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ABSTRACT Link prediction in directed networks has always been a hot topic in many fields including
network science, information system and data mining. Intuitively, once links are endowed with certain
orientations, their reciprocate nature can potentially provide extra information for guiding link prediction.
However, the role of reciprocal links in the formation of directed closure triads and their ability to enhance
link prediction accuracy are not thoroughly investigated yet in existing works. In this paper, we first design
an empirical test to investigate the role of reciprocal links in different types of directed networks by taking
advantage of null models. Subsequently, based on solid evidence of the empirical test, two novel weighting
mechanisms for link prediction are proposed utilizing reciprocity as extra information. The performance of
proposed methods is comprehensively studied on eight realistic networks compared with several groups of
benchmarks. Experimental results indicate that the proposed methods are more effective and robust than two

state-of-the-art weighting methods and eight well-performing similarity indices.

INDEX TERMS Directed network, link prediction, reciprocal link, null model.

I. INTRODUCTION

Many complex systems can be naturally described with
complex networks, where nodes represent individuals or enti-
ties while links represent their inner interactions [1]. Complex
network is considered to be a powerful tool to explore funda-
mental properties of such complex systems. An elementary
task of complex network is link prediction, the goal of which
is to estimate the existence likelihood of unobserved or future
interactions among nodes [2]. As a classic graph mining prob-
lem, link prediction has found a wide range of practical appli-
cations in many fields. For example, in online social networks
link prediction can help users find their potential friends on
social platforms such as Twitter and Sina Weibo, increasing
their loyalty to the platform in turn [3]. In biological net-
works, link prediction methods can accelerate the process
of discovering hidden structures of protein-protein interac-
tion networks, saving both time and cost [4]. In information

The associate editor coordinating the review of this manuscript and

approving it for publication was Chao-Yang Chen

28668 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

retrieval, link prediction in bipartite networks is regarded as
a typical issue of recommender systems [5].

The past two decades have witnessed a rapid development
on link prediction. Plenty of methods have been proposed to
solve this challenging problem. Among those methods, simi-
larity indices are popular ones for their effectiveness and sim-
pleness [6]. Similarity indices are based on the assumption
that if two endpoints share more common properties, a con-
nection between them is more likely to exist. Representative
similarity indices include Common Neighbor [7], Adamic-
Adar [8], Resource Allocation [9], Jaccard [10], Salton [10],
Sgrensen [11], Leicht-Holme-Newman (LHN-I) [12], Hub
Promoted Index (HPI) [13], Hub Depressed Index (HDI) [9],
CAR [14], Local Path (LP) [9], just to name a few. In our
previous works, we took into account the resource alloca-
tion of higher order paths as well as the potential infor-
mation capacity of neighbors, and proposed two similarity
indices: Extended Resource Allocation (ERA) index [15] and
Potential Information Capacity (PIC) index [16].

In the real world, numerous of complex networks are
directed, where link orientations have certain meanings.

VOLUME 8, 2020


https://orcid.org/0000-0002-1362-6665
https://orcid.org/0000-0002-1118-1447
https://orcid.org/0000-0002-3366-4466
https://orcid.org/0000-0002-9321-7713
https://orcid.org/0000-0003-4988-7362
https://orcid.org/0000-0001-8007-5122
https://orcid.org/0000-0002-8095-399X

J. Li et al.: Link Prediction in Directed Networks Utilizing the Role of Reciprocal Links

IEEE Access

Twitter is a typical directed network which depicts the
who-follow-whom relationships among users. Food webs
are also directed networks presenting predation relationships
in different species. For simplicity, most existing works on
link prediction would assume the networks to be undirected.
However, neglecting link orientations may lead to certain
accuracy loss in link prediction, making predicting both the
existence and orientation of links in directed networks an
urgent and vital task in network science [17]. Schall et al. [18]
proposed a statistical metric called Triadic Closeness (TC)
to predict directed links. They use the probability that a
given type of triad pattern will be closed as the likelihood of
nonexistent links. Based on Schall’s work, Biitiin et al. [19]
proposed a pattern-based supervised link prediction approach
to enhance the accuracy of TC. Zhang et al. [20] took advan-
tage of potential theory in physics to screen out most possible
graph patterns in different directed networks. Combing poten-
tial theory with clustering and homophily mechanisms, they
deduced a directed closure quad named "Bi-fan" (abbreviated
as Bifan in the rest) as the most favored local structure in a
majority of directed networks. They further designed Bifan
index for link prediction. Wang et al. [21] extended the work
of Zhou et al. [9] into directed networks and proposed a
directed version of LP index. They added a ground node to the
original network to take advantage of topological structures
as much as possible. Lichtenwalter et al. [22] proposed an
effective flow-based predicting algorithm for directed and
weighted networks called PropFlow. It calculates the proba-
bility that a restricted random walk with / steps or fewer using
link weights as transition probabilities. PropFlow is similar to
rooted PageRank [10], but it is more localized of propagation
and less sensitive to topological noise.

