
Received December 5, 2019, accepted January 24, 2020, date of publication February 6, 2020, date of current version February 18, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2972204

A New Approach to Parallel Processing
WILLIAM C. CAVE 1, ROBERT E. WASSMER 1, HENRY F. LEDGARD 2, ALAN B. SALISBURY 3,
KENNETH T. IRVINE 1, (Member, IEEE), AND MICHAEL A. MULSHINE 4
1Prediction Systems, Inc., Spring Lake, NJ 07762, USA
2College of Engineering, The University of Toledo, Toledo, OH 43606, USA (Retired)
3A. B. Salisbury & Co., McLean, VA 22101, USA
4Osprey Partners, Manchester, NJ 08759, USA

Corresponding author: Kenneth T. Irvine (ken@predictsys.com)

ABSTRACT The Application Space Architecture (ASA) defines parallel processor design as an adjunct to
the Instruction Set Architectures (ISA) defined by Von Neumann for single processors. Before addressing
hardware, one must understand applications requiring parallel processors, and software approaches required
to meet speed constraints. Parallel processor applications use a single task to run N (number-of-processors)
times faster than could be done on a single processor, where Processor Utilization Efficiency (PUE) is the
ratio of single processor time to parallel processor time divided by N. Such applications require processing
to be split into independent elements running in parallel on a large number of processors. This requires that
processors do not sit idle (current PUEs are typically 2-10%.) This sets the requirement for ‘‘independent’’
elements to communicate with each other without stopping. In special cases, clusters of PCs are used to
perform parametric analyses running many copies of a simulation on separate computers, typically using
different random numbers. Except for initial and terminal processes, these separate simulations hardly
communicate while running. Thus they are easily divided into separate tasks that typically exchange
information between computers passing data or messages through a top level management task. Such
applications (e.g., LINPACK) are labeled ‘‘embarrassingly parallel.’’

INDEX TERMS Application space architecture, data structures, engineering drawings, instruction set
architecture, module independence, parallel processing, processor utilization efficiency, separation principle,
simulation, software architecture, software engineering, software design, state-space methods.

I. INTRODUCTION
Hennessy and Patterson describe the need for an equiva-
lent single processor Instruction Set Architecture (ISA) for
parallel processors, [1]. This requires more than a spe-
cial hardware instruction set such as that for servers pro-
cessing multiple independent tasks on multiple processors,
see [2], [3]. Those working many parallel processor applica-
tions know that, although they appear different, they all share
critical properties. Those listed in Table 1 are sufficiently rep-
resentative to characterize common properties that directly
affect the measures described below. Unlike LINPACK, none
of these applications is considered ‘‘embarrassingly parallel.’’
As described by Stensrud, [4], weather models likely require
6 orders of magnitude above today’s speeds to achieve the
desired accuracy.

Software people working in large financial and product
distribution organizations understand the software problem in

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammad Anwar Hossain .

general. Systems are comprised of hierarchies of many differ-
ent computer centers spread across the U.S., interacting 24/7.
Distribution Centers may support thousands of clients, taking
many inputs and producing many outputs. Requirements for
such systems are not simple. Just defining communications
between nodes is complex. Detailed architectural design is
critical to development and maintenance of such systems.
The software development environment determines the pro-
ductivity of people building such systems. Software people
consider language the critical element. As described by peo-
ple highly familiar with parallel processing, software people
cannot keep up with the huge advances made in computer
hardware using existing languages, see Section XI.

Can one imagine building an aircraft without engineering
drawings? We cannot imagine designing software without
engineering drawings. But the words ‘‘software architecture’’
and ‘‘software module’’ are used in the literature - without
being defined! Yet these definitions are critical when design-
ing huge software architectures using engineering drawings.
But is it being taught?

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 30287

https://orcid.org/0000-0002-5332-774X
https://orcid.org/0000-0003-0993-1517
https://orcid.org/0000-0002-1172-1861
https://orcid.org/0000-0002-1323-6050
https://orcid.org/0000-0001-9440-1216
https://orcid.org/0000-0003-4676-7517
https://orcid.org/0000-0002-7673-8410


W. C. Cave et al.: New Approach to Parallel Processing

TABLE 1. Representative list of parallel processor applications.

In the 1960s, engineers could not wait months for pro-
gramming groups to generate simulations of electronic cir-
cuits, especially those requiring highly nonlinear waveforms
used in computer design. Understanding computers, engi-
neers built their ownComputer-AidedDesign (CAD) systems
for circuit design. Multiple simulations are now built in a
day. CAD quickly expanded to other engineering fields, e.g.,
mechanical, architectural, and aeronautical.

Having developed multiple CAD systems, the theoretical
concepts described here were initiated to minimize run time
as well as software development/support costs for real-time
control and communication systems as well as the applica-
tions listed in Table 1. The goal of an early project was to
reduce simulation run times from seven days to an hour. This
appeared to imply the use of parallel processing, provoking
out-of-the-box thinking about software development. The
principle requirement is the ability to have multiple software
modules running non-stop in parallel. This is similar to people
driving cars on a one-way 3-lane highway, glancing at others
while making decisions. Information is sampled - as needed -
without stopping. This implies substantial independence of
the operators.

This led to the underlying property of independence as
defined mathematically, and particularly by Kalman for
designing real-time control systems, [5]. This then led to the
concept of software architectures that could be created using
independent modules. But what is a software module? And
what is software architecture?

II. THE PROPERTY OF INDEPENDENCE
When designing applications to run on parallel processors,
one must take maximum advantage of inherent parallelism
in the application. This implies splitting applications into
separate elements that run simultaneously while exchanging
information as they run - without stopping - representing
actual physical systems affected by their environment as they
move ahead.

It is the software design that determines the implementa-
tion of independent elements. Although the words ‘‘Module’’
and ‘‘Architecture’’ are used undefined in the software litera-
ture, they are critical terms in other engineering fields when
properly defined. This requires mathematically based defi-
nitions of software architectures and independent modules
for placement on separate parallel processors. When using

the definitions provided below to support these requirements,
the need for a new approach to software design becomes
apparent.

Although the following explanation starts with an obvi-
ous mathematical relation to some of the applications listed
in Table 1, it applies to all when considering general
definitions of underlying spaces used to define the state
of a system. Military planning and big data systems are
example applications where the parameters within complex
state spaces that represent these systems can be tested and
changed with logical data equations. These are also defined
mathematically.

When investigating properties of modules that run in paral-
lel on separate processors, theymust be independent, i.e., they
do not improperly affect each others’ outcomes. This leads
to definitions of the property of module independence. This
requires two types of independence: spatial and temporal.
Two modules may be spatially independent - independent for
all time. Or, they may be temporally independent - indepen-
dent over specified time periods.

To build fast parallel processor software, one must take
maximum advantage of the inherent parallelism in an appli-
cation. This requires a software environment that simpli-
fies mapping the independence properties into independent
modules. Fig. 1 depicts steps required to map application
requirements into independent software spaces, and then into
hardware spaces designed to support optimal mapping of
modules to maximize operational speed.

