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ABSTRACT This paper presents a frequency-adaptive current control design for a grid-connected
inverter (GCI) with an inductive-capacitive-inductive (LCL) filter in the presence of grid disturbance such
as the grid frequency variation and grid voltage harmonic distortion as well as polytopic uncertainties
in the LCL filter parameters. The grid current control is achieved by augmenting integral and resonant
terms into the LCL-filtered inverter system model to constitute integral-resonant full-state feedback control
for zero steady-state error and current harmonic attenuation. To realize the full-state feedback control,
the information on all the state variables is essential. However, additional sensors for state measurements
increase the implementation cost as well as the complexity. To overcome this issue, a full-state discrete-time
observer is employed in the stationary reference frame. Furthermore, to maintain the quality of grid currents
injected into the grid, a frequency-adaptive current control is introduced. For this aim, the grid frequency
is estimated through an adaptive observer rapidly and precisely. Then, the estimated grid frequency is used
to adaptively change the frequency information in the augmented resonant controller for the purpose of
producing high-quality grid currents even under both distorted grid voltages and grid frequency variation.
In addition, to ensure the robustness against LCL filter parameter perturbation, a linear matrix inequality-
linear quadratic regulator (LMI-LQR) approach is proposed for polytopic uncertainties in the LCL filter
parameters to design full-state feedback control as well as a full-state observer. To verify the effectiveness
of the proposed control scheme, the simulation and experimental results are given.

INDEX TERMS Adaptive observer, frequency-adaptive control, grid-connected inverter, linear matrix
inequality (LMI), polytopic uncertainties.

I. INTRODUCTION
Over the last several years, renewable energy sources (RESs)
such as wind, hydropower, and photovoltaic have been
widely developed to replace conventional fossil energy
resources. Particularly, RESs are integrated in the form of
distributed generation systems (DGSs) [1]. To inject the
power from DGSs into the utility grid (UG), a grid-connected
inverter (GCI) is commonly adopted as a power interface
between RESs and the UG.

The associate editor coordinating the review of this manuscript and

approving it for publication was Guangya Yang .

To meet the power quality standard of DGS such as
IEEE-519 in the USA or IEC 61000-3-2 in Europe [2], a GCI
should produce a high-quality current with low harmonic
distortion into the UG. In addition, the injected grid-side
currents to the grid should fulfill desired control objectives
such as the reference tracking and fast transient response.
However, the control design is still challenging due to the
grid abnormality such as the harmonic distortion and grid
frequency variation, as well as uncertainties in inductive-
capacitive-inductive (LCL) filter parameters. Compared with
an inductive (L) filter, LCL filters are widely adopted as the
link between the GCI and UG due to their better attenuation
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capability of the current harmonics [3]. However, LCL filters
introduce the resonance behavior which might affect the sys-
tem stability. In this case, either passive [4] or active [5]–[7]
damping method is essential to damp the resonance problem.

To produce high-quality injected grid current under a dis-
torted grid voltage environment, several harmonic attenuation
methods have been widely studied. In [8], a grid current
active damping control is presented for a single-phase grid-
connected inverter. In this scheme, the proportional reso-
nant (PR) and phase-compensated harmonic regulator (HR)
are implemented to suppress the harmonics caused by grid
voltages distortion. Even though this scheme works well,
there exists a trade-off between the control bandwidth and
robustness in choosing the PR control gain. Another study
proposes an enhanced control structure which integrates the
phase-locked loop (PLL) state variables into the controller to
design the entire gains based on the optimal control [9]. This
structure minimizes the loop interaction between the PLL and
controller during the harmonics attenuation process. A feed-
forward controller based on an implicit zero-sequence dis-
continuous pulse width modulation (IZDPWM) is applied to
an L-filtered grid-connected inverter in [10]. To attenuate cur-
rent harmonicswith the robustness against uncertainties in the
grid impedance, an active damping method by using the slid-
ing mode control with a reduced model of a grid-connected
inverter is implemented in [11]. Other approaches use
a model predictive control [12], the plug-in combination
of PR and repetitive control (RC) [13], or multiresonant
control [14] to mitigate harmonic currents caused by grid
voltage distortion.

A grid frequency fluctuation commonly occurs during
the operation of a GCI, which might cause the perfor-
mance degradation of current control. To resolve such an
issue, several frequency-adaptive control schemes have been
studied. An enhanced frequency-adaptive current controller
based on the RC with a fixed sampling rate is presented
in [15] for a single-phase GCI. This approach is realized
by approximating the fractional delay with the Lagrange
interpolating polynomial for the RC harmonic controller.
A similar frequency-adaptive scheme based on the RC with
an improved proportional-integral multiresonant (PIMR)
scheme is proposed in [16] to consider a wide range of
frequency fluctuation from 49.5 Hz to 50.5 Hz for 50 Hz
frequency system. In this scheme, the varying fractional
delay is realized by a finite impulse response (FIR) filter for
adjustment of the controller parameters in order to match
its resonant frequency with the grid frequency even when
the frequency varies. However, these two methods require
a heavier computational task and a higher cost, yielding an
overall complexity due to the implementation of the Lagrange
interpolating polynomial method [15] or the variation of the
sampling rate [16]. In [17], a control method based on a
linear parameter varying (LPV) approach is studied for a
three-phase inverter to cope with the frequency fluctuation
phenomenon. In this method, the control design is accom-
plished by solving a set of linear matrix inequality (LMI)

evaluated on the vertex of a frequency interval to deal with
frequency fluctuation in the grid voltage.

As another method to solve the frequency variation issue,
a frequency-adaptive control based on the second-order
generalized integrator frequency locked loop (SOGI-FLL) is
proposed for torque ripple suppression of an induction gen-
erator system to consider the stator frequency variation [18].
Despite the effectiveness of the scheme, however, the high
bandwidth of the FLL block might cause system instability.
A selective harmonic compensator (SHC) by using paral-
lel proportional-integral (PI) and vector-proportional-integral
(VPI) controls is also presented in [19] for a three-phase
active power filter (APF) to deal with frequency variation and
distorted grid condition.

In general, accurate information on the grid frequency
is essential for the implementation of a frequency-adaptive
current control scheme. For this reason, several frequency
estimation approaches have been studied in the litera-
ture. In [20], the conventional moving average filter PLL
(MAF-PLL) method is adopted to estimate the grid fre-
quency. Even though this method gives a better frequency
estimation performance than the conventional PLL, the MAF
scheme without using adaptive window length causes a
steady-state error of frequency when the frequency varies.
Similarly, a cumulative moving average (CMA) filter is pre-
sented in [21] to filter out the steady-state frequency error
obtained from the PLL. To ensure the performance, the coef-
ficients of the CMA filter should be modified according to
the grid frequency variation. For the synchronization of a
GCI into the grid, a mixed second- and third-order gener-
alized integrator PLL (MSTOGI-PLL) approach is also pro-
posed in [22]. The performance of this scheme is better than
the SOGI-PLL. However, since this method utilizes a high-
order system, it has the trade-off between the fast transient
response and the ability to attenuate low order harmonics.
Instead of direct frequency estimation, another method intro-
duces an adaptive observer which estimates the grid voltage
parameters for a single-phase system [23].

Furthermore, when a GCI is linked with LCL filters,
a robust control design is necessary to deal with the per-
turbation issue of filter parameters. In [24], a robust cur-
rent control scheme of interlink converter for hybrid AC/DC
microgrid is implemented to cope with uncertainty in the
inductance and resistance of an L filter. In addition, a robust
state-feedback control scheme based on the LMI approach is
studied in [25], [26]. Even though the robustness of the con-
troller is verified, those methods only consider the parameter
uncertainty in the grid-side inductance.

