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ABSTRACT This study proposes an objective and accurate geo-hazards risk assessment method to address
the challenge of increasingly severe hazards around the world. Previous studies mostly began from the
perspectives of hazard and vulnerability, ignoring the role of survey data at disaster sites during risk
assessments. The random forests (RF) model was applied in this study. Combined with detailed data from
hazard sites, a geo-hazards risk assessment model was constructed, with the two dimensions of disaster
hazard and vulnerability, was constructed. We analyzed the spatial pattern characteristics and the internal
patterns of disaster risk and discussed the risk controlling factors and their contributions. The results showed
the following. (1) The RF model, when combined with hazard, vulnerability conditions, and detailed data
from disaster sites, can be used to zone and verify regional geo-hazards risks, providing a method for
point-to-surface disaster risk mapping. (2) The RF-based geo-hazards risk assessment results were relatively
consistent with the evaluation results from the support vector machine (SVM) model, but the accuracy and
stability of the RF model were higher. (3) This method can be used to avoid the subjectivity in determining
the weights and threshold values for indexes and can calculate the contribution of each index to geo-hazards
risks.

INDEX TERMS Geo-hazards, random forests model, risk assessment, Shifang county, support vector
machine model.

I. INTRODUCTION
Geo-hazards, such as landslides, debris flows, collapse,
ground fractures, are an important type of natural hazards.
The occurrence of geo-hazards directly induces infrastruc-
ture damage and property loss and is sometimes life-
threatening [1]. As a result of the aggravation by global
climate change and the impacts of human activities, the fre-
quency of geo-hazards has shown an increasing trend, which
will also increase the harm to society [2]. In 1992, the United
Nations Department for Humanitarian Affairs (UNDHA)
published the definition of disaster risk: Risk is the expected
losses value of people’s lives, property and economic activi-
ties caused by specific natural disasters in a given region and
in a given period of time, and disaster risk regarded as a func-
tion of hazard and vulnerability [3]. This definition is widely
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accepted by scholars and institutions. Geo-hazards risk
assessments have long been the focus of scholars and govern-
ment agencies [4]. By means of 3S technologies (global posi-
tioning system (GPS), geographic information system (GIS),
and remote sensing (RS)), constructing an assessment index
system for regional hazard risk from the perspectives of
hazard and vulnerability, delimiting the range of each index
threshold, determining the weight of each index, and realizing
the monitoring and assessing regional geo-hazards risks, has
become the most widely used assessment method [5]–[7].
Unfortunately, this assessment mode is very subjective.
For example, in terms of the slope index, because of the
lack of a unified standard for the slope threshold, differ-
ent scholars have reached very different results when deter-
mining the ranges of a slope, resulting in uncertainty in
the assessment results. There are numerous risk assessment
indices for geo-hazards, including hazard-forming environ-
ments, hazard factors, and hazard-bearing bodies [8]–[10].
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However, it remains a challenge to scientifically determine
the main factors controlling hazard risk and their individual
contributions. Geo-hazards risk assessments involve many
scales, including cities [11], terrain areas [12], communi-
ties [13], watershed areas [14], and grids [15]. Scholars
have applied many assessment models, such as the analytic
hierarchy process [16], geostatistics [17], logistics regres-
sion [18], the fuzzy comprehensive evaluation method [19],
the grey system theory [20], the projective strategy [21],
and the attribute interval evaluation theory (AIET) [22].
In addition, the development of artificial intelligence (AI)
technology offers more possibilities for scientific assess-
ments of geo-hazards risks. Numerous machine learning
models, such as decision tree (DT) [23], support vector
machine (SVM) [24], artificial neural network (ANN) [25],
BP-artificial neural network (BP-ANN) [26], and Bayesian
network (BN)models [27], have been applied for geo-hazards
risk assessments. Among them, the SVM model, which is an
efficient and reliable AI algorithm, has a very strong nonlin-
ear processing ability and is one of the significant methods
in risk assessment [28]. This paper compared the assessment
results between the SVMmodel and the RF model. However,
the SVMstill cannot directly estimate the contribution of each
index to the total risk.

