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ABSTRACT To support the application of IoT and smart city, high data-rate wireless transmission is
required. To meet the demand of high data-rate, the techniques of multiple antennas and mobile edge
computing (MEC) networks have been proposed in order to enhance the data transmission rate significantly.
However, there still exist lots of challenges array signal processing assisted MEC networks. In this paper,
we propose an intelligent framework of offloading strategy for MEC networks assisted by array signal
processing, where one user with multiple antennas has some computational tasks. These tasks can be
computed by the user itself which however has limited computational capability, or computed by the near-by
computational access points (CAPs) which has a powerful computational capability at the cost of wireless
transmission. We consider the system cost by jointly taking into account the computational price, the energy
consumption and the latency. By minimizing the system cost, we propose an intelligent offloading strategy
based on ant colony optimization (ACO) algorithm, where the ants randomly visit the CAPs in order to
obtain the final results. To further enhance the MEC network performance, the array signal processing is
utilized at the user, where either the maximum ratio transmission (MRT) or selection combining (SC) is
used to assist the data transmission from the user to CAPs. Simulation results with MRT and SC are finally
demonstrated to verify the effectiveness of the proposed ACO-based offloading strategy and array signal
processing schemes.

INDEX TERMS Array signal processing, mobile edge computing, IoT, smart city.

I. INTRODUCTION
In recent years, the research and applications of smart city
have attracted much attention, since it can help city plan-
ning, transportation planning, detecting unusual accidents,
and so on [1]–[3]. To support the development of smart
city, many new techniques have been proposed [4]–[6].
Among these techniques, the internet of things (IoT) tech-
nique has been proven to be a promising candidate [7], [8],
which can intelligently acquire the city information, and
process the obtained information [9], [10]. There are exist-
ing many researches on IoT and its applications, such as
the urban environments detecting [11], [12]. Besides the
above research, there have been some researches on the
newly developed materials [13], [14] for IoT and smart city,
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which can be used in wireless networks for both trans-
mission and improving the environments. In addition, there
exist many researches on security to guarantee the wireless
transmission in practice [15], [16], for the implementation of
smart city.

Recently, there is an increasing trend that the users’
demand has started switching from the traditional commu-
nication to computation [17]–[19]. In other words, many
services in the wireless networks involve both the intensive
computation and communication [20]–[22]. In some practical
cases, the target is the computation result, while the commu-
nication is just a method. To support such kinds of new arising
services, mobile edge computing (MEC) is proposed by the
researchers in the filed of wireless communications. In MEC
networks, the computational task can be offloaded to near-by
nodes in the network which have a powerful computational
capability, at the cost of wireless transmission. Hence, it is
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of vital importance to design an efficient offloading strategy
to effectively offload the computational tasks into the near-by
nodes, by taking into account the joint cost from the computa-
tion and wireless communication. In [23], a novel framework
of offloading strategy was designed, where the offloading,
the relay selection and the bandwidth allocation were
jointly optimized to enhance the MEC network performance
by reducing the cost of communication and computation
substantially.

The application of intelligent algorithms such as deep
learning and reinforcement learning based algorithms into
wireless communication systems has attracted much atten-
tion, from the academia and industry [24]–[26]. The essence
of these intelligent algorithms is the data-driven, instead of
model-driven in the traditional works. In [25], [27], the deep
learning was used to improve the detection performance of
the maximum likelihood detector (MLD), by exploiting the
local correlation characteristics through the deep convolu-
tional neural network (DCNN). Besides the deep learning
based works, the reinforcement learning algorithm can be
also applied into the wireless communications. In [28], [29],
the transmit power was intelligently optimized through the
reinforcement algorithm, in order to tackle the smart attacker
which can work in eavesdropping, interfering, spoofing and
silent modes. In [30], [31], the authors used the antenna
processing techniques and statistical channel state informa-
tion of attacker, and effectively suppressed the smart attacker
through the Q-learning algorithm.