III. A CAD APPROACH TO PARALLEL PROCESSOR
SOFTWARE DESIGN
To solve parallel processor software problems that are
not ‘‘embarrassingly parallel’’, one must map the inher-
ent parallelism in an application onto the hardware. This
requires a software environment that simplifies the design
effort for application experts. Fig. 2 illustrates VisiSoft, a
Computer-Aided Design (CAD) approach that supports ease
of translation of software designs into a hardware space that
maximizes understanding as well as speed.

Much of the burden of design/implementation is then
shifted from the developer to highly sophisticated archi-
tecture and language translators - using the computer.
As described by Peter van der Linden, [6-pg 64], this is where
the burden should be.

30288 VOLUME 8, 2020



W. C. Cave et al.: New Approach to Parallel Processing

FIGURE 1. Spaces for translation of application requirements into software and then hardware.

FIGURE 2. Using VisiSoft for translation of application requirements into software on parallel processors.

The transformations defined in Fig. 1 require special facil-
ities illustrated in Fig. 2. They support selection of the ‘‘best
spaces’’ to simplify the algorithms required to meet the appli-
cation requirements. Selection of the best spaces implies that
the resulting algorithms are:

• Maximally simplified while achieving desired accuracy
• Very fast
• Easy to build
• Easy to understand

These facilities must support the following requirements.

• Mapping the functional and operational application
requirements into a software architecture and supporting
algorithms requires: (1) Application experts with knowl-
edge of the complex system and corresponding event
spaces; and (2) Graphical facilities for visualization of
software architecture - using engineering drawings.

• Mapping application space requirements into a software
design for a parallel processor hardware space requires
special architectural and language facilities. Graphical
visualization of the architecture is critical to this process.

• Complex software spaces require the use of deep hier-
archical data structures, organized in accordance with
the application space - not by data type. These spaces
must be easily organized and understood by application
experts.

• Complex software algorithms require the use of
deep hierarchical rule structures. These must
be organized in accordance with the application
space - using one-in one-out control structures that
are easily understood by application experts, see
Mills, [7].

• Application expertise is required to design Indepen-
dent (IND) Modules. Special graphical visualization
tools are critical to simplify understanding of both
design of the modules and mapping them onto parallel
processors.

• Mapping IND Modules over heterogeneous spaces pro-
vides substantial improvements in speed. Tests must
be run to determine their relative speeds - for pro-
cessor placement - to maximize Processor Utilization
Efficiency (PUE).

VOLUME 8, 2020 30289



W. C. Cave et al.: New Approach to Parallel Processing

• IND Module run-time speed measures are provided
automatically (viewed as bar graphs of IND Module
run-times on each processor). Speed is easily improved
by reorganizing module assignments based on visual
measures of PUE.

• Assignment of IND Modules across boxes, boards,
chips and processors based on physical connectivity
requires application experts and can substantially min-
imize delays when using DMA Channels.

• During initialization, architectural information derived
from the development environment is provided to the
VisiSoft Parallel OS (VPOS). This coupled with the
proper allocation of INDModules can eliminate the need
for run-time memory management at the L3 cache and
data level.

• Selection of cross-processor event states by application
experts can save huge amounts of time by synchronizing
the exchange of information between INDModules that
are temporally independent and can continue to run
concurrently.

A. MEASURES OF COMPUTERS AND SOFTWARE
In the computer field, hardware products are generally mea-
sured in terms of speed and ease of use (both of which
translate to time and cost):
• How much time does it take to run an application?
• How much time does it take to build/modify an
application?

The first stored program computer - the Maniac - was
designed by Eckert, Mauchley, and Von Neumann, [8].
Instead of wiring boards and worrying about timing and syn-
chronization of calculations required by existing tabulators,
the new architecture stored instructions in memory with the
data. Using a binary instruction set - Von Neumann’s Instruc-
tion Set Architecture (ISA) - the hardware design require-
ments were defined to simplify programming. Programmers
could list the sequence of instructions to be executed in
specified memory locations along with the data.

Since stored ISA instructions run sequentially, their opera-
tions are independent. The property of independence made
computer programming simple - no more concerns about
timing and race conditions. The field exploded. This soft-
ware productivity breakthrough still holds today for single
processors. But it does not apply to parallel processors, see
The ASA, [2], and [3].

When building complex software applications to minimize
run-time on parallel processors, run-time speed of different
approaches is measured by comparing the time it takes to run
an application. One can first compare the single processor
time achieved by the different approaches, and then compare
results on parallel processors using the best single processor
time. To produce comparative measures of software speeds
to evaluate the facilities described above, one can calculate
the PUE, defined as:

PUE =
1
NP
∗

(
TS

TP

)

In the above measure, NP is number of parallel processors
used, TS is the fastest time to run on a single processor, and
TP is time to run on a parallel processor.

B. CAD SOFTWARE ENGINEERING
To meet speed constraints, mathematically sound definitions
are required to support parallel processor software archi-
tectures. This implies that a large task can be decomposed
into hierarchies of IND Modules that share data while run-
ning concurrently. To do this, application experts must easily
understand the detailed design - down to the code. This
requires a CAD software development system using engi-
neering drawings to visualize detailed designs for parallel
processors as illustrated in Fig. 2 and also described in [3].

The context of architecture used here is no different from
the hierarchy of drawings required to support the design of
skyscrapers. This is unnecessary when building dog houses or
small software applications. Similarly, architectural drawings
must be accompanied by a set of easily understood specifica-
tions. This raises the questions: What does it take to produce
engineering drawings of software; and what language proper-
ties are required to support complex hierarchical data spaces
that are easily understood by application experts?

IV. THE SEPARATION PRINCIPLE
The underlying principle characterizing module indepen-
dence is the ability to determine which modules share what
data. This is accomplished by separating data from instruc-
tions at the language level. Defined by Cave in 1982 while
designing the General Simulation System (GSS), this has
become known as the Separation Principle, [9]. GSS was
designed to support huge simulations for the DoD, [10]–[12].
Using the Generalized State Space framework, the Separation
Principle stores all data in Resources as illustrated in Fig. 3.

Deep hierarchies are required to design complex spaces.
They must also allow large complex data structures to be
moved with a single instruction, and with all of the individual
fields directly available to instruction hierarchies inProcesses
as illustrated in Fig. 4. This provides ease of understanding
as well as orders of magnitude improvement in single pro-
cessor speeds. Experimental results of speed comparisons are
described in [3], Chapter 17.

The process language supports hierarchies of rule struc-
tures, where looping and complex IF. . .THEN. . .ELSE state-
ments are flattened - no nesting. Waterfall or Fall through
code is gone - without GOTOs. These properties simplify
design of algorithms while eliminating unintended recursion,
leading to substantial increases in understanding and run time
speed - on single as well as parallel processors. Global data
is eliminated. All data is automatically referenced by pointer.