RF, which is considered an enhanced bagging technique,
is an ensemble machine learning method that uses an ensem-
ble of DT [29]. The nonlinear characteristics of RF make
it applicable to multivariate prediction; thus, this approach
is applied in many fields [30]–[33]. Compared with other
methods, RF has the following advantages. There is no
need for dimensionless processing such as normalization,
as it can not only process multiple forms of data but also
adapt to situations where certain attribute values are missing.
RF is suitable for handling high dimensionality and com-
plex data, and can overcome multicollinearity of data. RF is
more tolerant to outliers and noise and is unlikely to suffer
from overfitting issues. More importantly, the contribution
of each index to the total risk can be directly obtained,
avoiding the effects from subjective human assignment, and
the model exhibits high stability and accuracy [34]. China
is one of the countries that is most severely affected by
geo-hazards, and both the intensity and frequency of haz-
ard occurrence show increasing trends [35], especially in
the southwest region. The casualties and economic losses
result from geo-hazards are very serious. According to statis-
tics, in 2015 alone, a total of 8224 geo-hazards occurred
in China, resulting in a total of 229 deaths and direct eco-
nomic losses of 2.49 billion RMB. To this end, the Chinese
government has conducted a comprehensive investigation
of geo-hazard sites and constructed a database of national
hazard sites. This database provides a good verification tool
for the geo-hazards risk assessments on different scales [36].
However, the limited hazard sites can reflect the hazard risk
on only a point scale, and it is difficult to map risks at the
regional level [37]. In addition, the assessment of geo-hazards
risks involves multi-index variables and high-dimensional

FIGURE 1. Geographic location of Shifang county.

data processing. RF exhibits superior performance compared
to many other assessment methods, especially in terms of risk
prediction [31]. This study regarded Shifang county in the
southwest mountainous area of China as the research area and
applied the RF model to the geo-hazards risk assessments.
Regional hazard and vulnerability conditions were combined
with detailed data from hazard sites to explore new ways to
improve the accuracy of geo-hazards risk assessments and
hoping to provide a reference for geo-hazards risk manage-
ment and hazard prevention planning.

II. MATERIALS AND METHODS
A. STUDY AREA AND DATASETS
Shifang county is affiliated with Deyang city, Sichuan
Province, on the eastern margin of the Hengduan Mountain
region (103◦50′ 30′′- 104◦26′ 40′′E, 31◦08′- 31◦28′ 24′′N),
covers an area of 864 km2 and governs 14 towns and 2 dis-
tricts with a total population of 430,000. The terrain gradually
changes from northwest to southeast, with a sequential tran-
sition of mountains, hills, and plains. The altitude difference
is large. Mountainous areas account for approximately 60%
of the total area of the city. Shifang county is located in a
subtropical monsoon climate zone, with heavy rainstorms
in the summer. The yearly rainfall is 830 - 1200 mm. This
region is located on the front edge of the middle segment of
the Longmenshan fault zone, where neotectonic movement
is strong, faults, folds and fissures are developed, surface
weathering is strong, and rock masses are broken. Due to the
influence of various human activities, the occurrence of haz-
ards, such as collapses, landslides, debris flows, and ground
subsidence is intensified. Since the Wenchuan earthquake,
geo-hazards in Shifang county have increased. According to
the detailed results of geo-hazards, Shifang county has a total
of 310 hazard sites, which mainly experienced small geo-
hazards. The geographic location of Shifang county is shown
in Fig. 1.

The data in this studymainly include natural factor data and
socioeconomic data. Among the natural factor data, slope,
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the distance to river, and altitude difference are extracted
from digital elevation model (DEM) data. The data set is
provided by the Data Center for Resources and Environ-
mental Sciences, Chinese Academy of Sciences (RESDC),
with a spatial resolution of 30 m × 30 m. The precipitation
station data are from the Earth System Research Laboratory
Physical Sciences Division (ESRL PSD), and the precipi-
tation data are interpolated by using ANUSPLIN software.
Geological data mainly include seismic intensity, lithology,
and fault data. Lithology and fault data are mainly from the
National Geological Archives of China. Seismic intensity
data are from the China Earthquake Administration. Normal-
ized difference vegetation index (NDVI) data are downloaded
from the Level-1 and Atmosphere Archive & Distribution
System Distributed Active Archive Center (LAADS DAAC).
Per capita GDP and population density in the study area
are obtained as the socioeconomic data from the spatial dis-
tribution of the discretized GDP and population data. Both
GDP and population data are from the Statistical Yearbook.
Building density, cultivated land density, and roading density
are extracted from the 2015 land-use data provided by the
Ministry of Land and Resources.