As another approach to tackle the issue related to the
uncertainty in the system parameter, the uncertainties in both
the inductive-capacitive (LC) filter parameters and the load
are taken into account for the controller design of three-phase
DC/AC inverter by considering the polytopic model [27].
However, this study is evaluated under only ideal grid voltage
condition without consideration of current harmonic atten-
uation under distorted grid voltages. Another research uses

VOLUME 8, 2020 28757



R. Bimarta, K.-H. Kim: Robust Frequency-Adaptive Current Control of a GCI Based on LMI-LQR Under Polytopic Uncertainties

a robust H∞ state feedback control to deal with parametric
uncertainties in a grid-connected converter [28]. A similar
H∞ control design is proposed in [29] for uninterruptible
power supplies to cope with linear load-admittance variation.

In current control design for a GCI with an LCL filter,
the computational burden aspect for implementation should
be considered, particularly when the grid is in abnormal
conditions due to distorted grid, grid frequency variation, and
parametric uncertainties. In this case, a control design based
on the full-state feedback is well proved to be effective in
stabilizing the whole system. However, such a multivariable
control design still poses a challenge in selecting appropri-
ate controller gains to achieve a good performance. Related
to the gain selection for full-state feedback control, several
studies such as the pole placement [30], linear quadratic
regulator (LQR) [20], and LMI [25], [26], have been intro-
duced. However, when the number of gains is increased,
the pole placement method becomes less attractive due to the
time-consuming task. Meanwhile, despite the effectiveness
of the LQR approach in obtaining controller gains systemati-
cally, the LQR-based control cannot effectively deal with the
parametric uncertainty issue. The LQR method is generally
designed by minimizing the quadratic cost function with an
infinite horizon under the assumption that the parameters in
the system model are known [31]. When the system model
includes parameter uncertainties, the task of minimizing the
cost function for the infinite horizon is difficult [24]. Thus,
to overcome this limitation, LMI and LQR approaches are
combined, in which the upper bound of the cost function
is minimized with the infinite horizon at every sampling
period.

In this paper, a robust frequency-adaptive current con-
trol for a GCI with an LCL filter is proposed based on
the LMI-LQR approach under polytopic uncertainties. The
full-state feedback current control is realized by augmenting
integral and multiple resonant terms into the system model
in order to eliminate the steady-state error and to attenuate
the harmonic currents. To avoid control performance degra-
dation caused by the grid frequency fluctuation, the accurate
frequency information is essential. Thus, an adaptive observer
is adopted to estimate the grid frequency with high accuracy
and fast transient response. Moreover, the current control is
designed based on an LMI-LQR approach to guarantee the
robustness even in the presence of LCL filter parameter per-
turbation. In addition, to reduce the implementation cost due
to the use of full-state feedback control which requires all the
system states to be known, a full-state discrete-time observer
is employed in the stationary reference frame. In authors’
knowledge, most of the existing controllers have not dealt
with both the frequency-adaptive issue and the robustness
issue against uncertainty in all three LCL parameters at the
same time under a distorted grid environment. The main
contribution of this study is a robust control design based on
the LMI-LQR approach for a GCI under distorted grid con-
dition, frequency variation, and parameter uncertainties with
low implementation cost. To validate the effectiveness of the

FIGURE 1. Configuration of a GCI and the proposed control scheme.

proposed control scheme, the simulation and experimental
results are presented.

This paper is organized as follows: Section II explains
the system description for a GCI and a model of poly-
topic uncertainties. Section III presents the proposed robust
frequency-adaptive current control scheme. Section IV
briefly explains the stability analysis. Section V and VI
present the simulation and experimental results to validate the
proposed control scheme, respectively. Finally, Section VII
concludes the paper.

II. SYSTEM DESCRIPTION
A. SYSTEM MODEL OF GCI IN THE SRF
Fig. 1 shows a configuration of a GCI with an LCL filter and
the proposed control scheme which relies on only the mea-
surement of the grid-side currents, grid voltages, and DC link
voltage. The proposed scheme is achieved by three main parts
which are a frequency-adaptive state feedback current control
based on LMI-LQR scheme to produce high-quality grid-
side currents even under grid frequency variation, full-state
current observer to reduce additional sensors by estimating
the system states, and an adaptive observer to estimate the
grid frequency, precisely and rapidly. Three-phase GCI is
connected into the UG through an LCL filter, in which VDC
represents the DC link voltage, R1 and R2 are the filter
resistances, L1 and Lg1 are the filter inductances, Cf is the
filter capacitance, and Lg2 is the grid inductance. The math-
ematical model of LCL-filter inverter can be obtained by the
Kirchhoff’s law as follows:

i̇abc2 = −R2iabc2 /L2 + vabcc /L2 − eabc/L2 (1)

i̇abc1 = −R1iabc1 /L1 − vabcc /L1 + vabci /L1 (2)

v̇abcc = −i
abc
2 /Cf + iabc1 /Cf (3)

where the superscripts ‘‘abc’’ denote the quantities in
phase-variable. In addition, i2 is the grid-side current,
i1 is the inverter-side current, vc is the capacitor volt-
age, e is the grid voltage, and vi is the output voltage
of the inverter. Also, the series configuration of Lg1 and
Lg2 is combined as L2 = Lg1 + Lg2.

The inverter model in the natural frame (1)-(3) can be
transformed into the synchronous reference frame (SRF) by
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the Park transformation to obtain the state-space model in the
SRF as

ẋ(t) = Ax(t)+ Bu(t)+ De(t) (4)

y(t) = Cx(t) (5)

where the superscripts ‘‘q’’ and ‘‘d’’ denote the variables in
the SRF, x =

[
iq2 id2 iq1 id1 vqc vdc

]T
is the system state

vector, u =
[
vqi vdi

]T is the system input vector, and e =[
eq ed

]T is the grid voltage vector. The matrices A, B, C ,
and D are expressed as

A=


−R2/L2 −ω 0 0 1/L2 0
ω −R/L2 0 0 0 1/L2
0 0 −R1/L1 −ω −1/L1 0
0 0 ω −R1/L1 0 −1/L1

−1/Cf 0 1/Cf 0 0 −ω

0 −1/Cf 0 1/Cf ω 0



B=


0 0
0 0

1/L1 0
0 1/L1
0 0
0 0

 , D =


−1/L2 0

0 −1/L2
0 0
0 0
0 0
0 0


C =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
(6)

To discretize the continuous-time model in (4) and (5),
the zero-order hold (ZOH) method is applied for digital
implementation purpose in which the time delay effect in the
control input due to the digital implementation is neglected in
this study.With the sampling time Ts, the discrete-timemodel
is obtained as follows:

x(k + 1) = Adx(k)+ Bdu(k)+ Dde(k) (7)

y(k) = Cdx(k) (8)

where the matrices Ad , Bd , Cd , and Dd can be obtained by

Ad = eATs , Bd = (
∫ Ts

0
eATsdt)B,

Cd = C, Dd = (
∫ Ts

0
eATsdt)D.

