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ABSTRACT Production process optimization is an indispensable step in industrial production. The optimiza-
tion of the metal mines production process (MMPP) can increase production efficiency and thus promote
the utilization rate of the metal mineral resources in the frame work of sustainable development. This
study establishes a multi-objective optimization model for optimizing the MMPP by maximizing economic
and resource benefits. To get better non-dominated Pareto optimal solutions, an improved non-dominated
sorting genetic algorithm-II (NSGA-II) is proposed. The symmetric Latin hypercube design is adopted to
generate the initial population with high diversity. The mutation and crossover of the differential evolution
algorithms are introduced into the NSGA-II to replace the genetic algorithm for improving convergence.
The control parameters of the mutation scale factor and crossover rate of the differential evolution algorithm
are adaptively adjusted to improve the diversity of candidate solutions. To verify the performance of the
improved NSGA-II, four test functions from the ZDT series functions are chosen for experimentation. The
experimental results indicate that the improvedNSGA-II outperforms the comparative algorithms in diversity
and convergence. Moreover, the application of the proposed method to the Yinshan copper mines shows that
the improved NSGA-II is effective in optimizing the MMPP and a reliable method in promoting utilization
rate of metal mineral resources in the framework of sustainable development.

INDEX TERMS Metal mines production process, multi-objective optimization, symmetric Latin hypercube
design, differential evolution, parameter adaptation, improved NSGA-II.

I. INTRODUCTION
Metal mineral resources are non-renewable resources and
raw materials for industrial development. The gap between
society demand and industrial supply has become increas-
ingly challenging with continuous exploitations of the
non-renewable resources [1]. Therefore, it is an urgent prob-
lem to optimize the metal mine production process (MMPP)
for obtaining metal mineral resources with high utilization
rate under the frame work of sustainable development.

The associate editor coordinating the review of this manuscript and

approving it for publication was Emanuele Crisostomi .

The optimization of the metal mines production process is
to calculate themost reasonable technical production indexes,
such as the mineable reserve, geological cutoff grade, loss
rate, raw ore quantity, concentrate quantity, concentration
rate. These indexes directly affect the economic benefits
of metal mines enterprise and the utilization rate of metal
mineral resources. As a result, optimizing the MMPP is an
efficient way tominemetal mineral resources. It has been rec-
ognized that the traditional method of calculating production
technical indexes depends on experiences of workers. How-
ever, worker experience-depended methods have limitations
in carrying out a multi-objective optimization problem with
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many input indexes. For example, the experience-dependent
methods can increase the production costs and the waste of
resources [2]. Therefore, an effective optimization method is
necessary to optimize the MMPP.

In the last decades, many methods and models have been
proposed to optimize the MMPP. These methods can be
mainly classified into four categories. The first applied to
optimize the MMPP is the Lane’s theory [3]–[7]. The sec-
ond is the dynamic programming method [8]–[11] which
considers the different ore areas of metal mines. The third
is the single-objective evolutionary algorithm, such as the
genetic algorithm [12]–[14], the particle swarm optimization
algorithm [2] and the differential evolution algorithm [15].
The fourth is the multi-objective optimization algorithm,
such as the non-dominated sorting genetic algorithm-II
(NSGA-II) [16] that can consider multiple objectives in
optimization.

The Lane’s theory, the dynamic programming method,
and the single-objective evolutionary algorithms belong to
the class of single-objective optimization method. Those
single-objective optimization methods have made many
achievements in metal mines optimization, in which only a
single objective is considered. Hence, these single-objective
optimization methods are not appropriate for multi-objective
optimizations. With the increase in scarcity and contradiction
between resource demand and supply of the metal mineral
resources, experts and managers have recognized that the
economic and resource benefits must be considered both as
the objectives for the MMPP. Therefore, the single-objective
optimization methods are insufficient to optimize the MMPP.

In recently years, the NSGA-II method was applied
to optimize the multi-objective optimization model of the
MMPP, which considers both the economic and resource
benefits [16]. However, the MMPP is a complex and
nonlinear [2], [15] multi-objective optimization problem
with different constraints. Numerous studies [17]–[19] have
shown that the NSGA-II method has some difficulties in solv-
ing complex multi-objective optimization problems. First,
the initial population is generated by the uniform distribution,
which has been reported to be not a good strategy [20], [21]
due to its insufficiency of diversity. Second, theNSGA-II uses
the mutation and crossover of the genetic algorithm, which
is with slow speed and unstable convergence [22], [23]. The
mutation and crossover of the genetic algorithm reduce the
convergence rate and efficiency of the NSGA-II [20].