B. METHODOLOGY
In previous studies, index threshold values delimiting and
weight assignment were subjective, and detailed data from
geo-hazard sites were ignored during risk assessments.
In view of this, we mainly used the following process for
risk assessment. First, from the perspectives of hazard and
vulnerability, we selected the codrivers that affect the various
subcategories of geo-hazards in the study area. However,
we did not assign threshold values and weights to each index,
thus avoiding the subjectivity of the assessment results. At the
same time, detailed data from hazard sites were introduced
to calculate the influence coefficient for each hazard site.
Next, based on the assessment index system and the hazard
influence coefficient, the geo-hazards risk samples in the
study area were evenly selected using the grid as the unit, and
the risk level was assigned. In the total sample set, the grids
with and without hazard sites were all considered. Third,
based on the five-fold cross-validation method, the total risk
sample set was input into the RF model. The training samples
were used for modeling, validation samples were used for
validating, and then the accuracy of the model was obtained.
To highlight the advantages of RF in risk assessments of geo-
hazards, the SVM algorithm was selected for comparative
analysis. Finally, all the data to be tested in the study area
were input into the above two models, and the risk results
were analyzed and compared to clarify the spatial distribution
pattern of hazard risk. A flowchart of this process is shown in
Fig. 2.

1) ESTABLISHMENT OF THE EVALUATION INDEX SYSTEM
There are various types of geo-hazards in the study area,
including landslides, ground collapses, debris flows, and
unstable slopes. It is well known that different hazard types

FIGURE 2. Flowchart.

have different driving mechanisms. Traditional geo-hazards
risk assessmentsmainly define thresholds and assignweights.
However, the thresholds of the same impact factor for dif-
ferent hazards are certainly different, and it is unscientific
to artificially delimit unified threshold ranges for multiple
hazards. This study attempted to evaluate the comprehen-
sive risk of all subcategories of geo-hazards. Unfortunately,
at present, there is still a lack of a unified standard system for
geo-hazards risk assessment. We referred to the connotation
of disaster risk published by the UNDHA to construct an
evaluation index system from the two dimensions of hazard
susceptibility and vulnerability. Therefore, we comprehen-
sively selected the codriving factors for each subcategory
of disasters. Using RF, we effectively avoided threshold
delimiting and weight assignment for various indices. From
the relevant previous studies [38]–[41] and with the help of
GIS technology, 13 indices were selected (Table 1). Among
them, the hazard index system has 8 indices, including slope,
altitude difference, precipitation, seismic intensity, etc; the
vulnerability index system has 5 indices, including per capita
GDP, population density, building density, etc. The spatial
distribution of each index is shown in Fig. 3.

Based on the vector range of the study area, a grid dataset
for Shifang county was created. The size of each grid cell was
300 m× 300 m, and there were a total of 9576 grid cells. The
indices were spatially distributed, and the index data for each
grid unit were extracted to construct the database for the risk
assessment index of Shifang county.

2) SAMPLING AND RISK LEVEL DETERMINATION
The detailed data on geo-hazards that were obtained by the
relevant government agencies through field surveys included
various attributes, such as the location and scale of hazard
sites, the number of people threatened, and the amount of
property threatened. Detailed data on hazard sites provide
support for geo-hazards risk assessments, which canmake the
assessment results more consistent with the actual hazard sit-
uations. In addition, during the construction of the RF model,
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TABLE 1. List of the various indices.

sample selection is the key step. The core of constructing an
RF evaluation model based on an index variable is to evaluate

TABLE 1. (Continued.) List of the various indices.

the corresponding risk level for each sample. The attributes
of hazard sites also provide the basis for the determination
and verification of sample risk levels. Therefore, based on
the risk assessment indices in the study area, the attributes
of the hazard sites, and government survey data, geo-hazards
risk samples were evenly selected from the study area and
the corresponding risk levels were assigned to the samples:
low risk, medium risk, high risk and highest risk. During the
process of selecting sample data, we chose areas with and
without the occurrence of geo-hazards. The specific process
is shown in Fig. 4.

28036 VOLUME 8, 2020



P. Huang et al.: Linking the RF Model and GIS to Assess Geo-Hazards Risk: Case Study in Shifang County, China

FIGURE 3. Evaluation index.