B. MODELING OF POLYTOPIC UNCERTAINTIES
The values of LCL filter parameters in the GCI might vary
from the nominal value due to the manufacturing error and
temperature effect [24]. In addition, L2 is also affected by
the grid impedance under weak grid [25]. In this paper, it is
assumed that the parameters of L1, L2, and Cf include uncer-
tainties within a certain range. Namely, LCL filter parameter
values in the matrices A and B have the uncertain boundary
as follows:

L1min ≤ L1 ≤ L1max (9)

Cf min ≤ Cf ≤ Cf max (10)

L2min ≤ L2 ≤ L2max. (11)

To consider such uncertainty in the system model, the pair
of system matrix (Adi, Bdi) with i =1,. . . ,8 denotes eight
possible combinations of extreme values of L1, L2, and Cf .
Furthermore, it is assumed that the system matrix pair
(Adi, Bdi) belongs to polytopic uncertain set S as

S =

{
8∑

1=1

αi(Adi,Bdi)

∣∣∣∣∣
8∑
i=1

αi = 1, αi ≥ 0

}
. (12)

Even though the system parameters can be varied to arbi-
trary values, they are bounded such that the uncertain ranges
of the system parameters are determined as

L1,nom/µ1 ≤ L1 ≤ µ1L1,nom (13)

Cf ,nom/µ1 ≤ Cf ≤ µ1Cf ,nom (14)

L2,nom/µ2 ≤ L2 ≤ µ2L2,nom (15)

where the subscript ‘‘nom’’ denotes the nominal value of LCL
filter parameters, and µ1 and µ2(µ1,µ2 > 1) are the design
parameters [27]. Since L2 is subject to larger variation than L1
and Cf due to the effect of grid impedance variation during
the operation of GCI, the value of µ2 is selected as a larger
value than that of µ1.

III. PROPOSED ROBUST FREQUENCY-ADAPTIVE
CURRENT CONTROL
In this section, the proposed robust frequency-adaptive cur-
rent control scheme is designed in the SRF to achieve the
control objectives such as zero steady-state error and current
harmonic attenuation. An additional objective of the proposed
scheme is to guarantee the frequency-adaptive capability
under grid frequency variation and the robustness against
parameter uncertainties.

A. ADAPTIVE OBSERVER FOR FREQUENCY ESTIMATION
When the grid frequency fluctuates, it might cause the
degradation of the current control performance of the GCI
since the frequency information in the resonant controller
does not match with the real grid frequency [15]. Due to
this reason, accurate frequency information is necessary for
the online update of the frequency value in the resonant
terms. To resolve such an issue, an adaptive observer-based
approach is employed to estimate the grid frequency precisely
and fast under the distorted grid condition. Fig. 2 shows the
detailed block diagram of the adaptive observer for the grid
frequency estimation.

In this paper, the adaptive observer is designed in the
stationary reference frame with α-axis and β-axis. Since the
system models in α-axis and β-axis are decoupled and inde-
pendent of each other, the observer is designed first in α-axis
and the similar approach is applied to β-axis. Assuming that
the grid voltages only include the fundamental component
without harmonic pollution, the grid voltages are modeled by
using a sinusoidal function as follows:

ẋc(t) = Mcxc(t) (16)

yc(t) = Ncxc(t) (17)
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FIGURE 2. Block diagram of the adaptive observer.

where xc = [ xc1 xc2 ]T with being the state vector of the grid
voltages expressed as

Mc =

[
0 1

−ω∗2ψ 0

]
, Nc =

[
1 0

]
,

ψ = ω2/ω∗2, ω∗ = 120π

and ω is the angular frequency of the grid voltage.
To solve the problem related to the estimation of a system

with an unknown parameter, an observer for the dynamic
system (16) is designed in [23]. In this case, the adaptive
observer to estimate the grid voltage parameters is expressed
as

˙̂xc(t) = M̂cx̂c(t)+ Lc[yc(t)− Ncx̂c(t)] (18)

where x̂c is the estimated state of xc

M̂c =

[
0 1

−ω∗2ψ̂ 0

]
, Lc =

[
Lc1
Lc2

]
Lc is the adaptive observer gain and ψ̂ is the estimated value
of ψ .

It is proved in [23] that an adaptive observer provides supe-
rior performance such as zero steady-state estimation error of
grid voltage parameters. If the parameter ψ is exactly known
in (18), the linear observer (18) would estimate the state xc
asymptotically as long as the observer gain is chosen such that
the matrix (Mc − LcNc) is Hurwitz. However, under the grid
frequency variation, ψ is an unknown parameter. In order to
ensure the convergence of the estimated states in (18) to real
values, unknown grid frequency should be estimated by an
adaptation law. For this purpose, the estimation error of the
state and parameter are defined as

x̃c(t) = xc(t)− x̂c(t) (19)

ψ̃(t) = ψ(t)− ψ̂(t). (20)

Then, the error dynamic of the adaptive observer can be
determined from (16)-(18) as

˙̃xc(t) = (Mc − LcNc)x̃c(t)− Bcω∗2ψ̃ x̂c1(t) (21)

where Bc =
[
0 1

]T .

Since (21) is non-linear, a Lyapunov stability analysis
is performed to prove the stability as described in [23].
By choosing the gain Lc such that (Mc − LcNc) is Hurwitz,
the system can be strictly positive real. Then, by using the
Kalman-Yakubovich-Popov (KYP) lemma [23], [32], there
exist Pc = PTc > 0 and Qc = QTc > 0 such that

(Mc − LcNc)TPc + Pc(Mc − LcNc) = −Qc < 0 (22)

PcBc > NT
c . (23)

To derive the adaptation law, a Lyapunov function can be
selected as

V (x̃c, ψ̃) = x̃Tc Pcx̃c +
1
Rc
ψ̃2 (24)

where Rc is an adaptive gain. The derivative of the Lyapunov
function V can be obtained as

V̇ (x̃c, ψ̃) = −x̃Tc Qcx̃c − 2x̃Tc PcBcω
∗2ψ̃ x̂c1 +

2
Rc
ψ̃
˙̃
ψ (25)

or,

V̇ (x̃c, ψ̃) = −x̃Tc Qcx̃c

− 2[yc(t)− Ncx̂c(t)]x̂c1ω∗2ψ̃ +
2
Rc
ψ̃
˙̃
ψ. (26)

If the adaptation law is selected as

˙̂
ψ = −

˙̃
ψ = −ω∗2Rcx̂c1[yc(t)− Ncx̂c(t)] (27)

the derivative function of V can be simplified into

V̇ (x̃c, ψ̃) = −x̃Tc Qcx̃c ≤ 0. (28)

If (28) holds, the closed-loop system formed by (21) and (27)
is globally stable in the sense of Lyapunov.Moreover, in order
to prove the global stability by the LaSalle’s invariance prin-
ciple, V̇ (x̃c, ψ̃) = 0 implies x̃c = 0. Then, from x̃c = 0,
the error dynamic (21) and the parameter update law (27)
yield ˙̃ψ = 0. In other words, by the LaSalle’s theorem
and (28), it is concluded that the adaptive observer (18)
and (27) satisfies

lim
t→∞

x̃c = lim
t→∞

(xc − x̂c) = 0 (29)

lim
t→∞

ψ̃ = lim
t→∞

(ψ − ψ̂) = 0. (30)

Then, by using the relation between unknown parameter ψ
and ω, the estimated grid frequency ω̂ can be obtained as

ψ̂ = ω̂/ω∗2→ ω̂ = ψ̂ · ω∗2. (31)

For a digital implementation of the adaptive observer, the
continuous-time adaptive observer in (18) is transformed into
the transfer function form as

G(s) =
x̂c1(s)

yc − Ncx̂c1(s)
=
Lc1s+ Lc2
s2 + ω∗2ψ̂

. (32)

The transfer function (32) in s-domain is discretized as

G(z) =
Lc1z2 − Lc1 cos(ω∗2ψ̂Ts)z+ Lc2

z2 − 2 cos(ω∗2ψ̂Ts)z+ 1
. (33)
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FIGURE 3. Block diagram of the LMI-LQR-based robust current controller.