Relationships between nodes in directed networks can be
classified into two categories: single directional link and
reciprocal link. The latter one widely exists in all kinds
of networks. For example, in information networks such as
hyperlinks of websites, reciprocal links represent mutual link-
age relationships between websites. In biological networks
such as protein-protein interaction networks, a reciprocal link
means that the connected proteins have mutual interactions
with each other. Intuitively, reciprocal links have the ability
to provide durable paths for information exchange inside the
network. Thus they are assumed to be more informative than
single directional ones [23]. Plenty of works have been done
to explore the role of reciprocal links in directed networks.
Garlaschelli and Loffredo [24] proposed a new measure of
reciprocity along with a general framework to investigate the
nonrandom presence of reciprocal link between two nodes.
They found that networks of the same type always display
similar values of reciprocity. Zhu et al. [25] studied the effect
of reciprocal links on the function of real social networks,
and found that reciprocal links play a more important role
than single directional links in information diffusion pro-
cess. Zhang et al. [26] focus on the impact of reciprocity
on dynamical processes of networks. With the analysis on
random walks in a scale-free directed and weighted network,
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they found evidence of the crucial role of reciprocity in
random walks. Shang et al. [23] proposed a novel directional
link prediction method to reveal the different roles of single
directional links and reciprocal links on link formation. They
concluded that two endpoints connected by reciprocal links
are more likely to be linked to common neighbors than those
connected by single directional links. Sett et al. [27] explored
the effect of reciprocal links on triad formation in two large
scale social networks: Facebook and Enron email network,
and proposed three simple weighting mechanisms exploiting
reciprocal links to enhance link prediction accuracy. Since
most previous works mainly focus on social networks, we try
to extend them and investigate the role of reciprocal links in
different types of directed networks.

In social networks such as Twitter, if user A follows user B
and continues to follow user C, a followee of user B, then the
three users form a directed closure triad [28]. In some works
this process is referred to as "link copying" [29]. The same
structure are also found in other types of directed networks.
Directed closure triads are regarded as fundamental blocks of
directed networks and can be used for link prediction [30].
Lou et al. [28] studied how relationships develop in directed
closure triads in social networks, and proposed a learning
framework to formulate the problem of predicting directed
closure triads into a graphical model. Brzozowski et al. [31]
investigated WaterCooler network, an inner social network
of HP Co., Ltd, and found that common neighbors forming
"feed-forward-loop" triads are significant. Zhang et al. [32]
extended undirected indices into directed versions based on
the structure of "feed-forward-loop" and proposed Directed
Common Neighbor (DCN) index, Directed Adamic-Adar
(DAA) index, Directed Resource Allocation (DRA) index,
and Directed Preferential Attachment (DPA) index.

Two interesting problems then arise: What role do recip-
rocal links exactly play in the formation of directed closure
triads? And how can they be utilized to improve link pre-
diction accuracy in directed networks? In this paper, we try
to solve the above two problems in two ways. First we
conduct a systematic investigation on the role of reciprocal
links in four types of networks including social networks,
information networks, infrastructure networks, and biological
networks. Based on the results of an empirical test, we find
solid evidence that reciprocal links are informative for link
formation in directed closure triads. Then we propose two
weighting mechanisms along with a set of reciprocal-aware
weighted link prediction indices by utilizing reciprocity as
extra information. The effectiveness and robustness of the
proposed methods are validated and analyzed via comprehen-
sive experiments on realistic networks.

The remainder of this paper is organized as follows.
Preliminaries are presented in Section II. Section III intro-
duces eight datasets for empirical test and validation.
In Section IV, the role of reciprocal links is ana-
lyzed. Section V proposes two weighting mechanisms for
link prediction. Section VI discusses experimental results.
Section VIII draws conclusion of the paper.
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Il. PRELIMINARIES

A. PROBLEM DESCRIPTION

Considering a directed and unweighted network D (V, E),
denote V the set of nodes and E the set of links. For simplicity,
reduplicate links and self-loops are deleted. The number of
nodes and links in D (V, E) are denoted as |V| and |E],
respectively. A = {ajj},x, represents the adjacency matrix,
kiin denotes the in-degree of node i and k' denotes its
out-degree. Let ['oy(7) and T'jn(i) respectively be the set of
out-going and in-coming neighbors. Denote E" = {(u,v) €
E|(v,u) € E} as the set of reciprocal links. Notice that if
(u,v) € E", we call link (u, v) and (v, u) are both reciprocal
links. The reciprocity coefficient p = |E"| / |E| is defined as
the ratio of the number of reciprocal links to the total number
of links [33]. Apparently, p is a real number in [0,1]. Let
U be the universal set containing all possible links, the set
of nonexistent links is U — E. For each nonexistent link
e(x,y) € U —E, x,y € V, link prediction method assigns
sxy as a similarity score to quantify its existence likelihood.
In directed networks, syy # syx. The unconnected nodes x, y
are called seed nodes and link e(x, y) is called candidate link.

B. SIMILARITY INDICES
Similarity indices are based on a fundamental assumption that
"similarity breeds connection" [34]. Since node attributes are
hard to get in practice, most similarity indices take advan-
tage of the relative overlap between nodes’ neighborhoods to
predict missing links. Typically, the more "similar" two end-
points’ neighborhoods are, the more likely they may establish
a link. In most references, similarity indices are classified
into two categorizes [2]: node-based indices and path-based
indices. First we introduce four classic node-based similarity
indices in directed networks which are widely used in practice
for their effectiveness and simpleness.
1) Directed Common Neighbor (DCN) index [32]:
DCN index is an extension of CN index. It measures
the number of common neighbors in the form of feed-
forward-loops between two endpoints, denoted as:

S)%CN = |Cout(x) NTin(y)| = Zzev

2) Directed Adamic-Adar (DAA) index [32]:
DAA index is an extension of AA index which quanti-
fies the features shared by two endpoints, and endows
the rarer features with larger weights. It can character-
ize the neighborhood overlap between two endpoints,
weighting the overlap of smaller neighborhoods more
heavily.! It can be denoted as:

1
DAA
= —_ 2
Sx“v Zleroul(x)nrin()’) log(kglu) ( )
3) Directed Resource Allocation (DRA) index [32]:
DRA index is an extension of RA index which consid-
ers the amount of given resources one endpoint has.