The hazard risk levels of the samples were determined
based on detailed survey data of geo-hazards sites, var-
ious evaluation indicators and relevant government data

FIGURE 4. Schematic of sample selection.

FIGURE 5. Spatial distribution of the geo-hazard samples at different
levels.

(reports, planning documents, etc.). The detailed survey
data of geo-hazards sites were established by the geological
department based on the geo-hazards sites that occurred in
various regions. The accuracy of the geo-hazards sites is
relatively high and the attributes are comprehensive. First,
assigning the risk level is assigned to the selected samples
according to the influence coefficient, which was calculated
according to the hazard scale, hazard density, number of
people threatened, amount of property threatened, number of
damaged houses, area of damaged roads, and other attributes
of the detailed survey data of geo-hazards sites in the study
area. A total of 400 samples were selected in this study
(Fig. 5), with 100 risk samples at each level. Second, the
risk levels that were classified were revised through various
indicators, relevant government data and previous research
results [42]. Then, various indicators and risk levels of the
selected samples were input into the model to form the dis-
aster risk classification rules. Finally, according to the above
rules, all the data to be measured were inputted into RFmodel
again to predict the level of geo-hazards risk in the study area.
Compared with traditional algorithms, the RFmodel does not
need to set index weights or classification criteria in advance.
The weight and classification criteria were implicit in the
inherent rules of the data.

3) RANDOM FORESTS MODEL
RF is a very effective classifier that is composed of a set
of tree-structured classifiers {h (X, 2 k), k = 1, . . .},
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where {2k} represents independent, identically distributed
random vectors. At the input of independent variable X, each
DT will cast a unit vote for the most popular class.

First, the bootstrap sampling method was used to extract
k samples from the original training set D. The feature num-
ber (m) in each sample was the same as the original training
set D. Multiple samples are drawn using the resampling
bootstrap method, which improves the randomness of the
training set.

Second, k DTs were generated for k samples, and k clas-
sification results were obtained {(h1 X), h2 X, . . ., hn X}.
Features (n ≤ m) are randomly chosen from every sample to
create the split feature set, from which the optimal features
were selected to grow the nodes. When n < m, there were
differences between each DT. The minimum Gini value is the
split standard of the node, and the corresponding variable is
known as the optimal variable. The minimum Gini value of
an internal tree node was calculated as follows:

Gini(t) = 1−
u∑

q=1

[p(q|t)]2 (1)

where p (q | t) represents the probability of the risk class q at
node t, and u is the number of classes.

Third, each tree was grown to the largest extent possible
and no pruning was conducted.

Fourth, the above steps were repeated to form random
forests. The final result was determined in accordance with
the majority rule voting mechanism as follows:

f (x1) = m_vote{hi(x)} (2)

where m_vote represents the result of the vote.
Last, the generalization error and variable importance

(called the ‘‘index contribution degree’’ in this study) were
calculated using the bagging algorithm to integrate the train-
ing set. The probability that a sample is not extracted from the
total training set D with a sample size N is (1- 1/N )N When N
is sufficiently large, (1−1/N )N → 1

e = 0.368. This indicates
that more than 1/3 of the samples in set D are left out of the
bootstrap sample; these samples are called out-of-bag (OOB)
data. After classification tree generation, the OOB data are
used to calculate the error classification rate, known as the
OOB error. The model generalization error is the average
OOB error of all trees in the random forests. Generally, there
are two methods to calculate the importance degree of each
index. In this study, the decreases in the Gini index at the node
split are used to calculate the importance of each index to the
result of the risk classification. The formula is as follows:

Pr =

k∑
i=1

t∑
j=1

DGrij

m∑
r=1

k∑
i=1

t∑
j=1

DGrij

× 100% (3)

where m represents the total number of indices, k is the
number of texturing trees, t is the number of nodes in each
tree, DGrij is the Gini decrease value at the jth node in the

FIGURE 6. Average ROC curves.

TABLE 2. Binary confusion matrix.

ith tree that belongs to the rth index, and Pr is the degree of
contribution from the rth index from all available indices.

The principle of RF is shown in Fig. 6.

4) RROC CURVE AND THE AUC VALUE
The receiver operating characteristics (ROC) curve and the
area under the ROC (AUC) are often used to evaluate the per-
formance of themodel. The binary confusionmatrix (Table 2)
can be used to reflect these two indicators.