The transfer function (33) can be expressed in the
state-space model as[
x̂c1(k + 1)
x̂c2(k + 1)

]
=

[
2 cos(ω∗2ψ̂Ts) 1

−1 0

] [
x̂c1(k)
x̂c2(k)

]
+

[
Lc1 cos(ω∗2ψ̂Ts)

Ln

]
[yc(k)− Ncx̂c(k)]

(34)

where Ln = Lc2 − Lc1.
To consider the harmonic distortion in the grid volt-

ages, the harmonic voltages in the orders 5th, 7th, 11th,
and 13th are augmented in the adaptive observer as
follows [33]:

x̂e(k + 1) = M̂ex̂e(k)+ Le[ye(k)− Nex̂e(k)] (35)

where x̂e =
[
x̂c11 x̂c12 x̂c51 x̂c51 · · · x̂c131 x̂c132

]T

M̂e =


M̂1

M̂5

M̂7

M̂11

M̂13

, Le=


L1
L5
L7
L11
L13


T

ye =
[
x̂c11 x̂c51 · · · x̂c131

]T
Ne =

[
1 0 1 0 · · · 1 0

]
M̂i =

[
2 cos(iω∗2ψ̂Ts) 1

−1 0

]
, Li =

[
Lc1 cos(iω∗2ψ̂Ts)

Ln

]
for i = 1, 5, 7, 11, 13.

By selecting the adaptive observer gain such that the eigen-
values of (Me−LeNe) lie within the unit circle, the estimated
states converge to the real values.

B. CURRENT CONTROL BASED ON LMI-LQR APPROACH
The full-state feedback control is implemented to stabilize
the whole system. In order to ensure zero steady-state error
and the harmonic rejection at 6th and 12th orders, integral
and resonant terms are augmented into the system model to
construct integral-resonant full-state feedback current con-
troller. Fig. 3 represents the detailed block diagram of a

robust current controller based on the LMI-LQR approach.
The full-state feedback control and observer gains are
obtained systematically by using the LMI-LQR approach
in order to overcome the uncertainty issue caused by
LCL parameter perturbation.

Integral terms are expressed in the discrete-time state-
space as [20]

xi(k + 1) = Gxi(k)+ Hε(k) (36)

where xi =
[
xqi xdi

]T , G = I2x2, H = Ts × I2x2 ε =[
εq εd

]T
= r − Cdx is the grid-side current error, and

r =
[
iq∗2 id∗2

]T is the reference.
In addition to the robustness against LCL parameter uncer-

tainty, to ensure the frequency-adaptive capability of the pro-
posed current control under grid frequency deviation and grid
harmonic distortion, resonant terms are augmented, in which
the frequency is updated with online by using the frequency
information estimated from the adaptive observer.

To implement the resonant controller in the discrete-time,
the transfer function of resonant terms in the z-domain is
employed to compensate for the harmonics in the 6th and
12th orders [34]. It is well known that this method does
not yield the performance degradation caused by frequency
deviation at high resonant frequency during the discretization
process. A discrete-time transfer function of the resonant
terms is expressed as [34]

Rh(z) =
z2 − cos(ωhTs)z

z2 − 2 cos(ωhTs)z+ 1
(37)

where ωh is the resonant angular frequency. The transfer
function in (37) can be expressed in the state-space as [35]

rh(k + 1) = Mhrh(k)+ Nhε(k) (38)

whereMh =

[
2 cos(hωhTs) 1
−1 0

]
,Nh =

[
cos(hωhTs
−1

]
.

Based on (38), the resonant terms for q-axis and d-axis in
h-th harmonic order are modeled in the state-space as

xh(k + 1) = 8hxh(k)+ 0hε(k) (39)

where

xh =
[
xq1h xq2h xd1h xd2h

]T
8h =

[
Mh 0
0 Mh

]
, 0h =

[
Nh 0
0 Nh

]
for h = 6, 12.

Each of the resonant terms for harmonic order h introduces
four additional states into the inverter system model. Then,
the integral control terms in (36) and resonant control terms
in (39) are combined into the system state model by including
polytopic uncertainty as follows:

xg(k + 1) = Agixg(k)+ Bgiu(k)+ Dge(k)+ Brgr(k) (40)

y(k) = Cgxg(k) (41)
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where xg =
[
x xi x6 x12

]T with the length of 16

Agi =


Adi 0 0 0
−HCd G 0 0
−06Cd 0 86 0
−012Cd 0 0 812

 , Bgi =


Bdi
0
0
0

 ,

Dg =


Dd
0
0
0


Brg =

[
0T HT 0T6 0T12

]T
, Cg =

[
Cd 0 0 0

]
for i = 1, . . . 8.
To design the control input u(k) such that the system is

stable, the state-feedback control is used as u(k) = Kxg(k)
with K =

[
Kx Ki K6 K12

]
. In order to ensure the control

performance and system stability, the feedback gain K is
evaluated systematically by minimizing the quadratic cost
function as follows:

min
u(k)

J∞ =
∞∑
k=0

{
xg(k)TQxg(k)+ u(k)TRu(k)

}
. (42)

By considering a quadratic Lyapunov equation as

V (k) = xg(k)TPxg(k) (43)

where P = Y−1 is a positive definite matrix, the system
model in (40) with the full-state feedback control u(k) is
stable if and only if

V (k + 1)− V (k) ≤ −
{
xg(k)TQxg(k)+ u(k)TRu(k)

}
(44)

or,

(Agi + BgiK )TP(Agi + BgiK )− P ≤ −Q− KTRK . (45)

Multiplying the matrix Y on the left- and right-hand sides
of (45) yields

Y − Y TQY − LTRL

− (AgiY + BgiL)TY−1(AgiY + BgiL) ≥ 0 (46)

where L = KY . Applying Schur complement to (46)
yields [36]

Y LT (AgiY + BgiL)T Y
L R−1 0 0

(AgiY + BgiL) 0 Y 0
Y 0 0 Q−1

 ≥ 0,

(47)

for i = 1, . . . , 8.
In general, when the system model does not include uncer-

tainties, the gain is calculated in LQR control by minimizing
the cost function over the whole horizon. Thus, LQR is nor-
mally called an infinite horizon control problem of (42) [24].
However, the uncertainty in the system model causes dif-
ficulty in solving the minimization problem. To overcome
this limitation, the feedback gain is computed by minimizing
the upper bound J∞ at every sampling time. Furthermore,

in order to ensure robust performance, the sum of Lyapunov
difference is evaluated as [24]
∞∑
k=0

{V (k + 1)− V (k)}

≤

∞∑
k=0

−

{
xg(k)TQxg(k)+ u(k)TRu(k)

}
. (48)

This is equivalent to V (∞) − V (0) ≤ −J∞, in which
J∞ denotes the optimal cost function for the infinite horizon.
If the control stabilizes the system, it holds V (∞) = 0. Thus,
it yields J∞ ≤ V (0), which indicates that V (0) is the upper
bound of the LQR cost function. In addition, if α denotes the
upper bound of V (0), the following equation holds

J∞ ≤ V (0) = xg(0)TPxg(0) ≤ α (49)

or, [
α xg(0)T

xg(0) P−1

]
≥ 0. (50)

Therefore, an optimal gain K of the state-feedback control
can be determined by solving the following optimization
problem as

minα
Y ,L,α

subject to

E 0 0
0 α xg(0)T

0 xg(0) P−1

 ≥ 0 (51)

where E denotes the matrix in (47). It should be noted that
by solving (51), the condition of (46) holds. Thus, the overall
stability is guaranteed as long as uncertainties in L1, L2, and
Cf belong to the ranges in (13)-(15). Then, the state feedback
gain is obtained as K = LY−1 to ensure that the closed-loop
system (40) is robustly stable. In this paper, the weighting
matrices Q and R are selected as

Q = diag[0.98× I6×6, 108 × I2×2, 0.2× I4×4, 0.4× I4×4]

R = I2×2.