In this paper, we propose an intelligent offloading strategy
for MEC networks, where one user equipped with multiple
antennas has some intensive computational tasks. These tasks
can be computed by the user itself, or by the near-by com-
putational access points (CAPs) through the help of wireless
links. We consider the system cost as a linear combination
of the computational price, the energy consumption and the
latency. Based on this cost, we design the intelligent offload-
ing strategy by the ant colony optimization (ACO) algorithm,
in which the ants obtain a final offloading strategy through
many times of random test. We further optimize the system
performance to reduce the system cost by the array signal
processing at the user. In particular, we employ two kinds
of array signal processing at the user, i.e., maximum ratio
transmission (MRT) and selection combining (SC), in order
to assist the task transmission from the user to the CAPs.
For the ACO based offloading strategy with the two array
signal processing schemes, we finally present some simu-
lation results in order to verify the proposed studies in this
paper.

The organization of this paper is given as follows. After
the introduction in this section, we will discuss the system
model of MEC as well as the system model in Sec. II. Then,
we introduce the two array signal processing schemes and
the ACO based offloading strategy in Sec. III. Sec. IV will
present the simulation results and conclusions are finally
made in Sec. V.

FIGURE 1. The whole system model in the Intelligent Offloading Strategy
Design in Mobile Edge Computing Networks.

II. SYSTEM MODEL
Fig. 1 depicts the system model of task offloading in the
MEC networks, where one user equipped with K antennas
has some computational tasks assisted by the M near-by
CAPs. In practice, the mobile user has limited computing
capability in general, and hence it is difficult for the user to
complete these tasks alone. Accordingly, the task is divided
into N sub-tasks and these N sub-tasks can be offloaded to
near-by CAPs. These CAPs have a powerful computational
capability, and they can help the user finish the sub-tasks.
In practice, the computational capability of the M CAPs is
maybe different, and we use γm to denote the computational
capability of them-th CAP, where γm can be measured by the
number of CPU cycles required for each bit in the sub-tasks.
Moreover, the CAPs may have different charge prices for the
user, andwe use pm to represent the computational price of the
m-th CAP for computing 1M bits in the sub-tasks. In addition,
we use lULn and lDLn to denote the uplink and downlink bits for
the n-th sub-task.

We use the symbol xnm to indicate whether the n-th
sub-task is offloaded or not. The value of xnm is given by

xnm =

{
1, If the sub-task n is offloaded to the CAPm
0, If the sub-task n is not offloaded to the CAPm.

(1)

From the formula (1), we obtain an offloading strategy
matrix X = {xnm|1 ≤ n ≤ N , 0 ≤ m ≤ M}. Note that each
sub-task should be computed once only in order to save the
computational resources, we have the following constraint
accordingly,

M∑
m=0

xnm = 1. (2)

If the n-th sub-task is computed by the user itself with
xnm = 0 for m∀[1,M ], the computational latency and energy
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consumption are given by

tcompn0 =
lULn
γ0
, (3)

ecompn0 = Pcomp
lULn
γ0
, (4)

where γ0 is the computational capability of the user’s CPU,
and Pcomp is the user’s computational power. Notations tcompn0
and ecompn0 represent the locally computational latency and
local energy consumption, respectively.

On the other hand, if the n-th sub-task is computed by the
CAPm with xnm = 0 form ∈ [1,M ], the uplink and downlink
transmission time are given by

tULnm =
lULn
CUL
m
, (5)

tDLnm =
lDLn
CDL
m
, (6)

where tULnm and tDLnm are the transmission time of the uplink
and downlink, respectively. Notations CUL

m and CDL
m denote

the transmission data rate of the uplink and downlink, respec-
tively, which will be detailed in the next section. From tULnm
and tDLnm , the transmission energy are given by

eULnm = PULtrans
lULn
CUL
m
, (7)

eDLnm = PDLtrans
lDLn
CDL
m
, (8)

where PULtrans and P
DL
trans are the transmit power of the uplink

and downlink, respectively.
In addition, the computational time for the n-th sub-task

executed at the CAPm is given by,

tcompnm =
lULn
γm
, (9)

where the γm is the computational capability of the CAPm.
Since CAPs are directly connected to the power supply in
general, the energy consumption at the CAPs is ignored in
this paper. The charge of computing the user’s n-th sub-task
by CAPm is given by

3nm = pmlULn . (10)

From the above description, we can obtain the latency
which CAPm requires to calculate the assigned sub-tasks,
given by

Tm(X ) =


∑
n∈N

xnm(t
comp
n0 ), m = 0∑

n∈N
xnm(tULnm + t

DL
nm + t

comp
nm ), m > 0.