The positive and the negative represent positive and neg-
ative samples, respectively, and the classified positive and
classified negative samples represent correctly classified and
misclassified samples, respectively. We can thus statistically
analyze the TP (true positive), FP (false positive), FN (false
negative), and TN (true negative). Furthermore, the TPR (true
positive rate) and FPR (false positive rate) can be calculated
as follows:

TPR =
TP

TP+ FN
(4)

FPR =
FP

FP+ TN
(5)

When the threshold is adjusted, each threshold corresponds
to one TPR and FPR set, and the ROC curve is the curve
with the TPR as the vertical axis and FPR as the horizontal
axis. The area under the curve is the AUC, with a value
between 0 and 1, generally greater than 0.5. The closer to 1,
the better the performance of the classifier and the higher the
accuracy of the model.
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FIGURE 7. Zoning map of the geo-hazard risks. a) Assessment results
from the RF model; b) Assessment results from the SVM model.

III. RESULTS
A. ACCURACY ASSESSMENT OF THE MODELS
In an RF model, it is not necessary to use cross-validation
to establish an unbiased estimate of the errors because the
RF estimates the errors during modeling using the OOB error
estimate [43]. However, to construct the same comparative
environment as the SVM model, which utilizes the five-fold
cross-validation method, the total sample set was randomly
divided into 4 training data sets and 1 test data set with
equal volume, and the division was repeated 5 times. The
sample data were substituted into the RF model and the SVM
model for training, and the training accuracy was compared.
After many cycles of debugging, optimal parameters were
obtained. The number of classification trees in the RF model
was set to 1000; the number of splits at the nodes was set to
4; the kernel function in the SVM model was the radial basis
function (RBF), with the coefficient γ = 0.1; and the penalty
coefficient C = 1.
From the ROC, the data (Fig. 6) show that the average

AUCs for both the RF model and SVM model in the 5-fold
cross-validation were greater than 0.9, indicating that both
models had relatively high evaluation accuracy. However,
the average AUC of the RF model was0.976, which was
2.2%greater than that of the SVM model. This result further
verified that the RF model has excellent robustness and gen-
eralization ability and that its overall accuracy is superior to
that of the SVM model.

B. CLASSIFICATION RESULT ANALYSIS
By combining the detailed data from the Shifang county
hazard sites, all the data to be tested in the study area were
input into the RF and SVMmodels to obtain two zoningmaps
of the geo-hazard risks in Shifang county (Fig. 7).

The data in Figs. 7(a)-7(b) show that the spatial distribu-
tions of the geo-hazards risk zones at various levels were rel-
atively consistent. The main distribution difference between
the two was reflected in the local high risk and highest risk
zones. Meanwhile, Table 3 shows that the differences in the
proportions of the risk zones at each level were also small.

TABLE 3. Risk area ratios in the RF and SVM models (%).

The accuracy (Fig. 6) of the evaluation results of the two
models showed that the RF model had a significantly high
accuracy than the SVM model. However, to further verify
the accuracy of the classification results of the two models,
we conducted field verification in the local zones of the
study area. For example, the scattered highest risk zones in
the north-central region in Figure 7 (b) have high seismic
intensity, dense faults, large altitude differences, steep slopes,
and many secondary geo-hazards. However, the data in the
RS images show that this region was sparsely populated. The
population was sporadically distributed along roads, where
the risk was lower than that in the highest risk zones to the
south. The results of the RF model were more reasonable
than the results of the SVM model. The risk assessment of
geo-hazards based on RF showed high accuracy and stability.

The risk of geo-hazards in Shifang county exhibited large
spatial differentiation, while the spatial agglomeration of
each hazard risk level was prominent. The highest risk
zones were located in the mid-mountain areas and the local
low-mountain or hilly areas in the central region of Shi-
fang county; the area of the highest risk zones was the
smallest among all risk levels, i.e., 94.24 km2, accounting
for 10.91% of the total study area. High risk zones were
mainly located in the high-mountain area in the north and
the medium-mountain area in the central region, with an area
of approximately 142.7 km2, accounting for 16.52% of the
total area of the study area. The medium risk zones were
concentrated in the mountainous area in the north, with an
area of approximately 241.7 km2, accounting for 27.97% of
the total area studied. The low risk zones were concentrated
in the southern plains and had the largest area of all the risk
zones (385.35 km2), accounting for 44.6% of the total area
studied. From a spatial point of view, the low risk zones and
the high and highest risk zones were separated by the dividing
line between the plain area and the hilly areas. This result is
consistent with the distribution of the geo-hazards sites in the
study area.