Note that subscripts are not used in Fig. 3 or Fig. 4.
This is because the resource and process shown are
part of an instanced module, where instance pointers
(TRANSMITTER& RECEIVER) are automatically handled
at the module level. These are set when a process within
an instanced module is CALLed or SCHEDULEd. Moving

30290 VOLUME 8, 2020



W. C. Cave et al.: New Approach to Parallel Processing

FIGURE 3. Example of a hierarchically structured state vector (RESOURCE).

instance implementation to the module level substantially
enhances understanding of the code.

It is important to note that hardware design separates data
memory from instruction memory. This is important since
VisiSoft resources are stored in data memory while processes
are stored in instruction memory. This provides additional
speed advantages when mapping modules to processors, and
assigning and managing memory.

Users assign sets of instanced modules to specified pro-
cessors using the third language - the Control Specification.
Assignments are aided by a graphical interface so application
experts can use their knowledge of the application to make
physical processor assignments. The third language provides
many facilities, e.g., easily understood sections for defining
files, libraries, graphics, initialization, and multiple runs for
simulation and optimization, eliminating complex scripts.

These three languages support design of software spaces
that simplify human translation of inherently parallel physical
entities into an organization of independent mathematical
functions (modules). Design of the resource and process
languages are driven by factors akin to those motivating use
of tiling in parallel versions of C. This minimizes memory
management overhead for swapping instructions and paging
data. It maximizes the work done on each processor while
processes run concurrentlywith those on the other processors,
maximizing the PUE. Fig. 3 and Fig. 4 provide examples
of hierarchical resources and processes that help understand-
ability of the design.

When building complex software, human translation is
simplified if a language supports obvious representation of
physical behavior. Redundancy supports ease of understand-
ing, and the likelihood that information is communicated

VOLUME 8, 2020 30291



W. C. Cave et al.: New Approach to Parallel Processing

FIGURE 4. Example of a hierarchically structured transformation (Process).

correctly to others, see [13] and [14]. The examples
in Fig. 3 and Fig. 4 are taken directly from large simulations
of Packet Radio networks. Using hierarchical data structures
like those shown simplifies understanding of complex algo-
rithms representing physical systems. As shown below, actual
systems may entail more complex resources and processes
than those above, but are easily understood by application
experts.

V. SOFTWARE ARCHITECTURE
The Separation Principle supports a precise definition of
software architecture as well as engineering drawing visual-
ization. Resources are depicted as ovals in architectural draw-
ings as illustrated in Fig. 5. Processes containing instructions

that implement transformations are depicted as rectangles.
The lines connecting them determine which processes have
access to what resources. In this figure, each process has
a dedicated resource and shared resources. Transformation
1 has state vector A as input, state vector B for dedicated use,
and shares state vector C with transformation 2. Therefore,
Transformations 1 and 2 are not independent.
As used here, the property of independence ensures that

processes running on a parallel processor produce complete
and consistent results for a given set of initial conditions. Con-
sider that state vectors C, D, and E have initial values Ci, Di,
and Ei. When run on a single processor (sequential machine),
Transformation 2 will produce the same outputs: Co, Do, and
Eo for a given set of inputs every time it runs; i.e., the results

30292 VOLUME 8, 2020



W. C. Cave et al.: New Approach to Parallel Processing

FIGURE 5. State vectors and transformations.

will be complete and consistent. If while it is running, one
of the resources is changed from the outside, the results may
not be complete and consistent. This is because the data being
accessed is not consistent relative to Transformation 2.

If Transformations 1 and 2 run concurrently, shared state
vector C could be changed by either, rendering the data as
recognized by the other as potentially inconsistent. There-
fore, in general, they cannot operate concurrently. Similarly,
Transformation 2 is directly coupled to Transformation 3 by
shared state vector E, is not independent of it, and thus cannot
run concurrently with it. However, Transformations 1 and 3
can operate concurrently since they share no state vector
directly and are therefore spatially independent. Transforma-
tion 2 can operate onlywhen Transformations 1 and 3 are both
idle; in that case they are temporally independent. Temporal
independence is handled without idling using SCHEDULE
statements between processors to schedule processes at the
current or a future time, and memory copies as described
below. We note that memory is abundant and easily traded
for speed.

A. VISUALIZATION
Fig. 6 illustrates how VisiSoft software architects can decom-
pose a system into modules by grouping resources and pro-
cesses into an elementary module. Hierarchical modules
are created by grouping modules into higher level mod-
ules. Fig. 6 is a library module, PROPAGATION_ PRE-
DICTION, that is sufficiently complex to warrant its own
drawing. In general, modules are independent if they share
no resources (i.e., they are not connected). Having designed
an architecture, developers implement the data structures and
rules using the resource and process languages.
The languages do not support declaration of scope rules.

The architecture determines how data is shared, and the cor-
responding independence of modules. As an option, green
arrow lines can be turned on to show CALLing tree con-
trol flow to eliminate unintended recursion. Arrows only
point down ensuring the proper ‘‘chain of command.’’ Using
this CAD approach, resources and processes may be edited
directly on the drawing as illustrated in Fig. 7.

The languages are designed to provide for deep hierar-
chies in both data structures and rule structures to support

complex software spaces and algorithms. These
mathematical properties are critical to simplifying the under-
standability of large complex software systems. For example,
the engineering drawings are not flow charts. They define
connectivity - explicitly - mathematically.

B. PARALLELISM, ARCHITECTURE AND DECOMPOSITON
When striving to take advantage of inherent parallelism in a
system, one must design an architecture of software modules
that maximizes concurrency on a parallel processor. Design-
ing the best set of state spaces is key to solving this problem.
This translates into mapping the inherent parallelism of a
system into independent modules that maximize run-time
speed.

Having defined Generalized State Space as the VisiSoft
framework, the mathematical analogy becomes one of select-
ing the best set of information tensors (Resources) to repre-
sent the system attributes. Depending upon how the resources
are designed and structured, the rules (Processes) are much
easier to build, understand, and modify. This is also deter-
mined by the independence properties of the architecture, i.e.
the interconnection of resources and processes. This system
also eliminates C++ type pointers and global data types. All
these unnecessary complexities conflict with simplifying the
design of software for parallel processing.

Instead of attempting to describe architectures at the lan-
guage level, the problem is separated into the natural hier-
archy of engineering drawings and language. To follow this
concept further, there are specific types of modules and
resources, also designated at the drawing level using differ-
ent colors. These are described below. The simplifications
that these visually distinct properties and hierarchies provide
become obvious after using them.

C. TYPES OF MODULES
The module types that make up the layers of a VisiSoft
software task follow a design hierarchy described below and
shown in Fig. 8. Module types provide different levels of
protection with regard to their reuse in different hierarchies.
Both elementary and hierarchical modules can reside within
each type as well as in a VisiSoft Task.
• Modules - have a blue border. These are the basic build-
ing blocks in a task. In the CAD system described here,

VOLUME 8, 2020 30293



W. C. Cave et al.: New Approach to Parallel Processing

FIGURE 6. Illustration of an engineering drawing with the process CALL tress turned on.