C. FULL-STATE CURRENT OBSERVER BASED ON LMI-LQR
APPROACH
To implement a full-state feedback control, the information
on the whole system states is necessary. Since additional
sensors to measure the system states increase the imple-
mentation cost, a full-state current observer is employed to
estimate the system states without additional sensors. The
system model (4) in the SRF includes the grid frequency
information. To obtain the discretized model of (4) under
frequency variation, only the online discretization process
is possible because the frequency is considered as a time-
varying parameter. In general, the ZOHmethod is preferred to
obtain a discretized system model [37]. However, calculating
a discretized model by using the ZOH method by online
with the time-varying parameter is a complex task. To avoid
such a drawback, the full-state observer is implemented
in the stationary reference frame since the system model
does not include the frequency information in the stationary
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reference frame. Then, the online discretization process based
on the ZOHmethod can be avoided. Instead, the conventional
offline discretization method can be simply used [20].

The system model of the GCI in the state-space is
expressed in the stationary reference frame as

ẋs(t) = Asxs(t)+ Bus(t)+ Des(t) (52)

ys(t) = Cxs(t) (53)

where superscripts ‘‘α’’ and ‘‘β’’ denote the variables in the

stationary reference frame, xs =
[
iα2 iβ2 iα1 iβ1 vαc vβc

]T
is the system state vector, us =

[
vαi vβi

]T
is the system input

vector, and es =
[
eα eβ

]T is the grid voltage vector. The
matrices B, C , and D are defined as the same in (6) while the
matrix As is expressed as

As=


−R2/L2 0 0 0 1/L2 0

0 −R/L2 0 0 0 1/L2
0 0 −R1/L1 0 −1/L1 0
0 0 0 −R1/L1 0 −1/L1

−1/Cf 0 1/Cf 0 0 0
0 −1/Cf 0 1/Cf 0 0


The system model in (52) and (53) are then discretized

using the ZOH method as

xs(k + 1) = Asdxs(k)+ Bsdus(k)+ Dsdes(k) (54)

ys(k) = Csdxs(k). (55)

Similar to (40), by considering the uncertainties of LCL
parameters, (54) and (55) can be expressed including poly-
topic uncertainty as

xs(k + 1) = Asdixs(k)+ Bsdius(k)+ Dsdes(k) (56)

ys(k) = Csdxs(k) (57)

for i = 1, . . . , 8.
In this paper, to estimate all the system states, a discrete-

time full-state current-type observer is employed due to its
advantages as compared to the predictive-type observer. From
the discrete-time system model in (56), the current-type
observer can be constructed as

x̄s(k + 1) = Asdix̂s(k)+ Bsdius(k)+ Dsdes(k) (58)

x̂s(k + 1) = x̄s(k + 1)+ Ko[ys(k + 1)− Csd x̄s(k + 1)] (59)

where the symbol ‘‘ˆ’’ denotes the estimated quantities, Ko is
the observer gain matrix. If the estimation error is defined as

x̃s(k) = xs(k)− x̂s(k) (60)

the error dynamic can be determined from (56) and (59) as

x̃s(k + 1) = (Asdi − KoCsdAsdi)x̃s(k). (61)

By applying similar procedures as in (42) through (45),
the inequality for the state estimator is expressed as

Po − Qo − KT
o RoKo

−(Asdi − KoCsdAsdi)TPo(Asdi − KoCsdAsdi) ≥ 0 (62)

where Po = Y−1o is a positive definite matrix. Furthermore,
multiplying the matrix Yo on the left- and right-hand sides
of (62) yields

Yo − Y To QoYo − L
T
o RoLo

−(AsdiYo − LoCsdAsdi)TY−1o (AsdiYo − LoCsdAsdi) ≥ 0

(63)

where Lo = KoYo. Then, the Schur complement can be
similarly applied to the inequality (63) as [36]

Yo LTo (AsdiYo−LoCsdAsdi)T Yo
Lo R−1o 0 0

(AsdiYo−LoCsdAsdi) 0 Yo 0
Yo 0 0 Q−1o


≥ 0, for i = 1, . . . , 8. (64)

Similar to the previous approach which considers the sum of
Lyapunov difference in (48) in order to obtain robust perfor-
mance capability, the upper bound for the observer system
can be also determined as

J∞ ≤ Vo(0) = xs(0)TPoxs(0) ≤ αo (65)

or, [
αo xs(0)T

xs(0) P−1o

]
≥ 0. (66)

If the matrices Yo > 0 and Lo > 0 exist, an optimal gain Ko
of the full-state observer can be determined by solving the
following optimization problem as

minαo
Yo,Lo,αo

subject to

Eo 0 0
0 αo xs(0)T

0 xs(0) P−1o

 ≥ 0 (67)

where Eo denotes the matrix in (64). It should be also noted
that by solving (67), the condition of (63) holds. Thus, the
overall stability is guaranteed as long as the uncertainties
in L1, L2, and Cf belong to the ranges in (13)-(15). Then,
the observer gain is obtained as Ko = LoY−1o to ensure that
the closed-loop system (59) is robustly stable.

IV. STABILITY ANALYSIS
The location of the eigenvalues of the closed-loop system
in the z-plane is influenced by the variation of the grid
impedance or LCL filter parameters. To ensure the con-
trol robustness, all the eigenvalues should stay in the stable
regions even under the parameter variations. To cope with
parametric uncertainties, the eight possible combinations of
extreme values of the LCL filter parameters given in (9)-(11)
are applied. Then, by solving the optimization for eight LMI
problems which include these eight combinations, the robust
state feedback gains are obtained. To prove that the entire
system is stable under the parameter uncertainties within the
extreme values of the LCL filter parameters, the eigenvalues
of the closed-loop system for the eight possible combinations
of extreme values are investigated.
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FIGURE 4. Eigenvalues of the closed-loop system in the proposed control
scheme for eight combinations of LCL filter parameter values.

FIGURE 5. Three-phase distorted grid voltages.

TABLE 1. System parameters of a grid-connected inverter.

Fig. 4 shows the eigenvalues of the closed-loop system
in the proposed control scheme for eight combinations of
LCL filter parameter values. As can be seen from this fig-
ure, all the eigenvalues stay inside the boundary of the unit
circle even under the uncertainties in LCL filter parame-
ters. Furthermore, all the eigenvalues remain inside the unit
circle despite the variation of LCL filter parameter values,
which clearly indicates the robustness of the proposed control
scheme against parameter uncertainty.

V. SIMULATION RESULTS
This section presents the simulation results by using the PSIM
software to validate the feasibility of the proposed robust
frequency-adaptive current control scheme for a GCI with an
LCL filter. The overall configuration of the proposed control
scheme is depicted in Fig. 1 through Fig. 3. The system
parameters of a GCI are listed in Table 1.

Fig. 5 shows three-phase distorted grid voltages with the
harmonic contamination in the orders of 5th, 7th, 11th, and

FIGURE 6. Simulation results for the proposed control scheme.
(a) Waveforms of grid-side three-phase currents and q-axis current.
(b) FFT result for a-phase grid-side current.

13th with a 5% magnitude of the nominal grid voltage. These
distorted grid voltages are combined with grid frequency
variation to demonstrate the performance of the proposed
current control scheme in regards of the quality of the injected
grid-side currents.

Fig. 6(a) represents the simulation results for the proposed
control scheme under distorted grid condition as in Fig. 5 with
a step change in the current reference at 0.2 s from 4 A
to 7 A. Waveforms of grid-side three-phase currents and
q-axis current prove that the proposed current controller can
track the reference with satisfactory transient and steady-state
performance. Fig. 6(b) shows the FFT result for steady-state
a-phase current. It is clearly shown that all the harmonic
components existing in distorted grid voltages can be well
damped by the proposed control scheme, generating the total
harmonic distortion (THD) value of 2.43%. This value meets
the criteria specified by the grid interconnection regulation
IEEE Std. 1547 for inverter-injected current [38].