As a result of the joint action of multiple factors, the central
region represents the high and highest risk zone for geo-
hazards. This area is a key area for hazard prevention and
management. This area is not suitable for major construction
projects, and human activities should be minimized. It is also
important to strengthen the monitoring of hazard sites, take
corresponding engineering and biological measures at the
major geo-hazards sites, and adopt resettlement measures to
reduce hazard risk if necessary. The population and buildings
in the southern plain area are dense with a high intensity of
human activities. However, because of the flat terrain, the
conditions are insufficient for the formation of geo-hazards.
Therefore, the southern plain area becomes a low risk zone.
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FIGURE 8. Contributions of various indices.

The mountainous area in the northern part of the study area
is steep and located in the Longmenshan fault zone, which
has a high vulnerability to hazards. However, because of the
relatively low precipitation compared to that in the southern
and central regions and the sparse population and economic
backwardness, there are fewer objects threatened by hazards,
making this region a medium risk zone for geo-hazards.
In this region, the protection of mountainous vegetation and
water and soil loss control should be emphasized and the
local water and soil conservation and the water conservation
capacities should be enhanced.

C. INDEX CONTRIBUTION DEGREE ANALYSIS
In this paper, according to the mean decreases of Gini index
of all nodes in the RFmodel, the contribution of each index to
the geological hazard risk was calculated (Fig. 8). Among the
indices, RD, SI, LI, and PR showed the highest contributions
to the risk of geo-hazards, all exceeding 10%, indicating that
these four indices had the most significant impact on hazard
risk in the study area. DR, PCGDP, BD, PD, and CLD had
the lowest contributions to the hazard risk; their contribution
degrees were less than 5%, indicating that these five indices
had weaker impacts on the hazard risk of Shifang county. The
cumulative contribution of the first seven indices accounted
for 80.44% of the total, indicating that the seven indices
played a decisive role in the hazard risk in the study area.

RD had the highest contribution among all indices, reach-
ing 17.77%, indicating that road construction for human
activities was the most important factor affecting the risk of
geo-hazards in the study area. Road construction and other
activities disturbed the soil, increased the degree of surface
rock fragmentation, and formed numerous unstable slopes,
which provided the necessary conditions for hazard occur-
rence. According to the statistics, 82 hazard sites existed
along the highway in the study area, accounting for 26.45% of
the total hazard sites in the study area. Meanwhile, the central
and northern parts of the study area were severely affected by
the Wenchuan earthquake (earthquake intensity of VII -XI).
The contribution degree of the earthquake to hazard risk was
14.87%. After the Wenchuan earthquake, there were a large
number of secondary hazards in the earthquake-stricken area,
which provided conditions for the outbreak of geo-hazards.
Therefore, the level of hazard risk is relatively high, which is

consistent with the objective law. The lithology in the study
area is dominated by clastic rocks (accounting for 79.84%),
which are easily weathered; an increase in clastic matter fur-
ther exacerbates the probability of hazard occurrence. There-
fore, the contribution degree of lithology to hazard risk was
relatively high, reaching 14.66%. Precipitation is an impor-
tant triggering factor for geo-hazards with a contribution rate
of 10.03%. Precipitation in the study area (May-September)
was greater than 517.73 mm, and the abundant rainfall in
the mountainous area provides a powerful hydrodynamic
condition for the occurrence of hazards. Meanwhile, fault
development in the central and northern parts of the study area
also promotes the occurrence of hazards. The differences in
altitude and slope were also important factors for the risk of
geo-hazards in the study region, with contributions of 7.59%
and 8.54%, respectively. Over the terrain with large altitude
differences and steep slopes, the geo-hazards have greater
potential energy than those in other areas.

IV. CONCLUSION AND DISCUSSION
Based on regional hazard system theory and detailed data on
hazard sites, 13 indices were selected from the dimensions
of hazard and vulnerability and the RF model was used to
perform the risk assessment for Shifang county. The main
conclusions are as follows:

1) Based on the RF model, combined with hazard and
vulnerability conditions of geo-hazards and detailed data on
hazard sites, a method was proposed for point-to-surface
mapping of hazard risk.