30294 VOLUME 8, 2020



W. C. Cave et al.: New Approach to Parallel Processing

FIGURE 7. Illustration of editing resources and processes on the drawing.

VOLUME 8, 2020 30295



W. C. Cave et al.: New Approach to Parallel Processing

FIGURE 8. VisiSoft hierarchy of modules.

modules may be decomposed hierarchically, i.e., they
may contain layers of submodules and sub-submodules,
etc.
– Elementary Modules - contain resources and

processes.
– Hierarchical Modules - contain elementary mod-

ules and hierarchical modules.
• IND (Independent) Modules - have a brown border.
INDModules only share Inter-Processor (IP) Resources
externally - and only with other IND Modules. When
using parallel processors, IND Modules must be the
highest level modules on a processor. INDModules may
reside on the same or different processors.

• Utility Modules - have a green border. These are mod-
ules that are reused by processes in the same directory,
and can appear in more than one hierarchy in different
drawings. They are typically used to manage separate
databases or perform utility type functions. The green
color distinguishes them for change protection. They
can only be changed in their own drawing. If they are
changed to accommodate a different requirement, that
change must be compatible with all processes that use
them. Separate copies automatically reside on each pro-
cessor that uses them.

• Library Modules - have a gold border. These are highly
protected utility modules that can be shared from dif-
ferent directories and computers, being stored as object
modules in special object library files. The source only
appears in the directory where they are maintained.
Library module Processes are called from an application

using their process name, module name, and library
name. Since each of these names must be unique within
the next level of hierarchy, there can be no duplicate
names when linking to library modules in the VisiSoft
CAD environment. Separate copies reside on each pro-
cessor that uses them.

• The functions of a library module may be upgraded
while at the same time preserving the original module
in the library for prior users. Users can call the new
function using the same process name within the same
library by using a new module name. The existing CAD
system has a large set of libraries that support various
applications, including 3D graphics and various global
coordinate system transformations. These are shared
easily.

D. INSTANCED MODULES
Modules and IND Modules can be instanced (number of
instances appear in red). This allows assignment of groups
of instances to different processors. This facility is supported
by the Control Specification language, providing the ability
to assign specific sequences of IND Module instances to
different processors to maximize PUE.

When building complex software systems on parallel pro-
cessors, it is important to select the proper module types
at the engineering drawing level. Module types are used to
create hierarchies, and to differentiate how they are used
and accessed. Depending upon the module type and what
is required architecturally, modules must share specified
resource types as dictated by design for concurrent oper-
ations. Equally important is selection of specific types of
resources, also designated at the drawing level using different
colors as described below.

E. TYPES OF RESOURCES
A hierarchy of types of data resources is required to sup-
port different architectural requirements. It is the architec-
ture - augmented by different resource types - that simplifies
the design of complex software systems, particularly those
designed to run on parallel processors. Resources also facili-
tate direct mapping of complexmathematical spaces into well
organized data descriptions. Designers can easily create or
modify resource types. The hierarchy of different resource
types is shown in Table 2.

F. SELECTION OF RESOURCE AND MODULE TYPES
To assess parallelism, one must understand the property of
module independence. Modules are spatially independent
(independent of time) if they share no data (resources). From
an application standpoint, these modules have no direct influ-
ence on each other while running. Modules are temporally
independent if they only influence each other at specified
points in time. A typical example is using differential equa-
tions to represent dynamic systems. Computer solutions typ-
ically assign a 1T time step that is small enough to ensure
sufficient accuracy of solutions when compared to actual tests

30296 VOLUME 8, 2020



W. C. Cave et al.: New Approach to Parallel Processing

TABLE 2. VisiSoft resource types.

(1Tmay vary for nonlinear systems). This implies that equa-
tions are solved at successive time steps, (T+1T), so changes
in one part of a system cause sufficiently accurate effects in

another part. Information on changes are exchanged at the
beginning or ending of each time step, affecting calculations
within the desired time step.

VOLUME 8, 2020 30297



W. C. Cave et al.: New Approach to Parallel Processing

More generally, modules are temporally independent if
they share information on a synchronized basis. This requires
that only the module containing an IP Resource can change
the information in that resource. Other modules can copy that
IP Resource information into their own IP Access resource
making the information available for follow-on calculations.
Since this CAD system supports discrete events, where a
process can SCHEDULE another on a different processor,
system level states may be defined to ensure synchronization
among all modules. For example, an IND Module changing
an IP Resource can set a system state to indicate it has been
updated. A module reading that resource can set a different
system state showing that it has read the latest copy. Just as
the real physical systems they represent, no module need stop
to wait for the others, thus maximizing PUE. An example is
people observing those around them as they drive.

Fig. 9 provides a stand-back illustration of the ability to
visualize the level of complexity of theGLOBAL_PLANNER
simulation. This application requires parallel processors to
meet speed requirements in support of multi-run planning.
It uses many large library modules not shown on the drawing.
It also has many different INDModule types (brown borders)
and instances (red numbers). All these modules are connected
using special types of resources. It can easily house additional
modules within each of the platform modules as well as more
platforms.

In addition, platforms must communicate while moving
over mountainous terrain. As platforms move they may
lose connectivity. This must be tracked to determine which
ones can communicate. This requires an electromagnetic
wave model (the library model in Fig. 6) to determine plat-
form connectivity based on their position relative to terrain.
With 153 platforms using the detailed propagation model,
it runs 50 - 12 hour scenarios in less than 100 seconds
to perform parametric analysis on an 18 processor PC size
machine. The CAD system also contains graphical facilities
described below that support the spread of instanced IND
Modules evenly across processors to maximize the resulting
PUE measure.

VI. TIME SYNCHRONIZATION AND SPEED
Given the temporal independence condition, changes in one
IND Module that affect another on a different processor will
be reflected with sufficient accuracy as long as the effects
are resolved within a user specified 1T time period. This
provides the ability to synchronize information exchanges.
It implies that the times when: (1) a sending process updates
its IP resource; and, (2) the receiving process copies it into
its IP Access resource - both fall within an allowed 1T. Syn-
chronization is accomplished when the shared IP Resource
information is exchanged within successive1T time periods.
In typical applications, speed is most important, determin-

ing whether application run-time constraints are met. When
applications impose a speed constraint, the optimal design
problem is to minimize the number of processors required to
meet that constraint. When time constraints can be met using

a smaller number of processors, speed will rise exponentially
just due to the smaller footprint. This can dramatically reduce
power requirements as well as floor space.