To overcome the above disadvantages of the NSGA-II,
an improved NSGA-II for optimizing theMMPP is proposed.
Firstly, the symmetric Latin hypercube design (SLHD) is
adopted to generate the initial population. Secondly, themuta-
tion and crossover of the differential evolution algorithm are
introduced into the NSGA-II. Thirdly, the control parameters
of mutation scale factor and crossover rate of the differential
evolution algorithm are adaptively adjusted.

The rest of the present paper is organized as follows.
Section II establishes the multi-objective optimization model
of the MMPP. Section III proposes an improved NSGA-II for

optimizing the MMPP. Section IV verifies the performance
of the improved NSGA-II on four test functions. Section V
validates the performance of the improved NSGA-II with an
actual case of the Yinshan Copper Mine. Section VI comes
the conclusion.

II. MULTI-OBJECTIVE OPTIMIZATION MODEL OF
METAL MINES PRODUCTION PROCESS
An multi-objective optimization model was introduced for
the MMPP in a former work [16] as a first trial. For com-
pleteness, this paper briefly introduces the multi-objective
optimization model of the MMPP. It should be noted that
the metal mines in China use the ‘‘double-grade’’ (geological
cutoff grade and minimum industrial grade) instead of the
international ‘‘single-grade’’ (cutoff grade).

A. RELATIONS AMONG PRODUCTION
TECHNICAL INDEXES
TheMMPP includes three stages, respectively the exploration
stage, the mining stage, and the ore-dressing stage. Each
stage has main production technical indexes. For example,
the exploration stage has mainly four production technical
indexes, i.e., the mineable reserve (a1, t), geological cutoff
grade (g1, %), minimum industrial grade (g2, %), and mean
grade of ore (g3, %). The mining stage has mainly four
production technical indexes, i.e., the dilution rate (r1, %),
loss rate (r2, %), grade (g4, %), and quantity (a2, t) of raw
ore. The ore-dressing stage has mainly three production tech-
nical indexes, i.e., the concentration rate (r3), ore concentrate
grade (g5, %), and concentrate quantity (a3, t). Since these
indexes affect each other, relations among them should be
considered in the MMPP.

The mineable reserve and mean grade of ore are deter-
mined by the geological cutoff grade and minimum industrial
grade. In the MMPP, the mathematical-statistical methods
are generally used to calculate the mineable reserve and
mean grade of ore [8], [16]. They are expressed as:

ϕ(x) = (
x − g1
g2 − g1

)h, g1 ≤ x ≤ g2 (1)

a1 = f1(g1, g2)

= a0 ×

∫ g2
g1
ϕ(x)δ(x)f (x)dx +

∫ 100
g2

δ(x)f (x)dx∫ gb
ga
ϕ(x)δ(x)f (x)dx +

∫ 100
gb

δ(x)f (x)dx
(2)

g3 = f2(g1, g2)

=

∫ g2
g1
xϕ(x)f (x)dx +

∫ 100
g2

xf (x)dx∫ g2
g1
ϕ(x)f (x)dx +

∫ 100
g2

f (x)dx
(3)

where ga and gb are respectively the initial value of the
geological cutoff grade and minimum industrial grade, which
can be randomly selected; a0 is the mineable reserves cor-
responding to ga and gb, which is calculated by the mine
software; ϕ(x) is a mining possibility function of ore with
grade belongs to [g1, g2]; δ(x) is the ore density function;
f (x) is the ore grade probability density function; h is a
constant relying on the ore body characteristic.
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The dilution rate is the rate of the reducing ore grade during
the mining to the mean grade of ore, i.e.,

r1 = (g3 − g4)/g3 (4)

According to formula (4), the grade of raw ore is given by

g4 = g3 × (1− r1) (5)

According to the mass conservation, the metal content
included in the ore is balanced during the mining, i.e.,

a2 × g4 = a1 × (1− r2)× g3 (6)

According to formula (5) and (6), the raw ore quantity is

a2 = a1
1− r2
1− r1

(7)

The concentration rate is the rate of the raw ore quantity to
the ore concentrate quantity [24], [25], i.e.,

a3 = a2/r3 (8)