ay;-azy (1)

n 32, only out-going neighbors are utilized for calculation, while the
effect of in-coming neighbors is considered insignificant.
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It assumes that each node will distribute its resource
equally among all out-going neighbors. The amount of
received resource is considered to be relevant to the
likelihood of a directed link. It can be denoted as:

1
DRA __
oo = Zzerom(xmrm) Jeout ©

4) Bifan index [20]:
Bifan index considers neighbors on paths of length 3.
It assumes that if the existence of a directed link can
lead to an increase of the number of Bifan motif, then
this directed link is more likely to exist. The calculation
of Bifan index can be denoted as:

Bifan _ ITin(Toutx)) N Tin()|

Xy
= a ~d-'- A~ 4
§ eV XZ 7z zy ( )

In addition, we introduce seven node-based similarity
indices in directed networks, including Jaccard, Salton,
Sgrensen, LHN-I, HPI, HDI, and LP. Definitions of these
indices are shown in Table 1.

TABLE 1. Definitions of state-of-art similarity indices for directed network.

Index Definition Reference
Jaccard % [10]
Salton Cout ()0lin (w)| [10]
kgt kin

Sgrensen %ﬁé}yw (11
LHN-I W+§w [12]

e Ercaras [13)
it E Gy 2]

Lp! (42),, +a(4%),, (91

1 o adjusts the weight of length-2 and length-3 paths.

Traditional node-based similarity indices calculate scores
based on the binary adjacency matrix of the original net-
work. Besides these indices, weighting methods transform the
original adjacency matrix into a weighted one by utilizing
certain structural or external properties [35]. In this case,
the definition of common neighbors are changed, leading to
extended forms of node-based indices such as DCN, DAA,
and DRA. Local Naive Bayes (LNB) model [36] is a well
performing weighting method to improve the accuracy of
basic similarity indices. It captures the roles of common
neighbors and assign them with different weights. Reciprocal
link count (RC) is another weighting method which counts
the number of reciprocal links connecting the target node to
their common neighbors [27]. The LNB and RC forms of
DCN, DAA, DRA are presented in Table 2.

Different from node-based indices, path-based similarity
indices conduct random walks on the network and take the
arrival probability as the similarity score. PropFlow [22] is a
popular path-based similarity index based on restricted ran-
dom walks in no more than / steps. The restricted walk selects
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links based on terminates when it reaches to another node or
revisit any node, producing scores as the estimation of their
existence likelihood. For two endpoints x and y, the score of
PropFlow index PF(x, y) is [21]

PF(x, y) = PF(a, X) 2 ©)
2 ke Tou(x) Oxk
where k is x’s neighbor whose depth is greater than x from the
starting node. a is the previous node of x on a random walk
path. When x is the starting node, PF(a, x) = 1.

C. EVALUATION METRICS

Link prediction in directed and unweighted networks can be
regarded as a binary classification problem. To evaluate the
accuracy of link prediction methods, the observed links in E
are first randomly divided into two parts [37]: training set ET
and probe set EP, as shown in Fig. 1. The training set can be
regarded as the given information of link prediction methods,

TABLE 2. Definitions of RC and LNB forms of DCN, DAA and DRA.

Index Definition

LNB-DCN!  |Tout(z) N Tin(v)|logd + > 2T ous ()T () 108 1Tz

LNB-DAA 3 _cr () rsn (v) w (logd + log R-)
LNB-DRA 3 _cr ' ayrs (v) ﬁ (logd + log R-)
RC-DCN? 37 cr(aynr(y) 7(@ 2) +7(2,9)

RCDAA®  S.crmnr) “Hatifed”

RCDRA  S.crimnr) “ i

Y Ra = (Nag + 1)/(Nnaq + 1) is the role function, where Na,, and
Nnq are respectively the number of connected and disconnected node
pairs whose common neighbors include a. d = M/M7T — 1, where
M =|V|(|V|—1)/2and MT = |ET|. ET is the training set.

2 r(z,y) = 1 when x and y are connected with single directional link,
and 7(z,y) = 2 when z and y are connected with reciprocal link.

35, = > srer(z) T2, ") is the additive strength of node 2.

Observed links

Non-existent links

FIGURE 1. Diagram of dividing E into training set ET and probe set EP [37].
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while the probe set is used for evaluating prediction accuracy.
Let f be the partition ratio of training set, E = ET U EP,
ETNEY =9, |ET|=f-|E|and |[E¥| =1 —f)- |E|.

We choose two standard evaluation metrics to quantify the
prediction accuracy: area under the receiver operating char-
acteristic curve (AUC) [38] and precision [2]. AUC evaluates
link prediction methods from an overall perspective while
precision only concerns a few top ranked predictions.

AUC metric calculates the area under the receiver oper-
ating characteristic (ROC) curve. When the abscissa stands
for the false positive rate and the ordinate stands for the true
positive rate, a ROC curve can be drawn. Statistically, the area
under ROC should be between 0.5 and 1. If AUC is greater
than 0.5, we can suggest that a link prediction method is
effective. If the area equals to 0.5, then the method is invalid.
The case that the area is less than 0.5 is unrealistic [39].
A simplified way of estimating AUC in link prediction is to
calculate the probability that the score of a randomly chosen
missing link is higher than a randomly chosen nonexistent
link. At each step, a missing link and a nonexistent link are
selected randomly, and their similarity scores are compared.
If among n independent comparisons, scores of missing links
are higher for n’ times and equal to those of nonexistent links
for n” times, AUC value is