This method overcomes the shortcoming that it is difficulty
to map geo-hazard risks at the regional level based on hazard
sites data. This method also avoids the need for threshold
segmentation and weight assignment of the risk indices. The
contribution of indicators (which can be regarded as weights)
is directly calculated by the training function of the RFmodel,
resulting in more objective evaluation results. Although RF
models have been widely used in disaster risk assessment,
previous studies mainly carried out model accuracy veri-
fication and disaster risk assessment based on the sample
attributes of whether disasters occurred or not [44], [45].
These studies ignored the risk attribute of the geo-hazard
sites themselves and it was difficult to realize point-to-surface
disaster risk mapping. However, the detailed survey data on
geological disaster points can provide a good verification tool
for geo-hazards risk assessments at various scales. The only
studies that are similar to the methods in this paper mostly
considered the impact ranges of historical disaster points [31],
and it was difficult to reflect the heterogeneity of risks within
the same impact range. Therefore, the evaluation results may
be ambiguous. In contrast, the evaluation method in this
paper can be used for objective classification and verification
of geo-hazards risks. Due to the lack of a unified standard
system for geo-hazards risk assessments, we referred to the
connotation of disaster risk that was put forward by UNDHA
to constructed an evaluation index system from the two
dimensions of hazard and vulnerability. This system needs
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further improvement, especially in terms of vulnerability. The
geo-hazards risk assessments in our study area was based
on the grid scale (300 m×300 m), and it was difficult to
spatially distributed the above indicators over each evaluation
unit. In the future, we will seek new methods to incorporate
geological engineering, refuge sites, age structure, disaster
education, and other indicators into the evaluation system.

2) Compared to the SVM model, the RF model exhibited
a better effect in terms of the geo-hazards risk assessment
results. The RF model could better reflect the spatial differ-
entiation characteristics of hazard risk in the study area. The
averaged AUC value for the RF model reached 0.976, which
was 2.2% greater than that of the SVMmodel. The RF model
was accurate and stable. The high and highest risk zones of
the geo-hazards in Shifang county were mainly located in the
central mountainous areas and low-mountain or hilly areas
in the central part of the study area, which are adjacent to
each other and account for 10.72% and 16.43% of the total
area, respectively. The medium risk zones were located in the
mountainous area in the north of the study area, accounting
for 27.93% of the total area. The area of low risk zones was
the largest, and these zones were concentrated in the southern
plain area.

The RF model exhibited significantly higher accuracy than
the SVM model, which is consistent with the conclusions
of other studies [46], [47]. This result likely because the
RF model includes an unbiased self-verification function,
the OOB error (also known as the generalization error), there-
fore, the accuracy is high. The OOB error in the RF model
used in this study was 3.6%, which implies that the RF model
has strong generalization ability and is highly applicable to
geo-hazards risk assessment.

3) The RF model can directly calculate the contribution of
each index to the geo-hazards risk. The risk of geo-hazards
in Shifang county is affected by many factors. RD, SI, LI and
PR are the main controlling factors of hazard risk in the study
area. These 4 factors all contribute more than 10% to the
total hazard risk and have a dominant influence on the hazard
risk.

According to the ranking results of the contribution degrees
of various indices, the four indices of road density, seismic
intensity, lithology and precipitation were found to have the
greatest impact on the geological disaster risk of the study
area, with a total contribution of 57.33%. This result shows
that during disaster risk prevention and management in the
future, the above four indicators should be the focus of
attention. The number of unstable slopes in the study area
accounted for 23.55% of the total hazards, and the road engi-
neering construction increased the geo-hazards risk. There-
fore, in the process of disaster prevention and management,
attention should be paid to the impact of road construction
on disaster risk. The establishment of disaster prevention
projects and biological measures is particularly important.
Second, the monitoring and warning mechanisms for earth-
quakes and hazard sites should be improved to reduce the risk
of geo-hazards in the study area.

The RF model also has some limitations. The working
process for the RF model is a black box operation, and there
is no way to control the internal operation of the model. The
best parameters are determined by trying different parameters
and random seeds. The RF model and the SVM model are
important machine learning models, and each has its own
strengths. Geo-hazards risk assessments should combine the
advantages of various algorithms to explore a more scien-
tific and reasonable method to more accurately cope with
geo-hazard risks.
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