;
then, the cover tree is used to parallel retrieve the nearest
neighbors of each query point; and then, according to The-
orem 3 a part of outliers can be identified directly, and by
Properties 1, 2 and 3, some core points are also found that
is unnecessary to search in the global data. Repeat the above
process until the types (core, outlier, and border) of all points
identified.
Step 4 (Merging Core Into a Cluster): in this step, each

core point p will be merged into other core points which is
density-reachable from p, and forms different clusters.
Step 5 (Assigning Borders): For each border point, it will

be assigned to a nearest cluster.

C. COMPLEXITY ANALYSIS
As we can see from Algorithm 1, during the process of
clustering, the main operation of the proposed algorithm is
to retrieve the neighbors of query points.

There are two ways to query in the proposed algorithm:
one is to use cover tree to do CoverTree::RangeQuery, and the
other is to search only within the local neighborhood N2ε(p)
or Nε(p). Therefore, the complexity mainly consists of two
parts:

(1) Step 3.3: If n � 2d holds, the average time com-
plexity for CoverTree::RangeQuery is O (log n) [14]. There-
fore, the complexity of using CoverTree to perform neighbor
searching for the whole dataset is less thanO

( n
SeedsNum log n

)
.

(2) Step 3.4: all queries are performed within Nε(p) and
N2ε(p), in which the number of data points is closely (lin-
early) related to MinPts. Hence, the complexity is about
O
(
α ×MinPts2

)
, in which α < n is the execution times.

Comprehensively, the total complexity is less than
O
(
n×

[
1

SeedsNum log n+MinPts2
])

.

V. EXPERIMENTAL SIMULATION
A. ALGORITHMS AND MACHINE SET UP
In order to test the effect of different algorithm parameters
on different dimension datasets, the original DBSCAN algo-
rithm and ρ-approximate DBSCAN algorithm are selected
and compared with the improved algorithm proposed in this
paper.

All the experimental machines are configured as follows:
the CPU model is Intel (R) core (TM) i5-4590 3.30 GHz, and
the memory is 8G. They are all running with MATLAB code
under Windows 10 64 bit operating system.

B. DATA SETS
All data sets used in the following experiments come from
UCI (http://archive.ics.uci.edu/ml/index.php). Some toy data
sets are used to test the correctness of the proposed algorithm.
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Algorithm 1 ImprovedDBSCAN
Input: data setD, radius ε, density thresholdMinPts, seedsnum //seednum is the number of points that are used as seeds
Output: category labels Lables
1 Build a hierarchical covering tree T1 for dataset D;
2 Initialization:
2.1 Set unprocessed data set UD = D
2.2 Set the neighbor set of each point as TempNε(p) := {}
2.3 Lables: = {−2,−2, . . . ,−2}

3 While UD is not NULL
3.1 Seeds: = select seedsnum data points from UD as seeds ;
3.2 Bulid query tree TQ for Seeds
3.3 Use CoverTree:: RangeQuery (T1, TQ, 2ε) to parallel retrieve 2ε-neighbors for each seed point in Seeds
3.4 For each data point p in seeds

3.4.1 If |N2ε(p)| < MinPts,
(1) Label(Nε(p)) = −1 //Set the label of each point in Nε(p) to be ‘‘−1’’ which means it is an outlier
(Theorem 3)
(2) UD: = UD-Nε(p)

End If
3.4.2 If |Nε(p)| ≥ MinPts

(1) Mark p as a core point, UD: = UD- {p}
(2) ∀s ∈ Nε(p), find all ε-nearest neighbors of s within Nε(p) according to Property 1-3, and add them into
TempNε(s)
(3) If |TempNε(s)| > MinPts, then

Mark s as a core point
UD: = UD-{s}

End If
End If

End For
End While

4. While there is a core p unlabeled //The label of core point p is less than 0
4.1 current Tmplabel: =Max (Label) + 1
4.2 aCluster = {all core points that are density-reachable fromp} ∪ {p}
4.3 Label(aCluster) = Tmplabel

End While
5.For each non-outlier and non-core point p

5.1aCore = Find the nearest core point within Nε(p)
5.2 Label(p) = Label(aCore) // assigned to the category of the core point

End For
End

Furthermore, a total of 5 large scale real datasets are applied
to compare the speed of our method with ρ- approximate
DBSCAN and original DBSCAN.

These datasets includes PAM4D(4D), HOUSE (7D),
REACTION(HAND POSTURE, 28D), MOCAP(36D),
FONT(BODONI, 256D). For each data set, all duplicate
points are removed to make each point unique, all missing
values are set to 0, and all data value are normalized to
[0,100000]. The brief descriptions of the real data sets are
list as below.

(1) PAM4D is a 4-dimensional real dataset with cardinality
n = 3, 850, 505;
(2) HOUSE (Household) is an another low dimensional

real data set with dimension 7 and cardinality 2,049,280;
(3) MoCap is a relative high dimensional data set with

d dimension 36, cardinality 65,536. It has 5 types of hand

postures from 12 users, the data were recorded by using
unlabeled markers attached to fingers of a glove in a motion
capture environment;

(4) Font (CALIBRI) is character font images data set with
dim = 256, n = 19,068, which is made of images from
153470 character fonts (in this paper, we only use CALIBRI;

(5) APS(APS Failure at Scania Trucks) is a data set with
dim= 170, n= 30,000, which consists of component failures
for a specific component of the APS system.

C. EXPERIMENTS ON SOME TOY DATA SETS
In this subsection, we demonstrate experiments on some toy
data sets to show the clustering results as plotted in Figure 1,
where red hollow circle are noise.

From Figure 1, we can see that the proposed algorithm
works well on these data sets, and obtains good results as
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FIGURE 1. The clustering results of the proposed algorithm on some experiments on toy data sets. Red hollow circles are noise identified by the
proposed algorithm.