In general, the loss rate and dilution rate are related to the
mining approach and ore body characteristic. The concentra-
tion rate and ore concentrate grade rely on the ore-dressing
method, raw ore characteristic, ore-dressing plant design. For
the same mine, the method of mining and ore-dressing, the
characteristic of ore body and raw ore, and the ore-dressing
plant design are similar. Therefore, the loss rate and dilution
rate, concentration rate and raw ore grade, ore concentrate
grade with concentration rate and grade of raw ore may
have a correlation in the same mine [16]. Those relations are
established by production data and are given as follows:

r2 = f3(r1) (9)

r3 = f4(g4) (10)

g5 = f5(g4, r3) (11)

The price of unit ore concentrates (q, $/t) is determined by
its grade. It is given as follows:

q = f6(g5) (12)

B. MATHEMATICAL FORMULATION OF MULTI-OBJECTIVE
OPTIMIZATION MODEL
In the frame work of sustainable development, the economic
and resource benefits must be considered both as the opti-
mization objectives. The profit (β, $) and resource utilization
ratio (R) can represent the economic and resource benefits,
respectively. Therefore, we assign the profit and resource
utilization ratio as the optimization objective functions with
maximizing them. The multi-objective optimization model of
MMPP is mathematically formulated as follows:

maxβ = a3q− a2(c1 + c2)

maxR =
a3 × g5

f1 (g1min, g2min)× f2 (g1min, g2min)
s.t. g1 ≤ g2

g5 ≥ gsmelter

(13)

where c1 is the unit direct cost ($/t); c2 is the unit
indirect cost ($/t); gsmelter is the grade of minimum
smelter (%); g1 ≤ g2 means that the geological cutoff
grade should be smaller than the grade of minimum indus-
trial; g5 ≥ gsmelter represents that the final ore concen-
trate grade should be greater than the grade of minimum
smelter.

It should be noted that the functions f3, f4, and f5 might
change when the objective mines are different. Since the
decision variables are related to these functions, which cannot
be determined now.

III. AN IMPROVED NSGA-II FOR OPTIMIZING THE
METAL MINES PRODUCTION PROCESS
NSGA-II is a very famous multi-objective optimization
method, and firstly put forward by Deb et al. [26]. The
NSGA-II is improved from the NSGA [27]. It has numer-
ous advantages than the NSGA [28], such as low computa-
tional complexity, high global search performance, and fewer
parameters.

In this work, we put forward an improved NSGA-II for
optimizing the MMPP. Firstly, the SLHD is adopted to gener-
ate the initial population to enhance the diversity of the initial
population. Secondly, the mutation and crossover of the dif-
ferential evolution algorithm are introduced into the NSGA-II
to replace the genetic algorithm to improve convergence.
Moreover, the control parameters of mutation scale factor
and crossover rate of the differential evolution algorithm are
adaptively adjusted to improve the diversity of candidate
solutions. In the next work, we introduce the main operators
and the procedure of the improved NSGA-II for optimizing
the MMPP.

A. SYMMETRICAL LATIN HYPERCUBE DESIGN
GENERATES INITIAL POPULATION
In the NSGA-II, the initial population is generated by the
uniform distribution, which has been reported to be not a
good strategy due to its insufficiency of diversity [20], [21].
The diversity of the initial population seriously affects the
performance of the NSGA-II [29]. In order to overcome this
shortcoming, the SLHD is adopted to generate the initial
population of the NSGA-II to enhance the diversity of the
initial population. The SLHD is improved from the Latin
hypercube design. The former is more uniform than the Latin
hypercube design and advantageous to the Latin hypercube
design [30], [31]. The pseudocode of the SLHD is given
in Table 1. A performance comparison is carried out in order
to show the advantages of the SLHD. Figure 1 shows the
distribution of 10,000 points generated by the uniform dis-
tribution and the SLHD in the interval [0, 1]. From Figure 1,
one can see that the uniformity of points generated by the
SLHD is superior to that by the uniform distribution. Thus,
the diversity of the initial population is enhanced by adopting
the SLHD into NSGA-II.
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TABLE 1. Pseudocode of SLHD.

FIGURE 1. Distribution of 10000 points generated by the uniform
distribution and the SLHD.

B. DIFFERENTIAL EVOLUTION ALGORITHM
The NSGA-II takes the mutation and crossover of the genetic
algorithm. The mutation and crossover of the genetic algo-
rithm reduce the convergence rate and efficiency of the
NSGA-II [20]. In order to improve the convergence of
NSGA-II, the mutation and crossover of the differential evo-
lution algorithm are introduced into the NSGA-II to replace
the genetic algorithm.