(11)

In this equation, m = 0 indicates that the latency of user’s
local CPU to complete the assigned sub-tasks is given by T0;
whilem > 0 represents that the sub-tasks are offloaded to the
near-by CAPs, where the associated transmission latency and
computing latency are given by Tm. In this work, we consider

that the sub-tasks are transmitted from the user to the CAPs
in parallel, and the CAPs can work in parallel, the latency of
completing all the sub-tasks is the maximum latency that M
CAPs complete their individual sub-tasks,

Ttotal = max
m∈M

Tm(X ). (12)

The system total energy consumption is defined as the sum
of the transmission energy and the computational energy.
Accordingly, the system total energy consumption is given
by

Etotal =
M∑
m=0

N∑
n=1

xnm(ecompnm + eULnm + e
DL
nm ). (13)

The system total charge from the CAPs is given by

3total =

M∑
m=1

N∑
n=1

(xnm3nm). (14)

From the latency Ttotal , energy consumption Etotal and the
charge 3total , we can obtain the three performance metrics
to measure the system performance of the MEC networks.
In the following section, we will describe how to formulate
the optimization problem and how to solve the optimization
problem for the considered MEC networks.

III. ARRAY SIGNAL PROCESSING AND
ACO-BASED OFFLOADING STRATEGY
In this section, we could first present several array signal pro-
cessing schemes, which affect the upload and download data
rates of wireless transmission. Then, we will present a joint
performancemetric tomeasure the system performance of the
MEC networks, based on the latency, energy consumption,
and the price. After that, we will describe the ACO-based
offloading strategy design for the considered MEC networks.

A. ARRAY SIGNAL PROCESSING
In this work, multiple antennas are equipped at the user,
which can be utilized through away signal processing to
exploit the gain from multiple antennas. A simple way to
exploit the multiple antennas is the random antenna selection
scheme, which is also equivalent to the usage of only one
antenna at the user. Accordingly, the upload and download
data rates with the random antenna selection(RAS) are given
by:

CUL
m = B log2 (1+

PULtrans|h1|
2

σ 2 ). (15)

CDL
m = B log2 (1+

PDLtrans|h1|
2

σ 2 ). (16)

where B is the wireless bandwidth between the user and
CAPS, and h ∼ CN (0, ζ ) denotes the channel parameter
between the 1-st antenna of the user and the CAPs. Nota-
tions σ 2 is the noise power of the additive white Gaussian
noise (AWGN) [32]–[35], where the effect of noise on the
communication systems can be found in the literature such as
the works [36]–[39].
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Besides this array signal processing method, there exist
some other schemes to exploit the multiple antennas at the
user. In particular, selection combining (SC) scheme can be
used to choose the best antenna at the user [40]–[43], which
can maximize the upload and download data rates of wireless
transmission when some antennas are used. Accordingly,
the upload and download data rates with SC are given by:

CUL
m = B log2 (1+

PULtrans max
1≤k≤K

|hk |2

σ 2 ). (17)

CDL
m = B log2 (1+

PDLtrans max
1≤k≤K

|hk |2

σ 2 ). (18)

In addition to the RAS and SC, MRT can be used to exploit
all the benefits from multiple antennas, at the cost of using
multiple RF chains, which increase the system implementa-
tion complexity. Accordingly, the upload and download data
rates with MRT are given by:

CUL
m = B log2 (1+

PULtrans
K∑
k=1
|hk |2

σ 2 ). (19)

CDL
m = B log2 (1+

PDLtrans
K∑
k=1
|hk |2

σ 2 ). (20)

B. JOINT PERFORMANCE METRICS
The MEC networks include the latency, energy consumption
and the price, which present three-dimensional performance
metrics. We can measure the system performance through the
three-dimensional perspectives, which how cause much dif-
ficulty in system optimization. To simplify the measurement
on the system performance and the associate of optimization,
we consider a joint performance metric based on the latency,
energy consumption and the price, given by