PUE depends upon the average amount of useful work
done on each processor within a maximum (1Tmax) win-
dow, [3]. When the amount of work done on each processor is
highly varied, many processors will have large idle times, and
the resulting PUEwill be low.When the useful times spent on
each processor are all close in size, the average idle time in a
1Tmax window is typically much smaller rendering the PUE
much higher. Fig. 10 provides a stand-back illustration of the
ability to visualize measures of the PUE in three successive
time steps for the GLOBAL_PLANNER simulation in Fig. 9.
Each line represents one of 14 processors, and each colored
box on a line represents an IND Module. The IND Module
processor assignments can be changed to maximize the PUE.

A. PROCESSOR & Memory Assignment
Decisions to place modules on processors is a major fac-
tor in run-time speed. In the approach used here, processor
placement can provide an order of magnitude increase. Here
we must differentiate between stationary and non-stationary
(stochastic) applications. In stationary cases, specific module
instances can remain on the same processor throughout a
run. This is true in applications where, when modeling the
movement of particles from one cell to another, one is only
interested in their combined nonstationary properties, e.g.,
the number of particles and total mass in a cell. In these cases,
the individual particles are not labeled and their combined
properties are stationary relative to cell placement.

In the GLOBAL_PLANNER example used above, individ-
ual platforms have specific IDs, and are tracked as platforms
move from cell to cell on different processors. However,
in this simulation, sufficient copies of platform models exist
in each cell that they may occupy. So the properties of a
platform are copied to an unused model instance in a new cell
to which they move, including its name and pointer when a
cell crossing occurs. Memory assignments never change.

Even in non-stationary cases, once the memory for an IND
Module is assigned to a processor, the memory need not
be moved. In typical cases, sufficient memory exists at the
L3 Cache level so that L3 Memory Management is virtually
eliminated. Depending upon the size of the IND Modules
and how they are designed, Cache management of L1 and
L2 is minimized. Only the designer of such a system knows
how to distribute the IND Modules at the L3 level. If the OS
gets involved, huge amounts of time can be wasted moving
memory that otherwise can remain stationary. The OS does
not have the necessary information for this decision.

When looking at the overall architecture of large real-time
control systems, and the speeds that can be achieved as mem-
ory sizes are increased at very low costs, it is clear that mem-
ory is a key to speed. Upon reviewing the use of stacks, cache
coherency and other facilities, and the chip space required
to support them, one must consider the potential increase of

30298 VOLUME 8, 2020



W. C. Cave et al.: New Approach to Parallel Processing

FIGURE 9. Standback illustration of an engineering drawing of the GLOBAL_PLANNER-A parallel processor simulation.

VOLUME 8, 2020 30299



W. C. Cave et al.: New Approach to Parallel Processing

FIGURE 10. Snapshot of PUE for 3 Delta_Ts, using 14 processors (one on each line) containing colored boxes representing
IND modules.

30300 VOLUME 8, 2020



W. C. Cave et al.: New Approach to Parallel Processing

memory that may be had by eliminating these unnecessary
facilities.

VII. SUPPORTING NONSTATIONARY & NONLINEAR
CASES
As described above, connectivity between specific
GLOBAL_PLANNER platforms must be tracked, so plat-
form IDs must be identified when changing cells. This
requires a nonstationary solution. Weather molecule IDs are
not tracked. Only changes in mass within a cell need be
tracked, a stationary problem. This implies that the memory
locations used need not change.

As described above, the OS memory manager knows little
about the physical layout of an application and cannot map it
so it does notmove. This is the problemwith cache coherency.
Instead, using a little more memory, the designer can move a
platform to a different cell by allocating sufficient memory in
each cell to support the maximum number of platforms. This
avoids an OS moving platforms and cells to processors that
are likely to be far from the adjacent processors.

The upper left hand corner, ¬, of Fig. 11 illustrates a
breakout of the space in which platforms move. This space is
used to calculate electromagnetic path loss between platforms
based on their positions relative to terrain. This space is
translated into cells for computational purposes. We note
that this set of spaces is similar to that required for weather
prediction as noted in the figure to the right of that containing
the terrain, .

Weather models are currently inaccurate due to the parallel
processing speed required to model nonlinear spaces. The
linear approach, called parameterization, [4], uses cell sizes
above 1Km that are much too large to support mountainous
and other regions. Those familiar with this problem say it
would take 6 to 8 orders of magnitude increase in speed to
use the nonlinear models and 100 meter cell sizes needed
to achieve the required accuracy. Many factors contribute
to solving this problem. A critical factor is the use of het-
erogeneous spaces, e.g., using different cell sizes based on
steepness of terrain. This requires the use of deep spatial
hierarchies such as those described above. VisiSoft can meet
the nonlinear weather model speed requirements.

VIII. HARDWARE ARCHITECTURE
What becomes obvious when designing software archi-
tectures for parallel processors is the need to understand
the complex spaces underlying an application so that their
independence properties are easily represented in visualiza-
tions of the architectures. Now known as the Application
Space Architecture (ASA), [2], it has been used for defin-
ing a new approach to parallel processor hardware design
using directly interconnected chips, ¯, and boxes, °, shown
in Fig. 11. Every processor, chip and box has Direct Mem-
ory Access (DMA) channel connections with its 26 adja-
cent neighbors. Given that some accesses may be slightly
slower than others, this still eliminates the huge delays
encountered when going through communication channels

in a server. Servers are not parallel processors; and parallel
processors need no I/O facilities - they can be tied to a server
for external access.

Being equivalent to the ISA for single processors, the ASA
represents a huge improvement in parallel processor speed
measures. The software CAD system used here to describe
the GLOBAL_PLANNER contains graphical facilities that
support the mapping of multiple INDModule instances (e.g.,
groups of cells) evenly across processors to maximize the
resulting Processor Utilization Efficiency (PUE) measure. It
also provides additional facilities to ensure that the mapping
maintains close proximity to adjacent processors, chips and
boxes shown in Fig. 11.

The GLOBAL_PLANNER simulation, with 153 platforms
using detailed propagation models, runs 50 - 12 hour scenar-
ios in less than 2 minutes to perform parametric analysis on
an 18 processor PC size machine, achieving PUE measures
of 95%.

IX. HARDWARE DESIGN CHANGES
Based on extensive testing, existing chip, board, and box
designs can be used ‘‘as is’’ to start. The current approach uses
a single PC box with 28 processor chips and up to four chips
on a single board – for a total of 112 processors. Initial tests
indicate that this configuration can beat a typical large rack
containing thousands of processors and using over 1000 times
the energy.

A. CHIP DESIGN
The initial chip effort is to analyze how to support the new
board and box design described below. This must provide the
ability to interconnect chips using DMA channels between
shared memory on small boards in a single box (8’’ X 8’’),
and between different boxes (6’’ apart). It is expected that
this may be done in a manner similar to that between multiple
chips on a board and may not require any chip changes – only
board and box circuit changes.