Fig. 7 shows the comparative simulation results for
frequency estimation performance between the adaptive
observer scheme and the conventional MAF-PLL method.
Fig. 7(a) shows the performance comparison when the grid
frequency varies from 60 Hz to 58 Hz at 0.5 s, and then, from
58 Hz to 63 Hz at 0.6 s under distorted grid. It is observed
that the dynamic response of the frequency estimation scheme
by the adaptive observer is faster to reach the steady-state
condition. Moreover, after the grid frequency changes, the
MAF-PLL scheme shows a larger frequency ripple without
the adjustment of window length in the MAF [39]. To further
demonstrate the frequency estimation performance, distorted
grid, grid frequency variation, and grid phase jump are con-
sidered at the same time as depicted in Fig. 7(b), in which
the phase jump of −30◦ at 0.5 s and 30◦ at 0.6 s are applied
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FIGURE 7. Comparative simulation results for frequency estimation
between the adaptive observer and MAF-PLL. (a) Under frequency
variation from 60 Hz to 58 Hz at 0.5 s and from 58 Hz to 63 Hz at 0.6 s.
(b) Under frequency variation from 60 Hz to 58 Hz and phase jump of
−30◦ at 0.5 s, and frequency variation from 58 Hz to 63 Hz and phase
jump of 30◦ at 0.6 s.

to the grid in addition to both distorted grid and frequency
variation. It can be clearly seen that the transient response of
the adaptive observer is much faster than the MAF-PLL to
reach the steady-state. This estimated frequency is employed
to adaptively adjust the frequency information in resonant
control terms to achieve a frequency-adaptive capability of
the current control.

Fig. 8 shows the simulation results for the proposed
control scheme under frequency variation from 60 Hz to
58 Hz at 0.5 s, and from 58 Hz to 63 Hz at 0.6 s.
Fig. 8(a) represents the grid-side current response in the SRF.
As the grid frequency changes, transient current oscillation
is observed. However, the currents can be stabilized imme-
diately and reach steady-state values again. The response
of three-phase grid-side currents under frequency variation
is depicted in Fig. 8(b). When the grid frequency instanta-
neously changes, small distortion is shown in current wave-
forms. However, this current distortion due to frequency
change is completely compensated within only half a cycle.
In Fig. 8(b), the THD values of phase currents which are
measured by using steady-state phase currents are presented
as 2.43% at 60 Hz, 2.46% at 58 Hz, and 2.51% at 63 Hz,
respectively. These values fulfill the harmonic restriction
specified by the grid interconnection criteria. Furthermore,
to clearly show the transient response of grid-side currents,
enlarged waveforms of Fig. 8(b) are presented in Fig. 8(c) for
the frequency change from 60Hz to 58Hz, and in Fig. 8(d) for
the frequency change from 58 Hz to 63 Hz, respectively. Both
figures show a fast transient and a good harmonic attenuation
capability of the proposed control scheme even under severe
harmonic distortion and frequency variation in grid voltages.

To further evaluate the effectiveness of the proposed con-
trol scheme, the phase jump condition is also applied to the

FIGURE 8. Simulation results for the proposed control scheme under
frequency change from 60 Hz to 58 Hz at 0.5 s, and from 58 Hz to 63 Hz at
0.6 s. (a) Grid-side currents in the SRF. (b) Three-phase grid-side current
waveforms. (c) Enlarged waveforms of three-phase grid-side currents
when the frequency changes from 60 Hz to 58 Hz at 0.5 s. (c) Enlarged
waveforms of three-phase grid-side currents when the frequency changes
from 58 Hz to 63 Hz at 0.6 s.

grid in addition to both distorted grid and frequency varia-
tion. Fig. 9(a) represents the simulation results for the pro-
posed control scheme when the grid voltages have frequency
variation, phase jump, and harmonic distortion at the same
time. In this simulation, the grid voltage experiences both
the frequency change from 60 Hz to 58 Hz and the phase
jump of −30◦ at 0.5 s, and both the frequency change from
58 Hz to 63 Hz and the phase jump of 30◦ at 0.6 s. Fig. 9(b)
and Fig. 9(c) show the enlarged waveforms at each transient
condition. Even though small overshoot currents are observed
due to a sudden phase jump of the grid voltage, peak currents
are within an acceptable boundary and phase-currents are
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FIGURE 9. Simulation results for the proposed control scheme under
frequency change and phase jump. (a) Three-phase grid-side currents.
(b) Enlarged waveforms of three-phase grid-side currents under
frequency change from 60 Hz to 58 Hz and phase jump of −30◦ at 0.5 s.
(c) Enlarged waveforms of three-phase grid-side currents under frequency
change from 58 Hz to 63 Hz and phase jump of 30◦ at 0.6 s.

quickly recovered to sinusoidal values, which proves that
the proposed scheme can stabilize the entire system in the
presence of such severe grid uncertainty.

To evaluate the observer estimation performance, Fig. 10
shows the simulation results for the discrete-time current
observer in the stationary reference frame when the grid
voltage has frequency variation, phase jump, and harmonic
distortion at the same time. In this test, the grid condition is
the same as Fig. 9. Fig. 10(a), Fig. 10(b), and Fig. 10(c) show
the measured and estimated states for the grid-side currents,
inverter-side currents, and capacitor voltages, respectively.
As is shown noticeably, the estimated states well converge to
real values even when the frequency variation and phase jump
are applied to the grid simultaneously. As a result, a fast and
robust estimating performance of observers can be obtained
through the gain selection based on the LMI-LQR approach.

To test the robustness of the proposed control scheme under
LCL filter parameter variations, Fig. 11 shows the simulation
results for three-phase grid-side currents with the proposed
control scheme when the LCL filter parameter values are
suddenly changed from the nominal values. In (13)-(15),
the design parameters for uncertainty ranges are chosen as

FIGURE 10. Simulation results for the observer estimation performance
in the stationary reference frame under frequency variation and phase
jump (60 Hz→ 58 Hz, −30◦ at 0.5 s and 58 Hz→ 63 Hz, 30◦ at 0.6 s with
the nominal LCL filter parameters. (a) Grid-side currents and estimated
states. (b) Inverter-side currents and estimated states. (c) Capacitor
voltages and estimated states.

µ1 = 1.4 and µ2 = 2.0. The value of µ2 is chosen as a
higher value to consider the grid impedance variation effect
during the operation of a GCI. As is clearly seen in Fig. 11(a)
and Fig. 11(b), the proposed control scheme based on the
LMI-LQR approach yields a robust current control perfor-
mance even when LCL filters are suddenly changed. Three-
phase grid-side currents are recovered to sinusoidal values
within 10 ms, which demonstrates the robustness of the pro-
posed control scheme against the parameter perturbation.