FIGURE 2. The clustering results of DPeak on some experiments on toy data sets, where dc is the scanning radius, ε, of DPeak.

original DBSCAN, i.e, the proposed algorithm can recog-
nize the main shapes and clusters. For simplicity, maybe the
parameter pair [ε, MinPts ] is not be best, here only one
clustering result is given for each data set.

Figure 2 shows the clustering results of DPeak on the
same data sets. In these experiments, we do not identify
noise for simplicity, and select 5, 3, 15, 5, 5 and 2 peaks,
respectively. We can see that DPeak doesn’t perform well
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TABLE 1. Runtime comparison on different data sets (unit: second).

for (e), on the other data sets, it works similarly to the pro-
posed method.

D. EXPERIMENTS ON LARGE SCALE REAL DATA SETS
In this subsection, we conduct some experiments on some
real large scale data sets, i.e, PAM4D, HOUSE, MoCap,
REACTIONetc.

Firstly, 10 subsets are extracted from PAM4D andHOUSE,
and the cardinalities of each subset are 3000, 6000,. . . , 30000,
respectively. The two DBSCAN parameters are ε = 2000,
MinPts = 200 on PAM4D, and ε = 5000, MinPts = 200 on
HOUSE, respectively.
The runtime comparisons of the proposed algorithm

with original DBSCAN and ρ-approximate DBSCAN algo-
rithm are shown in Figure 3. It is observed that the pro-
posed algorithm is similar to ρ-approximate DBSCAN in
4-dimensional data PAM4D, which indicates that it runs
in a linear expected time. But in 7-dimensional data set
HOUSE, the proposed algorithm outperforms ρ-approximate
DBSCAN, while DBSCAN runs in O(n2) clearly.
Secondly, in order to make more comparisons on some rel-

ative high-dimensional datasets, we also conduct experiments
on REACTION, MoCap and CALIBRI.

The results are shown in Table 1, we can see that
ρ-approximate DBSCAN algorithm degenerates to be an
O(n2) algorithm on these high-dimensional datasets, and
it runs even slower than the original DBSCAN algorithm
due to its redundant cost. However, the improved algorithm
proposed runs much faster than original DBSCAN, which
indicates that it has remarkable improvement and has better
performance in high-dimensional data sets.

FIGURE 3. Runtime comparison on PAM4D and HOUSE.

E. ACCURACY TEST
The improved algorithm proposed in this paper is to speed
up the original DBSCAN algorithm, so that it can deal
with large-scale data. The precondition is that the clustering
results should be consistent with, or as similar as possible to,
the original DBSCAN algorithm under the same parameters,
i.e, [ε, MinPts].
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FIGURE 4. The comparison on subset of House.

FIGURE 5. The comparison on subset of PAM.

TABLE 2. Example: The evaluation of clustering result.

In fact, the proposed algorithm in this paper uses Range-
Query of CoverTreer to search the nearest neighbor accu-
rately, so the algorithm in this paper is accurate. However,
because DBSCAN is a non-determinant algorithm:

(1) The cluster assignments for a border point may vary
depending on the order it appears. For example, suppose that
point s is a non-core point, p and q are core points, and both
p and q are not density-reachable from each other, but s is
density-reachable from p and q. In this case, s can be assigned
to either cluster of p or q.
(2) While for core points, the classification of DBSCAN is

determinant.
As we know that the clustering results of the two differ-

ent clustering algorithms may use different label values, for
example, clustering algorithm A represents a category by
using ‘‘1’’, while clustering algorithm B uses the same cate-
gory by ‘‘2’’. Therefore, it is necessary tomatch the clustering
results of the two algorithms first, before comparing them.

In order to match the different clustering results obtained
by different clustering algorithms, Chen et al. [29] used Hun-
garian algorithm [30] to maximize matching the clustering
results of the proposed method and ρ-approximate DBSCAN

to that of the original DBSCAN, and then compute the accu-
racy, as follows:

Suppose there are 8 data points, the clustering label
obtained by the original DBSCAN is Rori = {1, 1, 1, 2,
3, 2, 2, 3}, and the clustering result of a new algorithm is
Rnew = {4, 2, 4, 4, 5, 5, 2, 5}. If the matching pairs retrieved
from Hungarian algorithm are (1,4) (2,2) and (3,5), then the
right and wrong judgment of the new algorithm is shown
in Table 2, 4 results are correct, 4 errors, hence the accuracy
is 50%. Due to the high complexity of the original DBSCAN
algorithm, which cannot deal with large-scale data, we ran-
domly select 10000 data points from PAM and HOUSE as
test subsets. Figure 4 and Figure 5 show the accuracy com-
parison between the proposed algorithm and ρ-approximate
DBSCAN on two subsets.

It can be seen that the proposed algorithm proposed in
this paper is basically consistent with the original DBSCAN
algorithm, and the difference is mainly caused by the different
processing order of some boundary points.

VI. CONCLUSION
The existing density based clustering method DBSCAN,
because of redundant calculation, has too much complexity
and cannot be used on large-scale data, which limits its
application scope to a certain extent.

In this paper, we propose a DBSCAN algorithm based
on nearest neighbor similarity and fast nearest neighbor
search. By means of triangle inequality, neighbor similarity
and fast neighbor search algorithm, the number of distance
calculation in clustering process is greatly reduced, and the
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efficiency of DBSCAN algorithm is effectively improved.
Experiments show that compared with the original DBSCAN
algorithm and its current fastest version ρ-Approximate
DBSCAN algorithm, the algorithm is faster andmore suitable
for large-scale data sets.

Our future work is to apply other technique such
Map-reduce or Spark to accelerate the proposed algorithm.
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