/ 7
AUC — n’ 4+ 0.5n ©)
n
Fig. 2 depicts a sample of calculating AUC. In this case,
4 nonexistent links (%, ¢, f, g) and 4 existent links (a, b, d, e)
are chosen. The existent links among 16 pairs have higher
scores than those of nonexistent links in 11 pairs: (a, h),
(a,0), (a.f), (a,g), (b,0), (b,f), (b,8), d.f), (g, (ef)
(e, g), and the score of link b is equal to a nonexistent link 4.
Therefore, AUC value is (11 4+ 1 x 0.5)/16 =~ 0.719.
Different from AUC, precision metric focuses on the accu-
racy of top ranked predicted links. In practice, assuming
among L predicted links, m of them can be found in the probe
set, precision value is then calculated as

Precision = m/L @)
1.00 = I
f g
(9
w
€ 075
-
h: d
5
‘s 0.50
=] C
2
g b,h
8-' 0.25
go.
o
a
0.00 W L * .
0.00 0.25 0.50 0.75 1.00

proportation of non-existent links

FIGURE 2. Diagram of calculating AUC.
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TABLE 3. Basic statistics of twelve real-world directed networks.

No. Network  Type V] |E| (k) p C (d) K

1 ADO social 2,539 12,969 10.22  38.76 1420  5.30 0.251
2 HIG social 70 366 1046 5028 4040 3.51 0.083
3 PB information 1,224 19,025 31.09 2426 22,60 3.29 -0.221
4 EMA information 2,029 39,264 3870  71.12 8.90 3.98 -0.307
5 ATC transport 1,226 2,615  4.27 15.70  6.39 8.05 -0.015
6 USA transport 1,574 28,236 3588 78.06 3840 3.85 -0.113
7 CELE biological 453 4,596  20.29 16.80 1240  3.03 -0.226
8 FIG biological 2,239 6,452 5.76 0.62 0.76 4.83 -0.331

Parameter L determines the number of links concerned.
To compare among networks with different scales, we set L
as proportional to the total number of links in each network.

IIl. DATASET

Eight directed networks from different fields in the real world
are introduced for empirical test and validation. Only weakly
connected component [40] of each network is concerned.
A brief introduction of these realistic networks is described
as follows:

1) Adolescent health (ADO) [41]: A friendship network
created from a survey in 1994, where each participant
was asked to list his/her five best female and five male
friends. Nodes represent participants and links repre-
sent friendships.

2) High-school (HIG) [42]: A friendship network between
boys in a high-school in Illinois. Each boy was asked
to list his friends in 1957 and 1958. This dataset aggre-
gates the results from both dates.

3) Political blogs (PB) [43]: A directed network of
hyper-links among weblogs on US politics, recorded
in 2005 by Adamic and Glance.

4) Email (EMA) [44]: An email communication network
of employees in a European research institution. Nodes
represent employees and links represent emails.

5) Air traffic control (ATC) [45]: A flight network con-
structed from the USA’s Federal Aviation Adminis-
tration National Flight Data Center (NFDC). Nodes
represent airports or service centers and links represent
preferred routes recommended by the NFDC.

6) US airports (USA) [46]: A directed network of flights
between US airports in 2010. Each link represents a
flight route from one airport to another.

7) Celegans (CELE) [47]: A metabolic network of the
roundworm caenorhabditis elegans (C. elegans). Nodes
represent metabolites (e.g., proteins) and links repre-
sent interactions between them.

8) Figeys (FIG) [48]: A network of interactions between
proteins in Homo sapiens, from the first large-scale
study of protein-protein interactions in Human cells
using a mass spectrometry-based approach.

Table 3 presents the basic statistics of the introduced eight
networks. (k) is the average node degree. p is the reciprocity
coefficient [33]. C is the average clustering coefficient [49].
(d) is the 90-percentile effective diameter [50]. k is the
assortativity coefficient [S1].
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IV. EMPIRICAL TEST

In this section, an empirical test on realistic networks is
designed to investigate the role of reciprocal links in the for-
mation of directed closure triads. To address the importance
of reciprocal links, we take advantage of a universal tool in
network analyzing: null model.

In network science, null models are defined as a set of
randomized graphs which preserve certain structural features
of the original graph. Null model is often used as a term of
comparison, to verify whether a graph displays some fea-
ture or not. In previous works, null models have been well
exploited either to screen out significant network motifs in
complex networks by comparing the count of subgraphs in
the original graph and null models [52], or to discover com-
munity structures by comparing the modularity [53]. Here in
order to reveal the role of reciprocal links in directed closure
triads, we introduce a new type of null model for directed
networks [27].

To facilitate our description, we first introduce the defini-
tion of underlying graph.

Definition 1: (Underlying graph) For a directed network
D(V, E), the underlying graph U(V,E’) of D is the undi-
rected network created maintaining all nodes in V, and replac-
ing all links in E with undirected links.

For a given directed network D(V,E), we call
Dnunl(V, Erang) a reciprocal null model (RNM) of D, when
|E| = |Exanal and |E"| = |E% 4|, E" and Ef, ; are the set
of reciprocal links in D and Dy, respectively. Apparently,
in Dpy, the directions of links are randomized while keeping
the total number of directed links and reciprocal links. For
a given directed network D(V, E), its corresponding RNMs
can be generated with the following steps:

1) Generate the underlying graph U(V, E’) of the given
network D(V, E). In this case, the reciprocity coeffi-
cientis p = (|E| — |E'|) /|E'|.

2) Randomly assign a one-way direction for each undi-
rected link in U(V, E’). Let E” be the new set of links.