Furthermore, to evaluate the robustness against LCL fil-
ter parameter perturbation, comparative simulations with the
existing frequency-adaptive control schemes are performed
with a larger variation of LCLfilter parameters. Fig. 12 shows
the comparative simulation results for three-phase grid-side
currents for the studies in [20] and [33], and the proposed
control scheme when LCL filter parameters are suddenly
varied from the nominal values to L1 = 0.5mH, Cf =
1.5µF , and L2 = 0.4mH at 0.5 s. In the proposed scheme,
the controller is designed by increasing the design parameters
µ1 = 3.0 and µ2 = 4.0 to obtain new set of control gains.
Fig. 12(a) and Fig. 12(b) show the current responses with the
method in [20], and in [33], respectively. As can be observed
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FIGURE 11. Simulation results for three-phase grid-side currents with the
proposed control scheme under sudden LCL filter parameter variations.
(a) LCL parameters are changed to L1 = 2.0mH, Cf = 3.85µF ,
L2 = 0.85mH at 0.4 s. (b) LCL parameters are changed to L1 = 1.4mH,
Cf = 5.45µF , L2 = 3.4mH at 0.5 s.

from these figures, when the LCL filter parameters vary
in a large range, the controller cannot stabilize the system.
On the other hand, as depicted in Fig. 12(c), the proposed
scheme is still able to stabilize the system even under such
a larger LCL filter parameter perturbation due to robust con-
trol design by incorporating the model of polytopic uncer-
tainties in the system model. The proposed control scheme
in Fig. 12(c) yields amere increase in THDvalue as compared
to the result in Fig. 11 caused by the LCL filter change.
These comparative results effectively prove that the proposed
scheme possesses the robustness against LCL parameter
variation.

In order to verify the frequency-adaptive capability of
the proposed scheme with new design parameter values,
the simulation result under frequency variation is presented
in Fig. 13 when the grid frequency decreases from 60 Hz to
58 Hz at 0.5 s, and increases from 58 Hz to 63 Hz at 0.6 s. The
transient response of phase currents is slower as compared to
the case which has a smaller uncertainty range in Fig. 8(b).
However, the proposed controller can stabilize the inverter
system, reaching the steady-state in less than 2 cycles. The
THD values for steady-state current in each frequency are
3.02% at 60 Hz, 3.11% at 58 Hz, and 3.18% at 63 Hz, which
satisfy the grid harmonic criteria.

In a three-phase GCI, the PLL is commonly used for the
synchronization with grid, and the PLL dynamics are the key
factors for a stable operation of inverters. However, in the
weak grid condition, the dynamics of the PLL are affected
by high grid impedance because the coupling between PLL
and grid impedance causes the harmonic resonance or even
system instability as studied in [40], [41]. The dynamic of

FIGURE 12. Comparative simulation results for three-phase grid-side
currents under sudden LCL filter parameter variations from the nominal
values. (a) With [20]. (b) With [33]. (c) With the proposed control scheme.

FIGURE 13. Simulation result for the proposed control scheme with
µ1 = 3.0 and µ2 = 4.0 under frequency variation.

LCL filters or the value of L2 may also be affected by the grid
impedance variation [42]. In order to investigate the effect
of Lg1 and Lg2 on phase angle detection, Fig. 14 shows the
simulation results for phase angles obtained from the adaptive
observer scheme and the conventional MAF-PLL method
when these parameters are suddenly changed at 0.5 s. It can
be clearly seen that the estimated phase angle shows a good
performance according to the measured one. In addition,
the phase angle is still stable even when L2 is varied instantly,
which indicates that the proposed scheme can effectively
stabilize the inverter system.
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FIGURE 14. Simulation results for phase angle when L2 is suddenly
changed at 0.5 s. (a) Lg1 decreases to 0.85mH. (b) Lg2 increases to 1.7mH.

FIGURE 15. Experimental system. (a) Configuration of the experimental
system. (b) Photograph of the experimental test set-up.

VI. EXPERIMENTAL RESULTS
To validate the feasibility of the proposed control scheme
in a real system, the experimental results are also presented.
Several test conditions such as the grid frequency variation,
phase jump, and LCL parameter variations are considered
to show the superiority of the proposed scheme. In addi-
tion, the experimental performance comparison is also given
in this section. Fig. 15(a) shows the configuration of the

FIGURE 16. Three-phase distorted grid voltages produced by
programmable AC source in experiments.

FIGURE 17. Experimental result for transient response of grid-side
currents with the proposed scheme under step change in the current
reference.

experimental system to implement the proposed control
scheme, which consists of a three-phase GCI with an LCL fil-
ter, a magnetic contactor for a grid connection, a DSP control
board, and a three-phase programmable AC power source to
generate distorted grid voltage and grid frequency variation.
Fig. 15(b) shows the photograph of the experimental set-
up. The entire control algorithm is implemented on a 32-bit
floating-point DSP TM320F28335 with a sampling period
of 100 µs to control 2 kVA prototype GCI [43]. Only the
grid-side current sensors and grid voltage sensors are used
for measurement to realize the proposed control algorithm.

Fig. 16 shows three-phased distorted grid voltages which
include the harmonics in the orders of 5th, 7th, 11th, and
13th with 5% magnitude of the fundamental component.
These distorted grid voltages generated by the programmable
AC power source are used in all the experiments to assess the
performance of the proposed scheme.

Fig. 17 represents the experimental result for the transient
response of grid-side currents with the proposed scheme
under a step change in the current reference from 4 A to
6 A. The transient response shows that the grid-side currents
rapidly track new reference within 5 ms. In addition, after
transient periods, steady-state grid-side currents are fairly
sinusoidal waveforms under the distorted grid voltage as
in Fig. 16.

To ensure that the proposed control scheme retains a
frequency-adaptive capability, the grid frequency is varied by
a three-phase programmable AC power source. Fig. 18 shows
the experimental results for the proposed control scheme
under both distorted grid voltages and frequency variation.
Fig. 18(a) shows the frequency estimation and three-phase
grid-side current response when the grid frequency is sud-
denly changed from 60 Hz to 58 Hz. In order to achieve
the frequency-adaptive capability in current control, the esti-
mated frequency is obtained from the adaptive observer and
is used to update the frequency information in the resonant
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FIGURE 18. Experimental results for the proposed control scheme under
distorted grid voltages and frequency change. (a) Three-phase grid-side
currents and estimated frequency when the frequency is changed from
60 Hz to 58 Hz. (b) Three-phase grid-side currents and estimated
frequency when the frequency is changed from 58 Hz to 63 Hz.

control terms. During transient periods before the estimated
frequency converges to the actual value, the current wave-
forms show harmonic distortion. However, this harmonic dis-
tortion in currents is rapidly removed within one fundamental
cycle as the grid frequency is precisely estimated. Fig. 18(b)
shows the estimated frequency and three-phase grid-side cur-
rent response when the grid frequency is instantaneously
increased from 58 Hz to 63 Hz. The harmonic distortion in
currents is slightly worse than the case of frequency drop
because the frequency rise is higher (5 Hz). Even in this case,
however, the proposed control scheme can recover sinusoidal
current waveforms in about 1.5 cycles. The experimental
results for both scenarios clearly demonstrate a fast transient
and frequency-adaptive capability of the proposed control
scheme.

To further evaluate the performance of the proposed con-
trol scheme, a comparison of transient response with several
studies in [21], [44], and [45] is presented. In [21], the tran-
sient time under frequency variation is approximately 2 s
for both the cases of frequency increase and decrease. This
scheme also shows current overshoots even under ±3 Hz
frequency variation with a similar distorted grid during the
transient period when the frequency varies. Even though
another frequency-adaptive scheme based on IIR filter in [44]
produces unnoticeable current overshoot when the frequency
fluctuates from 50 Hz to 55 Hz, the controller takes approxi-
mately 3 cycles to reach the steady-state condition. The study
in [45] shows current overshoot and long transient time of
around 80 ms when the frequency drops from 60 Hz to 50 Hz.
Also, the estimated frequency from the MAF-PLL shows
undershoot before reaching the steady-state. On the other
hand, the proposed control scheme shows barely noticeable
peak current during the transient period and can manage to
recover sinusoidal grid-side currents during 40 - 60 ms in the
cases of frequency increase and decrease even in the presence
of severely distorted voltages.