The differential evolution algorithm is a powerful and
effective evolutionary algorithm firstly proposed by Storn
and Price [32]. It is an algorithm that can be implemented
easily with very few parameters [33]. It has been proven to
be superior to the algorithms such as the genetic algorithm,
evolution strategy, adaptive simulated annealing [32], and
particle swarm optimization [34], [35].

The differential evolution algorithm utilizes a group of
candidate solutions noted by a NP-dimensional vector as a
population XG = [x1,G, x2,G, . . . , xNP,G], where NP and G
are respectively the population size and current generation.
The mutation and crossover of the differential evolution algo-
rithm are carried out in the following steps.

(i) Mutation: for each goal population, Xi,G, i =

1, 2, 3, . . . ,NP, the mutant population is generated by:

Vi,G = Xr1,G + F × (Xr2,G − Xr3,G) (14)

where F is the mutation scale factor, which controls the
scale of (Xr2,G−Xr3,G); r1, r2, r3 ∈ {1, 2, 3, . . . ,NP},
and the values of them are different.

(ii) Crossover: following the mutation operation, the bino-
mial crossover operation is adopted to generate the trial
vector (Ui,t = [u1i,t , u

2
i,t , . . . , u

D
i,t , ]), i.e.,

uji,G =

{
vji,G, if randj (0, 1) ≤ CR or j = jrand
x ji,G, otherwise

(15)

whereD is the number of decision variables;randj(0, 1)
is a random number of uniform distribution in the inter-
val [0, 1], and j = 1, 2, . . . , n; jrand ∈ {1, 2, . . .D}; CR
is a crossover rate and belongs to the interval [0, 1].

C. ADAPTIVE CONTROL PARAMETERS
The mutation scale factor and crossover rate are two impor-
tant control parameters that affect the performance of the
differential evolution algorithm. The two control parameters
are presented as constants and fixed in the evolutionary pro-
cess. Adjusting the mutation scale factor and crossover rate
can improve the diversity of candidate solutions [36], [37].
We propose an adaptive method to adjust the mutation scale
factor and crossover rate to improve the diversity of candidate
solutions.
For each generation, the mutation scale factor of each

goal population is generated by the normal distribution of
average (mf ) and standard deviation (θf ). It can be expressed
as

Fi = Normalrand(mf , θf ) (16)

For each generation, the crossover rate of each goal popu-
lation is generated by the uniform distribution in the interval
[mcr , θcr ]. It can be expressed as

CRi = Uniformrand(mcr , θcr ) (17)
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D. PROCEDURE OF IMPROVED NSGA-II FOR
METAL MINES PRODUCTION PROCESS
We use the improved NSGA-II to optimize the MMPP.
Firstly, we determine the relations among production tech-
nical indexes by production data. Secondly, we define the
decision variables by analyzing the relations among pro-
duction technical indexes, and then get the relations among
the decision variables and the objective functions. Finally,
we use the improved NSGA-II to search the optimal decision
variables for maximizing economic and resource benefits.
The flow chart and pseudocode of the improved NSGA-II for
optimizing the MMPP are respectively shown in Table 2 and
Figure 2.

IV. EXPERIMENTAL ANALYSIS
A. PERFORMANCE MEASURE OF MULTI-OBJECTIVE
OPTIMIZATION ALGORITHM
Performance evaluation of the multi-objective optimization
algorithm has to consider two main problems. The first is the
convergence of the Pareto optimal solutions, and the second is
its diversity. In this paper, we select the hypervolume (HV) to
evaluate the performance of the multi-objective optimization
algorithm.

The hypervolume reflects the approximation degree of the
Pareto optimal solutions to the true Pareto optimal front.
The hypervolume can evaluate the performance of conver-
gence and diversity simultaneously [38], [39]. The greater the
hypervolume is, the better the convergence and diversity per-
formance will be. The hypervolume can be defined as [40]:

HV (S) = VOL( ∪
s∈S

[λ1(s), zr1]× · · · × [λm(s), zrm]) (18)

where VOL is the Lebesgue measure; m is the number of
objectives; Z r = (zr1, · · · , z

r
m) is a reference point in the target

space.