3) Randomly select |[E| — |E'| links in E”. For each
selected link, assign a reverse link between its end-
points to form a reciprocal link. The constructed RNM
is denoted as Dyy1(V, Erand), Where Epanqg is the set of
reassigned directed links.

Fig. 3 presents the diagram of generating RNMs for a given
directed network. In our empirical test, 1000 independent
realizations of RNMs are generated. Then we are able to
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FIGURE 3. Diagram of generating RNMs for a given directed network.
B /\o c/@\
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FIGURE 4. Diagram of possible directed closure triads with i reciprocal

links (reciprocal links are marked red).

compare the number of different directed closure triads in the
original network and RNMs. To address the role of reciprocal
links, all possible directed closure triads are classified accord-
ing to the number of reciprocal links they own, as shown
in Fig. 4. For a directed closure triad, the possible number of
reciprocal links is {0, 1, 2, 3}. Let NiD and Ninuu respectively
be the number of directed closure triads with i reciprocal links
in the given network D and its corresponding RNMs. The
significance of subgraphs is measured by a standard metric
called Z score [52], defined as

D null
_ N7 —N;

Z
std;

)
where Ninull is the average number of directed closure triads
with i reciprocal links under 1000 realizations of RNMs. std;
is the respective standard deviation.

Table 4 shows Z scores of directed closure triads with
i reciprocal links in eight realistic networks introduced in
Section III. From the result we can see that in all eight
networks, Z score tends to be larger when i increases. It sug-
gests that directed closure triads with a higher number of
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TABLE 4. Z scores of directed closure triads with i(i =0, 1,2, 3)
reciprocal links in eight networks.

Data |E] |ET| Zo A Zo Zs3
ADO 12,969 5,027 -17.890  -23.858 16.284 42.813
HIG 366 184 -2.309 -6.947 -0.417 8.987
PB 19,025 4,615 -25.450  -84.575  31.529 122.904
EMA 39,264 27,925 -15.564 -31.316 -14.218 50.367
ATC 2,615 411 -7.919 -2.173 14.099 10.917
USA 28,236 22,041  -12.504 -25.352  -85.077 51.536
CELE 4,596 772 -8.688 -11.875 6.879 8.366
FIG 6,452 40 -14.731  -8.924 22.429 220.012

reciprocal links are more significant in the original network
compared with those in its corresponding RNMs. In highly
reciprocal networks such as USA and EMA, even though
Zy is bigger than Z; and Z,, it is much smaller than Z3.
This is because these networks contain more reciprocal links.
However, in networks with small reciprocity coefficient such
as ATC, CELE, and FIG, directed closure triads with at least
one reciprocal link are still more significant than those with
no reciprocal links. For example, in FIG, whose reciprocal
coefficient is 0.62, Z3 is 220.012 while Zy is —14.731. This
indicates that in these networks, directed closure triads with
more reciprocal links are preferred.

To make the comparison more intuitive among networks
with different scales, we further calculate the significance
profile (SP) [54] value based on Z score. SP value is designed
for analyzing superfamilies of unrelated networks by normal-
izing Z score into range [-1,1]. It emphasizes the relative sig-
nificance of subgraphs instead of their absolute significance.
SP value is defined as

Z;
SP; = —— 9

Nz

Fig. 5 shows the SP values of directed closure triads with
i reciprocal links in eight realistic networks. From the results
we can clearly observe the tendency that SP values increase
with the value of i. When there are 0 or 1 reciprocal links
in the triad, SP values are negative, which means the signif-
icance of these triads are less than completely pure chance.
It indicates that the presence of directed closure triads with
more than one reciprocal links is evident in different types of
directed networks.

V. THE PROPOSED METHOD

The results in Table 4 and Fig. 5 in the empirical test motivate
us that utilizing the reciprocate nature of directed closure
triads may lead to improvement on link prediction accuracy.
According to the structure of directed closure triads, two
types of reciprocal links can be defined, namely indirect
reciprocal link and direct reciprocal link [55].

As shown in Fig. 6, node x and y can either establish a
direct reciprocal link, or establish two reciprocal links via
their common neighbor z. Apparently the two types of recip-
rocal links have distinct capacities to transmit information.
Based on the two types of reciprocal links, we propose an
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FIGURE 6. Diagram of indirect reciprocal link and direct reciprocal link.

indirect reciprocity-aware weighting method and a direct
reciprocity-aware weighting method, respectively.

A. INDIRECT RECIPROCITY-AWARE WEIGHTING METHOD
The weight of links represents the strength of relationships
between endpoints. For example, in social networks link
weight depicts strength of social ties, while in biological
networks link weight represents strength of interactions. Here
we utilize the reciprocate nature in directed networks to calcu-
late the strength of relationships. Intuitively, a reciprocal link
represents a bidirectional information exchange between two
nodes, and it can potentially provide more information than
single directional links. Therefore, the strength of reciprocal
links is considered to be stronger. A simple way to quantify
the strength of reciprocal links is to add the effect of reverse
link on the single directional link, as

Wyy = dyxy + A - Gyy (10)

where A is a tuning parameter adjusting the effect of reverse
link. Since the effect of reverse link is related to multiple
factors, A is obviously not a constant.