A major new chip design must remove unneeded instruc-
tions and logic that supports the following unnecessary facil-
ities:
• I/O device facilities - Perform direct data transfers to a
server box using DMA Channels

• Network Communications, e.g., bit modulation and
routing - Use DMA Channels to adjacent boxes

• Cache Coherency - Application experts map memory
directly

• Thread Synchronization - Application experts SCHED-
ULE processes

• Stack Facilities - Only needed for recursion which is
unnecessary (can be done in software)

Automatic use of stacks is built into current popular lan-
guage compilers to compensate for unintended recursion,
a topic not covered in the literature. Languages not using
explicit CALL statements are prone to unintended recursion,
a difficult problem to uncover in complex systems. Good lan-
guage translators ensure against unintended recursion using

VOLUME 8, 2020 30301



W. C. Cave et al.: New Approach to Parallel Processing

FIGURE 11. The ASA - mapping application cells into IND modules, processors, chips and boxes.

30302 VOLUME 8, 2020



W. C. Cave et al.: New Approach to Parallel Processing

one-in one-out control structures as prescribed by Mills [7],
and additional checks to ensure control sequences follow
a proper ‘‘chain of command.’’ Unused chip space due to
removal of automatic stack facilities and other bullets above
can be used to expand cache memory, a major factor in speed.

B. BOARD DESIGN
New boards must be designed to fit within 8’’ cubic boxes.
Chips, memory, wires and other electronics will be on
the inside surface of the boards. Boards will be hinged
and attached with removable connectors where needed for
both electrical and mechanical access. Connections between
boards must be designed to support (possibly slower)
DMA channels.

C. BOX DESIGN
New boxes must be designed with connectors on faces
allowing connections in all 26 directions. Connections
between boxes must be designed to support (possibly slower)
DMA channels.

X. CONCLUSION
Hennessy and Patterson spelled out the need to rethink the
ISA currently used for hardware designs and create a new
approach for parallel processor designs. As stated by many
top hardware designers, e.g., Chuck Moore, Justin Ratner,
Craig Mundie, Gordon Bell, etc., a new approach is needed
to build software that takes advantage of parallel processors,
see SECTION XI below.

To solve these problems, onemust start with an understand-
ing of the underlying differences in applications that require
parallel processing speeds to meet their time constraints ver-
sus those that can run on a single processor or cluster. Next,
one must understand how the common properties of parallel
applications lead to a new approach to the design of both
software and hardware that takes maximum advantage of
parallel processing. The first principle is that applications
must have a sufficient number of independent elements that
can run in parallel. The second principle is understandability
of the architectural solution so that it can be designed and
mapped effectively onto parallel processor hardware.

Because of the level of complexity, one must have the
tools to separate the independent application elements into
independent software modules. This is essential to designing
the complex spaces required to represent parallel processor
applications. It requires the ability to represent complex spa-
tial hierarchies in a manner that is easily understood by appli-
cation experts. It also requires the ability to easily understand
and separate the complex algorithms that use the separate
spatial hierarchies.

This leads to the Separation Principle, separating data from
instructions at the language level. Once this is done, visu-
alization of complex application architectures can be imple-
mented using engineering drawings of software. Independent
modules can be defined mathematically using the drawings.
Independent modules can be mapped onto parallel processors

- based on their relative adjacent spatial positions - to maxi-
mize PUE and run-time speed.

The ASA follows from the optimal placement of adjacent
modules on adjacent processors, chips and boxes to support
direct memory access between the hardware elements that
comprise the overall parallel processor. A simplified repre-
sentation of this sequence is illustrated in Fig. 11. Actual
hardware architectures must be based on designs that imple-
ment the ASA, particularly the use of DMAchannels between
processors, chips, boards and boxes that are in the 26 adjacent
directions comprising the environment of each.

The approach and facilities described here have evolved
and been tested on over 100 projects since 1982. Deliv-
ered systems include real-time planning, control, and simula-
tion to support complex military and commercial operations
and equipment. Speed comparisons with current software
approaches have exceeded two orders of magnitude on single
processors. Single box comparisons have exceeded four to six
orders of magnitude on parallel processors. Just considering
the reduction in footprint provides support for the increases
in speed. Existing tests are easily repeated to understand and
prove the theory.

XI. ARTICLES BY INDUSTRY LEADERS ON PARALLEL
PROCESSING
The problem of using parallel processors was addressed
in the 1960s. Mathematical problems using vectors were
approached using special hardware designs. Many efforts
using parallel processors still continue down this path, with
hardware designs making up for the lack of a software envi-
ronment to deal with the underlying problem. Even when
handling special problems, processor utilization efficiency is
typically down around 2-10%.

The current state of affairs is best expressed in quotes from
published articles below and references [15] through [27].

A. MULTI-CORES, SOFTWARE’S GORDIAN KNOT AND THE
ALEXANDRIAN SOLUTION - SEP 13, 2007, SEE [29]
To fully utilize the hardware parallelism inherent in embed-
ded multi-core designs, they say, will require a shift to a more
implicitly parallel programming language and methodology.
However, many, including researchers at Microsoft, believe
that it will take at least ten years for the industry to shift to a
new parallel programming framework.

B. EE TIMES: INTEL CTO PRESSES SOFTWARE
DEVELOPERS TO KEEP PACE – JAN 17, 2008, SEE [30]
Software development and delivery have failed to keep pace
with advances in computer hardware, according to Intel
Corp.’s CTO. — As hardware technology approaches the
terascale level on the desktop, software has fallen further
behind. — One result has been a lack of parallel program-
ming applications to leverage dual-andmulti-core processing
technology. Intel is looking for ‘‘new languages for program-
ming in parallel,’’ (Justin) Rattner told the India Semiconduc-
tor Association.

VOLUME 8, 2020 30303



W. C. Cave et al.: New Approach to Parallel Processing

C. EE TIMES: INDUSTRY SEEKS A MODEL FOR NEXT-GEN
MULTI-CORE CPUS - FEB 14, 2008, SEE [31]
‘‘The industry is in a little bit of a panic about how to program
multi-core processors, especially heterogeneous ones,’’ said
Chuck Moore, a senior fellow at Advanced Micro Devices
trying to rally support for work in the area. ‘‘To make effec-
tive use of multi-core hardware today you need a PhD in
computer science. That can’t continue if we want to enable
heterogeneous CPUs,’’ he said. The challenge in the parallel
world is finding a dynamic and flexible approach to schedule
parallel tasks from these modules across available hardware
in complex heterogeneous multi-core CPUs.

D. EE TIMES: MULTICORE PUTS SCREWS TO
PARALLEL-PROGRAMMING MODELS -
FEB 15, 2008, SEE [32]
Leaders in mainstream computing are intensifying efforts to
find a parallel-programming model to feed the multicore pro-
cessors already on chip makers’ drawing boards. —Develop-
ers need to expand the current software stack in fundamental
ways to handle a coming crop of processors that use a variety
of cores, accelerators and memory types, according to the
company. — Both AMD and Intel have said they will ship
processors using a mix of X86 and graphics cores as early
as next year, with core counts quickly rising to eight or more
per chip. But software developers are still stuck with a mainly
serial programming model that cannot easily take advantage
of the new hardware.—Thus, there’s little doubt the computer
industry needs a new parallel-programming model to support
these multicore processors. But just what that model will be,
and when and how it will arrive, are still up in the air.