8 = λ1Etotal + λ2Ttotal + (1− λ1 − λ2)3total (21)

with

0 ≤ λ1 ≤ 1, (22)

0 ≤ λ2 ≤ 1, (23)

0 ≤ λ1 + λ2 ≤ 1, (24)

where λ1, λ2 and (1 − λ1 − λ2) denote the weight factors
of the latency, energy consumption and the price in the
overall cost, respectively. In particular, when λ1 becomes
larger, the energy consumption plays a more important role
in the system whole cost; when λ2 increases, the latency
becomes more important in the system cost; when the value
of (1 − λ1 − λ2) becomes larger, the price presents a more
important role in the system cost. Moreover, it should be
noted that the joint performance metric8 can reflect the three
dimensional performance metrics to some extent. Specifi-
cally, when λ1 = 1 holds, the joint cost 8 degenerates into
the energy consumption; when λ2 = 1 holds, the joint cost
8 degenerates into the latency; when λ1 = λ2 = 0 holds,
the joint cost 8 degenerates into the price.

C. OFFLOADING STRATEGY OPTIMIZATION
After the array signal processing at the user, we obtain the
optimized uplink and downlink data rates for the wireless
transmission between the user and CAPs. Based on the joint
cost 8, we will describe hoe two devise the offloading strat-
egy, in order to minimize the system cost. In this work,
we employ the intelligent ACo scheme to obtain the offload-
ing matrix X. In general, the ACO is a bionic optimization
algorithm that simulates the foraging behavior of ants, and it
is also a type of heuristic algorithm. It was firstly used to solve
the traveling salesman problem (TSP), which is a classic NP
problem. And the goal of TSP is to find the shortest traversal
route for a series of cities. To apply the ACO to solve the
problem of task assignment in MEC networks, we change
the optimization goal from obtaining the shortest path to
achieving the minimal cost. In addition, there is a concept
of pheromone in ACO, which plays a leading role in the
optimization. After each ant matches a task with a given CAP,
it will leave a pheromone on this choice. Then the ant colony
will make a corresponding decision based on the pheromone
of all choices, and finally select the best allocation strategy
for the task offloading in MEC networks.

Specifically, to implement the ACO scheme, we firstly
define a pheromone concentration matrix γ , which is used
to record the pheromone concentration on the ant matching
path. Then, we let each ant choose a sub-task by random, and
each sub-task can be selected once only. We use a matrixO to
record whether the sub-tasks have been selected or not. And
each ant matches a CAP to it after selecting a task. Ants stop
crawling after all tasks have matched all CAPs. This process
of matching the CAPs is a process of probability selection.
And the probability selection here is a roulette probability
selection, so that each selectionmay select an event with a low
probability to ensure the randomness of selection. We define
the selection probability as P, which can be expressed as:

Pnm =
γ α(n,mj)8β (n,mj)
M∑
m=0

γ α(n,m)8β (n,m)

(25)

where mi indicates the currently selected CAP, α ∈ [0, 5]
is the information heuristic factor and β ∈ [0, 5] is the
except heuristic factor. The larger the value α, the greater the
possibility that the ant chooses the path previously traveled.
Accordingly, the randomness of the search path decreases.
When the ant colony search range becomes smaller, it is easier
for the search to fall into a local optimum. With a larger
value β, it is easier for the ant colony to choose a local short
path. At this time, although the convergence speed of the
ACO algorithm is fast, the randomness is however decreased,
which may lead to a local optimum.

We call all ants crawling as one time of iteration. We use i
as to denote iteration index, which is in the range of [1, I ]
value for each iteration and I for the total number of iter-
ations. The corresponding pheromone will be left on the
distribution path after each iteration, and then we start to
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Algorithm 1 ACO Algorithm for Optimization
for each i ∈ [1, I ] do
for each ant in ants do

for each n ∈ [1,N ] do
Randomly select a task among N ones
if O[n] then

Select n as the next task and set O[n] to false.
end if
for each m ∈ [1,M ] do
Compute the cost of each allocation strategy
by 21
Compute the possibility of each allocation strat-
egy by 25

end for
Roulette selects an allocation strategy
Set the X[n,m] to 1

end for
Obtain a compete allocation matrix X
Compute the system cost with X by 21

end for
Select the best ant in this iteration
Update the pheromone of each allocation method by
the 26

end for

update the pheromone concentration matrix γ . The update
formula can be expressed as:

γ inm = (1− ρ)γ i−1nm +1γ
i
nm (26)

where ρ ∈ [0, 1] is an information volatility factor which
is used to affect the concentration change of pheromone,
and 1γ represents the pheromone left by the ant after the
current i-th iteration. When ρ is very small, there is a lot
of pheromone remaining on an allocation path, which may
cause invalid allocation paths to continue being searched and
affect the convergence rate of the algorithm. On the contrary,
when ρ is very large, there is little guarantee that the valid
path will continue to be searched although invalid paths can
be excluded from searching. Moreover, the value of ρ will
affect the search result of the optimal value. In addition,
the right side of this equation indicates that the information
concentrations on the distribution path at the (i− 1)-th time.
The left side of this formula indicates that the distribution
concentrations on the distribution path after the current i-th
iteration.

After each iteration, we can find an optimal ant whose
total cost on the distribution path is the minimum. After
going through times of iterations, the allocation matrix of the
optimal ant is the final result that we want to obtain. In this
way, we have completed the ACO-based offloading strategy
for the MEC networks. In the table of Algorithm, we have
summarized the MEC-based offloading strategy for the MEC
networks.

FIGURE 2. Performance of the ACO algorithm with MRT, where λ1 = 0.4,
λ2 = 0.5 and there are 100 ants in the population.

IV. SIMULATION RESULTS AND DISCUSSIONS
In this section, we will demonstrate some simulation results
to verify the proposed studies in this paper. If not specified,
we consider that the size of the task is 250Mb and it is divided
into 10 sub-tasks randomly. The user has a local CPU with a
computational capability of 1 × 109 (cycle/s), and its local
computational power is set to 2. There are three CAPs with
a powerful computational capability with M = 3, and the
associated CPU frequencies are set to 2 × 109, 6 × 109

and 6 × 109 (cycle/s), respectively. The pricing at the three
CAPs is set to 0.1, 0.2 and 0.3 for 1M bits, respectively. The
user is equipped with three transmit antennas with K = 3,
and its transmit power of the upload and download is set
to 4, and 3, respectively. The transmission bandwidth of the
wireless links between the user and CAPs is set to 100 MHz.
As to the ACO algorithm, we set the number of ants equal
to 30 and each ant is executed 30 iterations. The information
heuristic factor and the except heuristic factor are both set
to 1, and the information volatility factor is set to 0.4.

Figs. 2 and 3 demonstrate the performance of the ACO
algorithm versus the ant iteration, where λ1 = 0.4 and
λ2 = 0.5 and there are 100 ants in the population. Specif-
ically, Fig. 2 and Fig. 3 are associate with the MRT and
SC schemes, respectively. For comparison, the performance
of the brute force (BF) algorithm is also plotted in these
two figures for comparison. As observed from these two
figures, we can find that the system cost of the ACO algo-
rithm decreases with the number of iteration, and after some
iterations, the ACO algorithm becomes convergent. After
convergence, the ACO algorithm achieves a near-optimal
performance which is quite close to the BF algorithm. This
validates the effectiveness of the proposed ACO algorithm
for the offloading strategy in the MEC networks.

Figs. 4-5 show the effect of weight factors on the perfor-
mance of ACO with MRT, where the number of ants in the
ACO is 100 and the number of iterations is 100. Specifically,
Fig. 4 corresponds to the effect of λ1 which varies from
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FIGURE 3. Performance of the ACO algorithm with SC, where λ1 = 0.4,
λ2 = 0.5 and there are 100 ants in the population.

FIGURE 4. Effect of λ1 on the performance of ACO with MRT, where
λ2 = 0.1,0.2.

FIGURE 5. Effect of λ2 on the performance of ACO with MRT, where
λ1 = 0.1,0.2.

0.1 to 0.8, while Fig. 5 is associated with the effect of λ2
which varies from 0.1 to 0.8. We can find from these two

FIGURE 6. Effect of λ1 on the performance of ACO with SC, where
λ2 = 0.1,0.2.