The value of parameter A reflects the amount of extra infor-
mation an reverse link can provide. Typically, it is determined
by both global and local properties of the entire network.
On one hand, if there are more reciprocal links in the network,
the existence of reverse link tends to be more significant.
In this case, parameter A is relevant to the reciprocity coef-
ficient p. On the other hand, considering two seed nodes
x and y, e(x,y) is the candidate link, when e(y,x) € E,
the out-degree of end node y then determines the value

28674

FIGURE 7. The effect of node degree on transmitted information via
reciprocal link. Dotted line denotes possible link and colored line denotes
reverse link.

of transmitted information through the reverse link e(y, x).
As shown in Fig. 7, when node y; has many out-going neigh-
bors, the information transmitted to node x is less meaningful.
On the contrary, when node y, has only a few out-going
neighbors, reverse link e(y, x) provides more valuable infor-
mation to node x. Take Twitter as a simple example to illus-
trate this phenomenon, where users follow each other based
on their interests. When user x has a follower y; who is an
active user (the one who follows numerous of other users),
x and y; are less likely to share common interests because y;
could be one of the advertisers or artificial followers called
"zombies". However, when x has a follower y, who only
follows a few users including x, they have higher chance to
be potential friends. The same phenomenon is also observed
in other types of realistic networks [9], [15], [28].

Based on the discussions above, we define A to be propor-
tional to the reciprocity coefficient p and inverse proportional
to the out-degree of target node y. The weighting mechanism
of directed links is then denoted as
Ay
k)())ut

Wyy = dxy + 0 - (11

We can further modify the original adjacency matrix into a
weighted one by using (11), where weights represent not only
the connectivity but also the mutual information exchange
between endpoints. In this case, the original problem turns
into predicting missing links in weighted networks. Plenty
of methods for link prediction in weighted networks have
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FIGURE 8. AUC values of proposed methods compared with basic similarity indices in eight networks.

been designed. Among them, the reliable-route weighting
method shows its efficiency and effectiveness [56]. Based on
the reliable-route weighting method, we construct a set of
indirect reciprocity-aware weighting indices IRW) as

1) IRW-DCN:

IRW—-DCN __
T = Zzev Wiz - Wy (12)
2) IRW-DAA:
MVPM YT s ay)

eV log(1 + 5)

where s, = ZZ/EF(z) w, 1s the strength of z. We use
log(1 + s;) instead of log(s;) to avoid negative values.
3) IRW-DRA:

IRW-DRA Wxz - Wzy
= _ 14
Sx.y ZZEV sZ ( )
where s, = Zz’el“(z) w,y is the strength of node z.
4) IRW-Bifan:
S)ICI;W—Blfan — Zzev Wiz - Wy - Wyy (15)

Notice that, according to the definition of reliable-route
methods, link weights should be within range [0,1] in order
to describe the probability that a link is safe for data trans-
mission [56]. Therefore, before the calculation of similarity
scores, link weights are normalized as

w =f(w) (16)

Reference [56] tested multiple normalization functions and
found that weights normalized by logistic and exponential
functions result in the highest precision values, for they can
model inherent linkage likelihood of node pairs from the
original weights. Here we choose the exponential function
f = e w for normalization.
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B. DIRECT RECIPROCITY-AWARE WEIGHTING METHOD

Considering two endpoints x and y of a directed closure triad
(x,z,¥), when e(y, x) € E, the possibility of the existence
of e(x, y) should be higher since reciprocal links are more
informative to link prediction than single directional ones.
Therefore, for each IRW index, we define its corresponding
direct reciprocal-aware weighting (DRW) counterpart as:

SDRW — SIRW + A./ . SH;W (17)

xy xy Y-

where sI®W

vy is similarity score of IRW index, A’ adjusts the
effect of reverse link. Similar to A in (11), we define A’ as
proportional to the reciprocity coefficient and inverse pro-
portional to the out-degree of target node. The DRW-based

indices are then denoted as:

SIRW
DRW __ IRW yx
Sy | =8 o —k;)ut (18)

where p is the reciprocity coefficient.

VI. RESULTS AND DISCUSSIONS

A. ACCURACY OF PROPOSED METHODS

The performance of proposed methods in comparison with
their basic counterparts is analyzed first. Fig. 8 and Fig. 9
respectively show the AUC and precision values of basic,
IRW-based, and DRW-based similarity indices in eight net-
works. The partition ratio of training set is f = 0.9, and
parameter L in the calculation of precision value in (7) is set
to 1% of |E|. Each value is generated by averaging the results
of 30 independent implementations for each network.

In general, an obvious improvement on both AUC and
precision can be observed. Especially in ADO and ATC, AUC
values of proposed methods are averagely higher than basic
ones by 8%. In HIG, precision values of DRW-based indices
are approximately twice of basic ones. Even in networks
with small reciprocity coefficients such as CELE and FIG,
both the AUC and precision values of proposed methods
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FIGURE 9. Precision values of proposed methods compared with basic similarity indices in eight networks.

TABLE 5. AUC and precision values of DCN series. The left part presents AUC values and the right part presents precision values. Index with the best

performance in each network is marked in bold.

Network ADO HIG PB EMA ATC USA CELE FIG |ADO HIG PB EMA ATC USA CELE FIG

DCN 0.715 0.869 0.929 0948 0.610 0.969 0.797 0.704 |0.189 0.158 0.419 0.339 0.059 0.903 0.104 0.230
RC-DCN 0.715 0.872 0928 0.948 0.610 0.969 0.797 0.704 |0.196 0.175 0.427 0.337 0.066 0903 0.103 0.227
LNB-DCN 0.716 0.866 0921 0953 0.611 0970 0.774 0.506 |0.184 0.154 0.455 0.339 0.028 0.904 0.090 0.052
LRW-DCN  0.805 0.921 0.948 0.953 0.705 0.975 0.857 0.708 |0.194 0.177 0425 0.342 0.075 0.904 0.104 0.214
DRW-DCN  0.805 0918 0.948 0.954 0.705 0.975 0.855 0.709 |0.200 0.185 0.428 0.347 0.062 0.906 0.105 0.246

TABLE 6. AUC and precision values of DAA series. The left part presents AUC values and the right part presents precision values. Index with the best

performance in each network is marked in bold.