E. REUTERS: MICROSOFT’S TOP VISIONARY SEES A
PARALLEL WORLD - MAR 13, 2008, SEE [33]
Craig Mundie, Microsoft Corp’s Chief Research and Strategy
Officer, is sure he has a good handle on where technology is
going. When is another story. — The computer industry has
taken its first steps toward parallel computing in recent years
by using ‘‘multi-core’’ chips, but Mundie said this is the ‘‘tip
of the iceberg.’’ — To maximize computing horsepower, soft-
ware makers will need to change how software programmers
work. Only a handful of programmers in the world know how
to write software code to divide computing tasks into chunks
that can be processed at the same time instead of a traditional,
linear, one-job-at-a-time approach. — A new programming
language would be required and could affect how almost
every piece of software is written. — ‘‘This problem will be
hard,’’ admitted Mundie, who worked on parallel computing
as the head of supercomputer company Alliant Computer Sys-
tems before joining Microsoft. ‘‘This challenge looms large
over the next 5 to 10 years.’’

REFERENCES
[1] M. Martinez, ‘‘Nobel prize for computing, based on Hennessy-Patterson

turing lecture,’’ presented at the Int. Symp. Comput. Architecture,
Los Angeles, CA, USA, May 2018.

[2] H. Ledgard, ‘‘The cave ASA versus the Von Neumann ISA,’’ Univ. Toledo,
Toledo, OH, USA, Mar. 2019, [Online]. Available: http://www.predictsys.
com/LEDGARD_ASA.pdf

[3] W. Cave, ‘‘Software engineering for parallel processors,’’ Predict. Syst.,
Spring Lake, NJ, USA, Jul. 2019. [Online]. Available: http://www.
predictsys.com/SoftwareEngineeringForParallelProcessors.pdf

[4] D. Stensrud, Parameterization Schemes. New York, NY, USA: Cambridge
Univ. Press, 2007.

[5] R. E. Kalman, ‘‘A new approach to linear filtering and prediction prob-
lems,’’ J. Basic Eng., vol. 82, no. 1, pp. 35–45, Mar. 1960.

[6] P. van der Linden, Expert C Programming: Deep C Secrets. Englewood
Cliffs, NJ, USA: Prentice-Hall, 1994.

[7] H. D.Mills, ‘‘Mathematical foundations of structured programming,’’ IBM
Federal Syst. Division, New York, NY, USA, Tech. Rep. FSC 72-6012,
1972.

[8] G. Dyson, Turing’s Cathedral. New York, NY, USA: Pantheon Books,
2012.

[9] Y. Kambayashi and H. Ledgard, ‘‘The separation principle: A program-
ming paradigm,’’ IEEE Softw., vol. 21, no. 2, pp. 78–87, Mar. 2004.

[10] Prediction Systems, ‘‘Visual software development for parallel machines,’’
US Army CECOMContract, Spring Lake, NJ, USA, Final Rep. DAAB07-
97-C-H501, Mar. 1997.

[11] Prediction Systems, ‘‘Multi-computer version of GSS,’’ DARPA BAA
CONSORTIUM, Contract MHPCC, Spring Lake, NJ, USA, Final Rep.,
Sep. 1998.

[12] Prediction Systems, ‘‘High Efficiency, Scalable, Parallel Processing,’’
DARPA Contract, Spring Lake, NJ, USA, Final Rep. SF022-035,
Jun. 2003.

[13] C. E. Shannon, ‘‘A mathematical theory of communication,’’ Bell Syst.
Tech. J., vol. 27, pp. 379–623, Jul./Oct. 1948.

[14] Prediction Systems. A Briefing on VisiSoft—A CAD System for Building
Complex Software Systems. Accessed: Sep. 19, 2019. [Online]. Available:
http://www.predictsys.com/PSI_CAD_SHOW.pptm

[15] D. H. Bailey, ‘‘Twelve ways to fool the masses when giving performance
results on parallel computers,’’ Supercomput. Rev., pp. 54–55, Aug. 1991.

[16] A. Barr, ‘‘Interview by Stephen Cass, Why do good engineers write
bad software? Adam Barr has some answers,’’ IEEE Spectr., Jan. 2019.
[Online]. Available: https://spectrum.ieee.org/geek-life/reviews/when-
good-engineers-write-bad-software

[17] E. Ogheneovo, ‘‘Software dysfunction: Why do software fail?’’ J.
Comput. Commun., vol. 2, pp. 25–35, Apr. 2014. [Online]. Available:
https://www.scirp.org/journal/paperinformation.aspx?paperid=45351,
doi: 10.4236/jcc.2014.26004.

[18] G. P. Armour, ‘‘Software: Hard data,’’ Commun. ACM, vol. 49, no. 9,
pp. 15–17, Sep. 2006.

[19] M. A. Cusumano, ‘‘What road ahead for microsoft and windows?’’ Com-
mun. ACM, vol. 49, no. 7, p. 21, Jul. 2006.

[20] D. Anselmo and H. Ledgard, ‘‘Measuring productivity in the software
industry,’’ Commun. ACM, vol. 46, no. 11, pp. 121–125, Nov. 2003.

[21] D. Anselmo. (May 2004). Why Hasn’t Software Productivity Improved?
presented at Software Summit, Washington, DC, USA. [Online]. Avail-
able: http://www.predictsys.com/Software_Productivity_Anselmo.pdf

[22] H. J. Poore, ‘‘A tale of three disciplines and a revolution,’’ Computer,
vol. 37, no. 1, pp. 30–36, Jan. 2004.

[23] R. Groth, ‘‘Is the software industry’s productivity declining?’’ IEEE Softw.,
vol. 21, no. 6, pp. 92–94, Nov. 2004.