FIGURE 19. Experimental results for the estimation performance of
discrete-time full-state observer under frequency change. (a) Measured
and estimated state of grid-side currents. (b) Measured and estimated
state of inverter-side currents. (c) Measured and estimated state of
capacitor voltages.

FIGURE 20. Experimental performance comparison for frequency
estimation between the MAF-PLL and the adaptive observer.

Fig. 19 represents the experimental results for the estima-
tion performance of the discrete-time observer under both dis-
torted grid voltage and frequency variation. In these results,
only the frequency decrease from 60 Hz to 58 Hz is consid-
ered. The estimated frequency is also shown together with the
observer estimating performance in each figure. Fig. 19(a),
Fig. 19(b), and Fig. 19(c) depict the measured and esti-
mated states of the grid-side current, inverter-side current,
and capacitor voltage for a-phase, respectively. It is shown
that all the estimated states converge well to the measured
values even under both distorted grid voltage and frequency
variation.

Fig. 20 shows the performance comparison for frequency
estimation in an experimental way between the conventional
MAF-PLL and adaptive observer. It is clearly seen from
the waveforms that the adaptive observer is faster than the
MAF-PLL to estimate the grid frequency, which is well coin-
cident with the simulation in Fig. 7. Moreover, the MAF-
PLL method suffers from undershoot before reaching the
steady-state condition.
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FIGURE 21. Experimental results for the proposed control scheme under
both frequency change and phase jump of −30◦ with the ideal grid
voltage. (a) Grid voltage. (b) Three-phase grid-side currents and estimated
frequency under frequency change from 60 Hz to 58 Hz and phase jump
of −30◦. (c) Three-phase grid-side currents and estimated frequency
under frequency change from 58 Hz to 63 Hz and phase jump of −30◦.

To examine the performance of the proposed control
scheme in another test environment, a phase jump is added
beside the frequency variation. Fig. 21 shows the experimen-
tal results for the proposed control scheme under both the
frequency change and phase jump of −30◦ with the ideal
grid voltage. Fig. 21(a) represents the ideal grid voltages with
frequency change and phase jump. Fig. 21(b) and Fig. 21(c)
show the current response and estimated frequency under
those two conditions mentioned. It can be seen that the
frequency estimation takes a longer time to reach the final
correct value and shows a slight undershoot due to a sudden
phase jump.

Similarly, Fig. 22 represents the experimental results for
the proposed control scheme when the grid voltages have
frequency variation, phase jump of −30◦, and harmonic dis-
tortion at the same time. Fig. 22(a) shows distorted grid
voltages with frequency variation and phase jump, which
are used for this test. As compared to Fig. 21(b) and Fig.
21(c), the transient response in Fig. 22(b) and Fig. 22(c) takes
longer time to fully recover phase-current waveforms into
sinusoidal after being applied the frequency change and phase
jump. However, the grid-side current distortion caused by
the frequency change and phase jump is completely removed
approximately within three fundamental cycles for both the
frequency increase and decrease conditions.

Fig. 23 shows the experimental results for the steady-state
response of the grid-side currents under distorted grid volt-
ages and frequency variation. Fig. 23(a) and Fig. 23(b) depict

FIGURE 22. Experimental results for the proposed control scheme under
both frequency change and phase jump with the distorted grid voltage.
(a) Grid voltage. (b) Three-phase grid-side currents and estimated
frequency under frequency change from 60 Hz to 58 Hz and phase
jump −30◦. (c) Three-phase grid-side currents and estimated frequency
under frequency change from 58 Hz to 63 Hz and phase jump −30◦.

steady-state three-phase current waveforms and FFT result
of a-phase grid-side current at 60 Hz. Similarly, Fig. 23(c)
and Fig. 23(d) show the same results for 58 Hz. In FFT
results shown in Fig. 23(b) and Fig. 23(d), the harmonic
limits specified by the grid interconnection regulation IEEE
Std. 1547 are also shown for each harmonic component.
At steady-state, the current waveforms are quite sinusoidal
and the current harmonic components are well damped by the
proposed control scheme.

Hereinafter, to validate that the proposed control scheme is
robust against the perturbation caused by LCL filter parame-
ter variations, Fig. 24 represents the experimental test results
for the proposed current controller when a different set of
LCL filters are employed. Fig. 24(a) and Fig. 24(b) show
steady-state and transient responses of three-phase grid-side
currents. The transient current response immediately reaches
the steady-state condition under the step change in current
reference, and steady-state currents are sufficiently sinusoidal
to meet the grid criteria. These results prove the robustness of
the proposed control scheme against parameter uncertainties.

To test the robustness of the proposed control scheme under
instantaneous parameter variation, a sudden change of L2
value is applied during the operation of GCI. Fig. 25 shows
the experimental result for the proposed control scheme when
L2 parameter is significantly increased to 3.3 times the nom-
inal value. Even under such a large and sudden variation
of L2 parameter, only a slight current distortion is observed
and phase-currents are recovered to sinusoidal waveform
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FIGURE 23. Experimental results for steady-state grid-side currents of the
proposed control scheme under both distorted grid voltages and
frequency change. (a) Steady-state grid-side current waveforms at 60 Hz.
(b) FFT result for a-phase current at 60 Hz. (c) Steady-state grid-side
current waveforms at 58 Hz. (d) FFT result for a-phase current at 58 Hz.

FIGURE 24. Experimental results for three-phase grid-side currents of the
proposed control scheme under LCL filter parameter variation into
L1 = 3.0mH, Cf = 6µF , L2 = 1.0mH. (a) Steady-state current response.
(b) Transient currents response.

immediately in less than one fundamental cycle. This proves
that the proposed control scheme has not only the robustness
against parameter uncertainty but also fast transient response.

FIGURE 25. Experimental result for the proposed control scheme under
sudden change of L2 to 3.0 mH.

TABLE 2. Execution time of the proposed control scheme.

The execution time to implement the proposed robust
frequency-adaptive current control scheme on the DSP is
presented in Table 2 in detail. The total execution time to
run the whole algorithm requires 70 µs. This is only 70%
of the sampling period Ts, which is acceptable and can be
implemented easily on the commercial DSP.

VII. CONCLUSION
In this paper, a robust frequency-adaptive current control
of a GCI based on LMI-LQR under polytopic uncertain-
ties in LCL filter parameters has been presented to ensure
high-quality grid currents in the presence of grid voltage
harmonic distortion, grid frequency variation, and polytopic
uncertainties in the LCL filter parameters. The proposed
control scheme is implemented in the SRF by augmenting
integral and resonant terms into the LCL-filtered inverter
systemmodel to construct an integral-resonant full-state feed-
back control. An adaptive observer is also introduced for the
grid frequency estimation which is used to adaptively adjust
the frequency information in the resonant controller. Fur-
thermore, in order to reduce the system cost and complexity
caused by additional measurement, a discrete-time full-state
observer is implemented in the stationary reference frame for
the purpose of estimating the inverter states irrespective of
operating grid frequency.

In general, the state-feedback control suffers from the dif-
ficulty in selecting feedback gain as the number of system
states is increased. Moreover, the system model also has
uncertainty due to parameter variation. In order to guar-
antee the robustness against LCL parameter uncertainty as
well as to choose optimal gains for both the controller and
observer systematically, an LMI-LQR-based design approach
is applied in this paper. The effectiveness of the pro-
posed current control scheme has been validated through
the simulation and experiments under distorted grid volt-
age, frequency change, and LCL filter parameter varia-
tion. As a result, the proposed control scheme is able to
overcome the issue related to parameter uncertainties while
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maintaining frequency-adaptive control performance. It is
confirmed through the simulation and experimental results
that the proposed controller has the robustness against LCL
filter perturbation even for instant change of parameters dur-
ing inverter operation.
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