B. RESULTS ANALYSIS OF TEST FUNCTIONS
To verify the superiority of the improved NSGA-II, four test
functions (ZDT1, ZDT2, ZDT3, and ZDT6) are chosen from
the ZDT series functions [41]. The improved NSGA-II is
compared with the NSGA-II and the non-dominated sorting
differential evolution (NSDE) [23] on four test functions. The
related parameters of the three algorithms are set as follows.

The population size is 100, the maximum number of eval-
uation is 20000, the distribution indices of mutation operator
and crossover operator are both 20, the crossover operator
probability is 0.5, the mutation operator probability is 1/D,
the crossover rate is 0.75, the mutation scale factor is 0.5,
and the adaptive control parameters mf , θf , mcr , and θcr are
respectively 0.75, 0.1, 0, and 1.

In order to decrease the random error of the simulation,
each algorithm independently runs 31 times on four test
functions. The mean and standard deviation of the hyper-
volume are listed in Table 3. From Table 3, the mean of
the hypervolume obtained by the improved NSGA-II is
higher than that by the NSGA-II and that by the NSDE
on four test functions. It means that the improved NSGA-II

TABLE 2. Pseudocode of improved NSGA-II for optimizing the MMPP.

outperforms the NSGA-II and the NSDE in diversity and
convergence. Besides, the standard deviation of hypervolume
obtained by the improved NSGA-II is smaller than that by
the NSGA-II and that by the NSDE on four test functions.
It means that the improved NSGA-II has higher reliability.

Moreover, we analyze the hypervolume using the one-
tailed t-test to show further the advantage of the improved
NSGA-II over the NSGA-II and the NSDE. The one-tailed
t-test can be expressed:

t =
|τ1 − τ2|

η/
√
n

(19)
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FIGURE 2. Flow chart of the improved NSGA-II for optimizing the MMPP.

TABLE 3. Mean and standard deviation of HV on four test functions.

where τ1 is the mean of the hypervolume of the improved
NSGA-II; τ2 is the mean of the hypervolume of the NSGA-II
or the NSDE; η is the standard deviation of the hypervolume
of the improved NSGA-II; n is the number of running times.

The significance is set as 0.05, and n is 31. Accord-
ing to the critical table of the t- test, t0.05,31 equals to
1.696. If t > t0.05,31, it means that the two algorithms have

TABLE 4. T- test results of hypervolume on four test functions.

a significant difference. Otherwise, the two algorithms are
insignificantly different. According to the mean and standard
deviation of hypervolume on four test functions from Table 3,
the results of t-test statistics are listed in Table 4.

In Table 4, ‘‘+’’ represents that the proposed algorithm
is significantly superior to another algorithm; ‘‘=’’ repre-
sents that the performances of the two compared algorithms
are similar; ‘‘−’’ represents that the proposed algorithm is
significantly inferior to the compared algorithm. As indi-
cated, the improved NSGA-II has significant superiority to
the NSGA-II and the NSDE on the four test functions.

V. APPLICATION OF THE MULTI-OBJECTIVE MODEL
FOR YINSHAN COPPER MINES
In this section, the multi-objective optimization of the
Yinshan Copper Mines is introduced. The improved
NSGA-II, the NSGA-II, and the NSDE are tested on this
actual case.

A. BRIEF INTRODUCTION OF YINSHAN COPPER MINES
TheYinshan CopperMine (a subsidiary of the Jiangxi Copper
Corporation Limited) is located in the north of Dexing city,
Jiangxi province, China. It is about 100km far from Shangrao
city and 200km from Nanchang city. Figure 3 shows the
location of the Yinshan Copper Mines. It composes of four
ore bodies and has exploited for approximately 40 years.
Daily mining and ore-dressing capacity have changed from
700 tons to 5000 tons. The main target mineral has been
converted from lead and zinc to copper.

At present, the determination of the production technical
indexes only considers the economic benefits without consid-
ering resource benefits. The mineable reserve of the Yinshan
Copper Mines has gradually reduced. The managers have
realized that the resource efficiency has to be considered for
achieving sustainable development in the mines. Therefore,
it is necessary to optimize the production process of this metal
mine by considering both economic and resource benefits.