Index ADO HIG PB EMA ATC USA CELE FIG |ADO HIG PB EMA ATC USA CELE FIG

DAA 0.713 0.870 0.929 0.952 0.602 0.972 0.802 0.704 |0.169 0.146 0.408 0.344 0.030 0.896 0.050 0.039
RC-DAA 0.714 0.873 0928 0.951 0.602 0971 0.801 0.704 [0.158 0.195 0.411 0317 0.045 0.888 0.056 0.038
LNB-DAA 0.714 0.864 0922 0955 0.603 0972 0.775 0.506 |0.160 0.150 0.436 0.364 0.036 0.891 0.059 0.035
LRW-DAA  0.798 0917 0950 0.957 0.690 0.977 0.872 0.724 |0.174 0.159 0.412 0.347 0.048 0.894 0.077 0.041
DRW-DAA  0.798 0.917 0.948 0.958 0.690 0.978 0.864 0.703 |0.190 0.182 0.415 0.350 0.050 0.898 0.078 0.035

TABLE 7. AUC and precision values of DRA series. The left part presents AUC values and the right part presents precision values. Index with the best

performance in each network is marked in bold.

Index ADO HIG PB EMA ATC USA CELE FIG |ADO HIG PB EMA ATC USA CELE FIG
DRA 0.716 0.869 0.929 0.955 0.610 0974 0.804 0.704 |0.037 0.145 0.274 0.190 0.038 0.691 0.101 0.023
RC-DRA 0.715 0.874 0930 0.954 0.609 0973 0.804 0.704 [0.147 0.162 0.253 0.337 0.031 0.702 0.096 0.023
LNB-DRA 0.716 0.868 0.922 0954 0.611 0974 0.774 0.509 |0.041 0.162 0.186 0.121 0.024 0.600 0.092 0.020
LRW-DRA  0.802 0916 0946 0959 0.704 0.979 0.880 0.726 | 0.030 0.158 0.269 0.279 0.034 0.659 0.102 0.026
DRW-DRA  0.800 0.916 0.946 0.960 0.702 0.981 0.873 0.703 |0.040 0.174 0.273 0.369 0.033 0.717 0.102 0.026

are significantly improved. It implies that in these networks,
reciprocal links play an important role in providing extra
information and stimulate link formation.

Subsequently, we compare the proposed methods with
two aforementioned weighting methods in Section II-B:
RC and LNB. Performance comparison of basic, RC-based,
LNB-based, IRW-based, and DRW-based similarity indices
is presented in Table 5, 6, and 7, respectively. In most net-
works, weighting methods are able to improve the accuracy
of basic indices at different levels. For example, the precision
value of LNB-DCN is 3.6% higher than that of DCN in PB.
In HIG, the precision value of RC-DAA is 4.9% higher than
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DAA. Nevertheless, in most networks, both RC-based and
LNB-based indices perform nearly the same. The proposed
methods, however, are able to achieve more accurate predic-
tions in all eight networks. In some networks, the improve-
ment is quite obvious. For example, in ADO, the AUC values
of LRW-DCN and DRW-DCN are higher than DCN by
approximately 9.0%. In most networks, the proposed meth-
ods get the best performance compared with basic, RC-based,
and LNB-based counterparts.

Table 8 shows the performance comparison of proposed
methods and eight state-of-the-art similarity indices includ-
ing those listed in Table 1 and PropFlow. In general, Jaccard,
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TABLE 8. Performance comparison of proposed methods and other state-of-art similarity indices. The left part presents AUC values and the right part

presents precision values. Index with the best performance in each network is marked in bold.

Index ADO HIG PB EMA ATC USA CELE FIG |ADO HIG PB EMA ATC USA CELE FIG

Jaccard 0.715 0.874 0.909 0.940 0.609 0.950 0.795 0.710 |0.077 0.178 0.002 0.244 0.000 0.001 0.008 0.015
Salton 0.715 0.874 0.908 0943 0.609 0.952 0.800 0.710 |0.055 0.180 0.002 0.174 0.000 0.001 0.012 0.015
Sgrensen 0.715 0.872 0908 0.941 0.608 0.951 0.795 0.710 |0.077 0.178 0.002 0.244 0.000 0.001 0.008 0.015
LHN-I 0.714 0.866 0.880 0.889 0.608 0.872 0.789 0.709 |0.027 0.088 0.002 0.001 0.000 0.000 0.006 0.015
HPI 0.714 0.871 0.902 0926 0.609 0.924 0.803 0.708 |0.024 0.140 0.017 0.006 0.016 0.013 0.140 0.048
HDI 0.714 0.872 0907 0936 0.607 0.948 0.794 0.710 |0.124 0.168 0.002 0.210 0.000 0.001 0.010 0.017
LP! 0.781 0.884 0962 0952 0.701 0.976 0.864 0.804 |0.172 0.180 0.414 0.334 0.038 0.896 0.098 0.202
PropFlow! 0.868 0.879 0.938 0916 0.840 0.937 0.869 0.961 |0.030 0.144 0.016 0.033 0.008 0.100 0.204 0.034
IRW-DCN 0.805 0.921 0.948 0.953 0.705 0.975 0.857 0.708 |0.194 0.177 0425 0.342 0.075 0904 0.104 0.214
DRW-DCN 0.805 0.918 0.948 0.954 0.705 0.975 0.855 0.709 |0.200 0.185 0.428 0.347 0.062 0.906 0.105 0.246
IRW-DAA 0.798 0.917 0.950 0.957 0.690 0.977 0.872 0.724 |0.174 0.159 0.412 0.347 0.048 0.894 0.077 0.041
DRW-DAA 0.798 0917 0.948 0.958 0.690 0.978 0.864 0.703 |0.190 0.182 0.415 0.350 0.050 0.898 0.078 0.035
IRW-DRA 0.802 0916 0.946 0.959 0.704 0.979 0.880 0.726 |0.030 0.158 0.269 0.279 0.034 0.659 0.102 0.026
DRW-DRA 0.800 0916 0946 0.960 0.702 0.981 0.873 0.703 |0.040 0.174 0.273 0369 0.033 0.717 0.102 0.026
IRW-Bifan  0.878 0.875 0.963 0.933 0.843 0.967 0.887 0.984 |0.126 0.139 0.500 0.330 0.076 0.891 0.184 0.319
DRW-Bifan 0.883 0.888 0.963 0.936 0.845 0.970 0.888 0.984 |0.139 0.166 0.502 0.340 0.079 0.897 0.176 0.319