[24] W. C. Cave and R. E. Wassmer, ‘‘The software survivors,’’ Vis.
Softw. Int., Spring Lake, NJ, USA, May 2014. [Online]. Available:
http://www.predictsys.com/SoftwareSurvivors.pdf

[25] R. Camford, ‘‘Software engineering?’’ IEEE Spectr., pp. 62–65, Jan. 1995.
[26] Chaos, Charting the Seas of Information Technology, Standish Group Int.,

Dennis, MA, USA, 1995.
[27] Battling Google, Microsoft Changes How it Builds Software, Wall Street

J., New York, NY, USA, Sep. 2005.
[28] Resistance References. Accessed: Sep. 27, 2019. [Online]. Available:

https://www.predictsys.com/RESISTANCE_SP.pdf
[29] B. Cole. (Sep. 2007). Multi-Cores, Software’s Gordian Knot and the

Alexandrian Solution. EE Times. [Online]. Available: https://www.
embedded.com/design/mcus-rocessors-and-socs/4026126/Multi-cores-
software-s-Gordian-Knot-and-the-Alexandrian-Solution

[30] K. Krishnadas. (Jan. 17, 2008). Intel CTO Presses Software Develop-
ers to Keep Pace. EE Times. [Online]. Available: https://www.eetimes.
com/document.asp?doc_id=1167793

30304 VOLUME 8, 2020

http://dx.doi.org/10.4236/jcc.2014.26004


W. C. Cave et al.: New Approach to Parallel Processing

[31] R. Merritt. (Feb. 13, 2008). Industry Seeks a Model for Next-Gen Mul-
ticore CPUs. EE Times. [Online]. Available: https://www.eetimes.com/
showArticle.jhtml?articleID=206503988

[32] R.Merritt. (Feb. 15, 2008).Multicore Puts Screws to Parallel Programming
Models. EE Times. [Online]. Available: https://www.embedded.
com/design/mcus-processors-and-socs/4023225/Multicore-puts-screws-
to-parallel-programming-models

[33] D. Wakabuyashi. (Mar. 13, 2008). Microsoft’s Top Visionary Sees
a Parallel World. Reuters. [Online]. Available: https://www.reuters.
com/article/us-microsoft-mundie/microsofts-top-visionary-sees-a-
parallel-world-idUKN1222563020080313

WILLIAM C. CAVE received the B.S. degree
in electrical engineering (computer option) from
Pennsylvania State University, PA, USA, in 1960,
theM.S. degree in electrical engineering/computer
science from New York University, NY, USA,
in 1963, and the Ph.D. degree in electrical engi-
neering Fellowship from the Polytechnic Institute
of Brooklyn, NY, USA, in 1965. He has completed
PG courses in electrical engineering for optimal
and stochastic control theory at the Stevens Insti-

tute of Technology, Hoboken, NJ, USA, from 1967 to 1968.
He worked on one of the first digital computers - PENNSTAC, Penn

State, from 1958 to 1960. He worked on the first transistorized computer -
BASICPAC at Philco, from 1960 to 1962. He was the Project Leader of
the U.S. Army MINIPAC Computer, one of first transistor computers, from
1962 to 1965. He was the Chairman and the CEO of Optimal Systems
Research, Inc., from 1967 to 1974. He was the U.S. Representative for
NATO Panel XIII, Data Communications, Brussels, Belgium, from 1976 to
1978. He was the Chairman of the U.S. DoD Panel on Software System
Development, from 1976 to 1978. He has been the Chairman and the CEO
of Prediction Systems, Inc., Spring Lake, NJ, USA, since 1974. He has
also been the Chairman and the CEO of Visual Software International, Inc.,
Spring Lake, since 2004. He has been the author of numerous articles and
books for professional societies and publishers, including the book, Software
Lifecycle Management: The Incremental Approach (Macmillan, 1984). He is
a member of IEEE - Eta Kappa Nu.

ROBERT E. WASSMER received the B.E. degree
in electrical engineering from Villanova Univer-
sity, PA, USA, in 1968. He has completed graduate
courses in electrical engineering at the Stevens
Institute of Technology, Hoboken, NJ, USA, from
1968 to 1969.

He was an Engineer with the U.S. Army Elec-
tronics Command, from 1968 to 1969. He was
with the U.S. Air Force - Reserves from 1968 to
1974 receiving an Honorable Discharge Electron-

ics. He was the Vice President of Optimal Systems Research, Inc., from
1969 to 1973. He was an Assistant Vice President with the Distributed
Processing Division, Continental Corporation, from 1973 to 1982. He has
been the Executive Vice President of Prediction Systems Inc., Spring Lake,
NJ, USA, since 1982. He is a member of IEEE - Eta Kappa Nu.

HENRY F. LEDGARD received the B.S. degree
(magna cum laude) in electrical engineering from
Tufts University, MA, USA, in 1964, and the M.S.
and Ph.D. degrees in electrical engineering from
the Massachusetts Institute of Technology, MA,
USA, in 1969. The author’s thesis was Formal
Specification of Programming Languages.

He is a retired Professor Emeritus of electrical
engineering and computer science with The Uni-
versity of Toledo. He has been a Visiting Fellow

with Oxford. He was a Professor with Johns Hopkins and the University
of Massachusetts, spent two years in Paris on the Honeywell Design Team
for the U.S. DoD Common Language Effort. He has consulted for large
corporations on programming languages.

Dr. Ledgard has been the author and an Editor for numerous articles and
books on software for professional societies and publishers.

ALAN B. SALISBURY received the B.S. degree
from the U.S. Military Academy, West Point,
NY, USA, in 1958, and the M.S. and Ph.D.
degrees in electrical engineering/computer science
from Stanford University, Stanford, CA, USA,
in 1964 and 1973, respectively.

He retired with the rank Major General from
the United States Army, in 1987. He was the
President of CONTEL Technology Center, from
1987 to 1991, the Executive Vice President of

Microelectronics and Computer Technology Corporation, from 1991 to
1993, the Chairman of the U.S. subsidiary of Learning Tree International,
from 1998 to 1999, on the Board of Visitors of Software Engineering
Institute, CMU, from 1990 to 2002, on the Board of Directors of Sybase,
Inc., from 1993 to 2010, and the President of the Center for National
Software Studies, from 1999 to 2005. He has been the Chief Executive
Officer of A. B. Salisbury & Co., VA, USA, since 1999. He is the author
of Microprogrammable Computer Architectures (Elsevier, 1976). This was
the first book in the Computer Design and Architecture Series.

KENNETH T. IRVINE (Member, IEEE) received
the B.E. degree in electrical engineering/computer
science, the M.S. degree in computer science, and
the M.E. degree in electrical engineering from
the Stevens Institute of Technology, Hoboken, NJ,
USA, in 1985, 1987, and 1990, respectively.

From 1985 to 2012 and 2016 to the present, he
was with Prediction Systems, Inc., Spring Lake,
NJ, USA,where he is currently theDirector of Sys-
tems Engineering. From 2013 to 2016, he served as

the Project Manager for developing Condition Based Maintenance (CBM+)
architectures at LogTech, LLC. He is a member of IEEE - Eta Kappa Nu.

MICHAEL A. MULSHINE received the B.S.
degree in electrical engineering from the NJ Insti-
tute of Technology, NJ, USA, in 1961.

He worked in engineering, sales/marketing at
Electronic Associates, Inc., Analog/Digital com-
puters, from 1961 to 1970. He was the Vice
President and the General Manager of ATC Instru-
ment Flight Simulator, from 1970 to 1976. He has
been a Consultant for Osprey Partners - Corporate
Governance &Business Development, since 1976.

He has also been an Instrument Pilot - Private Pilot, since 1962, with
Instrument Rating, since 1969.

VOLUME 8, 2020 30305