In the next six years, the Yinshan copper mines will
produce the ore from −84m to −192m by open pit min-
ing method. The elevation of −192m is the bottom of the
first phase ultimate pit. In this work, the MMPP of ore
from −84m to −192m is used as an example to establish
a multi-objective optimization model of the MMPP. Then,
the improved NSGA-II, the NSGA-II, and the NSDE are
applied to solve the multi-objective optimization model.
Finally, we verify the performance of the improved NSGA-II
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FIGURE 3. Location and satellite of yinshan copper mines.

by comparing optimization results. Nowadays, the geological
cutoff grade and minimum industrial grade are 0.15% and
0.25% of copper, respectively. The mineable reserve and
mean ore grade of ore from−84m to−192m are respectively
10.46 million tons and 0.42% of copper. h is 0.5 relying on
the ore body characteristic. gsmelter is 16%. The unit cost of
copper ore production is about 14 $/t, including direct cost
(10.78 $/t) and indirect cost (3.22 $/t). Since the price of
copper ore concentrate is related to the concentrate grade,
and the rest is very small. The resource tax, sale tax, and
other fees are equally distributed to direct cost and indirect
cost. In China, #1 copper (q1,%) is 6915.73 $/t. The price of
copper ore concentrate can be calculated by [16]:

q = f6(g5) = q1 × g5 × λ+ q2 (20)

where λ is the adjustment coefficient; q2 is the price of
compensation. The adjustment coefficient and price compen-
sation of different grade are summarized in Table 5.

B. RELATIONS AMONG PRODUCTION TECHNICAL
INDEXES IN THE YINSHAN COPPER MINES
As presented in Section 2, there are some relations among
production technical indexes in the MMPP. We must first
determine the relations among the technical production
indexes, and then optimize the MMPP. We collect the

TABLE 5. Adjustment coefficient and compensation price of different
grade.

FIGURE 4. Scatter plot of the copper ore density and grade.

sample data of exploration, mining, and ore-dressing from
the Yinshan copper mines. These data include 204 sets of
ore density and grade, 15216 sets of copper ore grade and
ore length of the sample, 64 sets of monthly data of loss rate
and dilution rate, and 630 sets of daily data of raw ore grade,
concentration rate, and ore concentrate grade.

1) RELATION MODEL BETWEEN ORE DENSITY AND GRADE
Figure 4 shows the scatter plot of the copper ore density and
grade. The correlation coefficient between the ore density and
grade is 0.0605, and the significance level is 0.3899. Since the
significance level 0.3899 is bigger than 0.05, it indicates that
there is no relation between the ore density and grade. The
ore density is not influenced by its grade. Therefore, the ore
density function uses the average of the ore density, i.e.,

δ(x) = 2.85t/m3 (21)

2) ORE GRADE DISTRIBUTION PROBABILITY
DENSITY FUNCTION
The advantage of the kernel smoothing density is that it
can fit the ore grade distribution depending on the charac-
teristics and properties of the mine data without any prior
knowledge. It can fit a probability density function, which
is different from the parameter estimation method [42], [43].
Thus, the kernel smoothing density is taken to fit the ore
grade probability density distribution function. The result
of the fitting is not an explicit function. Figure 5 presents
the histogram of ore grade frequency distribution. Figure 6
presents the ore grade probability density distribution. It can
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FIGURE 5. Histogram of ore grade frequency distribution.

FIGURE 6. Ore grade probability density distribution.

FIGURE 7. Scatter plot of loss rate and dilution rate.

be seen from the two figures that the ore grade distribution is
well fitted by the probability density function.

3) RELATION MODEL BETWEEN LOSS
RATE AND DILUTION RATE
Figure 7 shows the scatter plot of the loss rate and dilution
rate. The correlation coefficient between the loss rate and
dilution rate is−0.0771, and the significance level is 0.5499.
Since the significance level value 0.5499 is bigger than 0.05,
it indicates that there is no relationship between the loss rate
and dilution rate. Therefore, the loss rate and dilution rate are
two independent variables in this case.

FIGURE 8. Exponential fits concentration rate and grade of raw ore.

4) RELATION MODEL BETWEEN CONCENTRATION
RATE AND GRADE OF RAW ORE
Figure 8 illustrates the scatter plot of the concentration rate
and grade of raw ore. As shown in Figure 8, the relationship
between the concentration rate and grade of raw ore meets the
exponential distribution function and the correlation coeffi-
cient is -0.8445. The significance level is 1.89e-172, smaller
than 0.05. Therefore, we use an exponential function to fit this
relation. The concentration rate function can be expressed:

r3 = 136∗e−2.29
∗g4 (22)

5) RELATION MODEL BETWEEN ORE CONCENTRATE
GRADE AND SOME IMPACT INDICATORS
The relationship between ore concentrate grade and some
impact indicators (concentration rate and grade of raw
ore) is very complex and highly nonlinear [14]. It is very
hard to establish this relationship by regression analysis.
Therefore, we take the back-propagation neural networks
(BPNN) [44], [45] to establish the relationship model.