1 Parameter o = 0.001 in LP. Parameter ! = 5 in PropFlow.
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FIGURE 10. AUC values of proposed methods in eight networks with different sizes of training sets.

Salton, Sgrensen, LHN-I, HPI, and HDI show almost the
same accuracy in each network, because they all exploit com-
mon neighbors between two endpoints with distinct assump-
tions on neighbors’ contributions. As quasi-local indices,
LP and PropFlow utilizes more information from longer paths
besides common neighbors, leading to obvious improvement
on accuracy. Nevertheless, the proposed methods achieve
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better performance in most networks. DRW-Bifan has the
highest AUC value in 5 out of 8 networks, and performs the
best in PB, ATC, and FIG under precision metric. DRW-DRA
and DRW-DCN also outperforms most benchmarks in other
networks under both AUC and precision metrics.

Overall, the results suggest that taking into account the
effect of reciprocal links can efficiently improve prediction
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FIGURE 11. Precision values of proposed methods in eight networks with different sizes of training sets.

accuracy of four basic similarity indices on both AUC and
precision. It provides more evidence for the results drawn
from the empirical test in Section IV. Moreover, as a com-
plement of Sett’s conclusions [27], the results imply that the
role of reciprocal links in different types of directed networks
is both significant and informative, and reciprocal links can
be well utilized to improve link prediction accuracy by using
the weighting methods we propose.

B. ROBUSTNESS ANALYSIS ON THE SIZE OF

TRAINING SET

To analyze the robustness of the proposed methods, we com-
pare the performance with changes on the size of training
set. The AUC and precision values of different methods when
partition ratio of training sets f changes from 0.25 to 0.95 are
respectively shown in Fig. 10 and Fig. 11. Each value is
the average of 30 independent implementations with random
divisions of training set and probe set. Parameter L in the
calculation of precision value in (7) is set to 1% of |E]|.

In Fig. 10, it is clear to see that in most networks,
DRW-based and IRW-based methods have higher AUC val-
ues than basic methods under all partition ratios. In ADO,
HIG, ATC, and CELE, the gaps between the proposed meth-
ods and basic ones are obvious. In PB, EMA, and USA,
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the AUC curves of DRW-based and IRW-based indices
decrease more mildly than those of basic ones, indicating
that the proposed methods are more robust against the size
of training set in these networks. We also notice that in
USA, basic indices such as DCN, DAA, and DRA only
achieve 0.81 in AUC value when only 25% of links in the
original network are observed. However, the corresponding
DRW-based and IRW-based counterparts still get AUC values
of approximately 0.91. We infer that reciprocal links are able
to bring extra information to link prediction even when the
knowledge from the partially observed network is limited.
In Fig. 11, improvements on robustness of precision values
are also observed in some networks such as ADO, HIG, and
USA. In HIG, when f = 0.25, the precision value of Bifan
is 0.06. However, the precision values of DRW-Bifan and
IRW-Bifan are increased by 28% and 23%. Nevertheless,
we also notice that in PB and CELE, the precision values of
proposed methods are nearly the same as basic ones.

VIi. DATA AND CODE AVAILABILITY
The original data of eight realistic networks are available
from: http://konect.uni-koblenz.de/networks/.

The source codes of the proposed methods and benchmarks
are available from: https://github.com/Lee3Paul/LP_with_
reciprocal_links.
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VIil. CONCLUSION

Recent years have witnessed a rapid development of net-
work science and link prediction. Predicting missing links
in directed networks is considered to be both promising and
challenging. In this paper, we investigate the role of reciprocal
links in the formation of directed closure triads in differ-
ent types of directed networks via an empirical test. Two
weighting mechanisms along with eight weighted indices
are then proposed based on four state-of-the-art similarity
indices: DCN, DAA, DRA, and Bifan, by differentiating the
effects of reciprocal link and single directional link. The
proposed weighting mechanisms consider indirect and direct
reciprocity between two endpoints in a directed closure triad.
Both global property (i.e., the reciprocity coefficient) and
local property (i.e., the out-degree of target node) are utilized
to quantify the effect of reverse links. Experimental results on
eight realistic networks from different fields indicate that the
proposed methods outperform their counterparts under AUC
and precision metrics. In addition, the proposed methods
show better robustness on the size of training set.

In this work, we focus on predicting missing links in
directed and unweighted networks. This work may be
extended to weighted, multi-relational networks considering
the influence of external information such as node attributes,
prior knowledge, etc. Moreover, the role of reciprocal links in
temporal directed networks may also be investigated, which
can potentially provide new insights toward link prediction.
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