FIGURE 7. Effect of λ2 on the performance of ACO with SC, where
λ1 = 0.1,0.2.

figures that the weight factor λ1 has an important impact on
the system cost, indicating that the energy consumption is a
dominant factor in the system whole cost. On the contrary,
the system cost changes very limited with the change of λ2,
indicating that the latency is not dominant in the systemwhole
performance.

Similar to Figs. 4-5, Figs. 6-7 depict the effect of weight
factors λ1 and λ2 on the performance of ACOwith SC, where
the number of ants in the ACO is 100 and the number of
iterations is 100. Specifically, Fig. 6 is associated with the
effect of λ1 which varies from 0.1 to 0.8, while Fig. 7 cor-
respond to the effect of λ2 which varies from 0.1 to 0.8.
Similar to the observations in Figs. 4-5, we can find from
Figs. 6-7 that the weight factor λ1 has a profound impact on
the system cost, indicating that the energy consumption is a
dominant factor in the system whole cost. On the contrary,
the system cost changes very limited with the change of λ2,
indicating that the latency is not dominant in the systemwhole
performance.
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FIGURE 8. Performance comparison of several array signal processing
schemes versus λ1, where λ2 = 0.1 and there are 100 ants in the
population.

FIGURE 9. Performance comparison of several array signal processing
schemes versus λ2, where λ1 = 0.1 and there are 100 ants in the
population.

Figs. (8) and (9) compare the performances of several array
signal processing schemes versus the weight factors, where
the RAS, SC and MRT schemes are compared. In partic-
ular, Fig. 8 is associated with the performance versus the
weight factor λ1 with λ2=0.1, while Fig. 9 correspond to
the performance versus the weight factor λ2 with λ1=0.1.
We can observe from these two figures that λ1 has a more
important role in the system performance than λ2, indicating
that the energy consumption dominates in the system whole
cost. Moreover, the MRT has the lowest cost, while the SC
outperforms the RAS in the system cost. This indicates that
the MRT can exploit the gain from multiple antennas fully,
while RAS fails to obtain the gain from multiple antennas.
In further, the performance gap among the MRT, SC and
RAS increases obviously with the larger value of λ1, while
it increases slightly with the large value of λ2. This further
validates the insight that the energy consumption plays amore
important role in the system while cost.

FIGURE 10. Performance comparison of several array signal processing
schemes versus the transmit power, where λ1 = λ2 = 0.45 and there are
100 ants in the population and 100 iterations in the ACO.

Fig. 10 illustrates the performances of several array signal
processing schemes versus the transmit power, where λ1 =
λ2 = 0.45 and there are 100 ants in the population and
100 iterations in the ACO algorithm. In particular, the RAS,
SC and MRT schemes are compared in Fig. 10. By observing
Fig. 10, we can find that for each array signal processing
scheme, the system cost firstly decreases with the increasing
transmit power, and then instead increases with the transmit
power when the transmit power is high. This is because that
in the low region of transmit power, the increase of transmit
power can help reduce the transmission latency effectively,
while in the high region of transmit power, the increase of
transmit power however imposes a severe load on the system
energy consumption. Moreover, the result in Fig. 10 also
shows that the MRT outperforms SC and RAS, while SC
is better than the RAS in the terms of system cost. This
further indicates that the array signal processing scheme has
a significant impact on the system performance of the MEC
networks.

V. CONCLUSION
In this paper, we studied the intelligent offloading strategy
and bandwidth allocation for the MEC networks, where one
user had some computational tasks to be computed either
by the user itself or by the nearby CAPs in the networks
at the cost of wireless transmission. The system cost was a
linear combination of the computational price, energy con-
sumption and latency. Based on the system cost, the intel-
ligent offloading strategy was designed through the ACO
algorithm. To further reduce the system cost, two array signal
processing schemes were proposed to optimize the wire-
less transmission from the user to the CAPs. Simulation
results were finally provided to show the effectiveness of
the proposed ACO-based offloading strategy and the array
signal processing schemes. In future works, we will consider
the application for IoT networks, such as urban environ-
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ment detection [44]–[46].Moreover, wewill investigate other
kinds of intelligent algorithms [47]–[51] to the considered
system, in order to further enhance the system performance.
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