The BPNN takes the concentration rate and grade of raw
ore as inputs, and the concentrate grade as output. The BPNN
comprises 2 input nodes, 1 output node. The transfer func-
tions of the hidden and the output layer choose the ‘tansig’
and ‘purelin’, respectively. The learning algorithm chooses
‘traingdm’. The maximum number of iterations is 5000, and
the precision is 0.0001. The 1st to 530th sets are used as
training dataset, and the 531th to 630th sets are taken as
testing dataset. We find that the prediction result shows better
with the one hidden layer and we select it. To get the best
number of hidden nodes, we try some different hidden nodes
to establish the neural network. The results obtained using
different hidden nodes are compared in Table 6. The MARE
and AMRE are respectively abbreviations of Mean Absolute
Relative Error and Absolute Maximum Relative Error. The
compared results in Table 6 show that the hidden node of 3 is
superior to the others. Therefore, the hidden node is selected
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TABLE 6. Results obtained with different hidden nodes.

FIGURE 9. Predicted model of ore concentrate grade by BPNN.

to be 3. Figure 9 shows the precision of the BPNN in pre-
dicting the ore concentrate grade. It is clearly indicated from
Figure 9 that the BPNN has a good prediction precision in
predicting the ore concentrate grade.

C. MULTI-OBJECTIVE OPTIMIZATION
OF YINSHAN COPPER MINES
1) DECISION VARIABLES AND PARAMETERS
OF RELATED ALGORITHMS
The relationships among production technical indexes of
Yinshan copper mines are determined as introduced above.
According to Equations (1)-(8), and (20), one can be seen
that the independent variables are the geological cutoff grade,
the minimum industrial grade, the loss rate, and the dilution
rate. The loss rate and dilution rate are mainly related to the
mining technology and ore body characteristic. As a result,
the two variables do not change for the given metal mines.

FIGURE 10. Pareto optimal solutions obtained by three algorithms.

Hence, the loss rate and dilution rate are given by opti-
mization as 2% and 9%. Therefore, the geological cutoff
grade and minimum industrial grade are finally chosen as the
decision variables. The geological cutoff grade and minimum
industrial grade both range from 0.05% to 0.45% for most
copper mines.

The parameters of the three algorithms are set as follows.
The population size is 100, the maximum number of eval-
uation is 2000, the distribution indices of mutation operator
and the crossover operator are both 20, the crossover operator
probability is 0.5, the mutation operator probability is 1/D,
the crossover rate is 0.75, the mutation scale factor is 0.5,
and the adaptive control parameters mf , θf , mcr and θcr are
respectively 0.75, 0.1, 0 and 1.

2) RESULTS ANALYSIS OF YINSHAN COPPER MINES
The improved NSGA-II, the NSGA-II, and the NSDE are
used to optimize the Yinshan copper mines in order to
validate the outperformance of the improved NSGA-II.
Figure 10 shows the Pareto optimal solutions of the MMPP
optimization obtained by the three algorithms. As shown
in Figure 10, the improved NSGA-II has better convergence
than the NSGA-II and the NSDE on the MMPP optimization
in the obtained Pareto optimal solutions.

It can be seen from Figure 10 that the increased resource
utilization ratio will lead to the reduction of profits. The
Pareto optimal solutions are compromising each other, and no
solution is better than the other solutions. The Pareto optimal
solutions can meet the different needs of decision-makers.
In addition, those solutions provide sufficient information to
the decision-making department and enable decision-makers
to make better decisions. It is of great importance for achiev-
ing sustainable development of mineral resources.

To further validate that the improved NSGA-II has better
performance, the mean and standard deviation of the HV of
the three algorithms are calculated after running 31 times
on the MMPP optimization of the Yingshan Copper Mine.
The calculated results of the HV are shown in Table 7. From
Table 7, the mean of the HV for the improved NSGA-II is
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TABLE 7. HV results of NSGA-II, NSDE, and improved NSGA-II.

TABLE 8. T- test results of HV on a case.

greater than that of the NSGA-II and the NSDE. It means that
the improved NSGA-II has better convergence and diversity
than the NSGA-II and the NSDE on the MMPP optimization
of the Yinshan Copper mine.

In addition, the standard deviation of the HV for the
improved NSGA-II is smaller than the NSGA-II and
the NSDE, which proves the reliability of the improved
NSGA-II. Further, in order to prove that the improved
NSGA-II is significantly superior to the NSGA-II and
the NSDE, we perform a statistical analysis of the HV by the
one-tailed t-test. The results of the one-tailed t-test of the HV
are listed in Table 8. In Table 8, the meaning of ‘‘+’’ is the
same as that in Table 4. As shown in Table 8, the improved
NSGA-II is significantly better than the NSGA-II and the
NSDE on the optimization of the production process of
the Yinshan copper mine. In light of these, the improved
NSGA-II is more effective and useful for optimizing the
MMPP.

VI. CONCLUSION
Based on the results presented above, the following conclu-
sions can be made:

1) The improved NSGA-II outperforms the NSGA-II and
the NSDE in diversity and convergence. Four test
functions from the ZDT series functions are chosen
for experimentation. The experimental results show
that the improved NSGA-II is significantly superior
to the NSGA-II and the NSDE on four test functions.
The outperformance of the improved NSGA-II can be
attributed to the SLHD, the mutation and crossover of
the differential evolution algorithm, and the adaptive
adjustment of mutation scale factor and crossover rate.

2) The improved NSGA-II can achieve better Pareto
optimal solutions than the NSGA-II and the NSDE
in optimizing the MMPP. The Pareto optimal solu-
tions can meet different needs of decision-makers.
In addition, those solutions provide more sufficient
information to the decision-making department and
enable decision-makers to make better decisions. Thus,
the improved NSGA-II is a reliable method that can
facilitate sustainable development of metal mineral
resources.

The above study provides an effective multi-objective opti-
mization method for optimizing the MMPP with maximizing
economic and resource benefits. Nevertheless, the MMPP
also involves safety, environmental and uncertainty. These
objectives can also be included in the improved NSGA-II
method of this study and will be considered in a future study.

ACKNOWLEDGMENT
The authors are grateful to Mr. X. Wang who works in the
Yinshan Copper Mines for providing us data of the Yinshan
Copper Mines.

REFERENCES
[1] P. A. J. Lusty and A. G. Gunn, ‘‘Challenges to global mineral resource

security and options for future supply,’’ Geol. Soc., London, Special Pub-
lications, vol. 393, no. 1, pp. 265–276, 2015.

[2] Y. He, N. Liao, and J. Bi, ‘‘Intelligent integrated optimization of mining
and ore-dressing grades in metal mines,’’ Soft Comput., vol. 22, no. 1,
pp. 283–299, Jan. 2018.

[3] K. F. Lane, ‘‘Choosing the optimum cut-off grade,’’ Colorado School
Mines Quart., vol. 59, no. 4, pp. 811–829, 1964.

[4] K. F. Lane, Economic Definition of Ore: Cut-off Grades in Theory and
Practice. London, U.K.: Mining Journal Books, 1988.

[5] A. B. Yasrebi, A. Wetherelt, P. Foster, G. Kennedy, D. K. Ahangaran,
P. Afzal, and A. Asadi, ‘‘Determination of optimised cut-off grade
utilising non-linear programming,’’ Arabian J. Geosci., vol. 8, no. 10,
pp. 8963–8967, Oct. 2015.

[6] Y. Zarshenas and G. Saeedi, ‘‘Determination of optimum cutoff grade with
considering dilution,’’ Arabian J. Geosci., vol. 10, no. 7, p. 165, Mar. 2017.

[7] Y. Azimi, M. Osanloo, and A. Esfahanipour, ‘‘An uncertainty based multi-
criteria ranking system for open pit mining cut-off grade strategy selec-
tion,’’ Resour. Policy, vol. 38, no. 2, pp. 212–223, Jun. 2013.

[8] X.-W. Gu, Q. Wang, D.-Z. Chu, and B. Zhang, ‘‘Dynamic optimization of
cutoff grade in underground metal mining,’’ J. Cent. South Univ. Technol.,
vol. 17, no. 3, pp. 492–497, Jun. 2010.

[9] E. Moosavi and J. Gholamnejad, ‘‘Optimal extraction sequence modeling
for open pit mining operation considering the dynamic cutoff grade,’’
J. Mining Sci., vol. 52, no. 5, pp. 956–964, Sep. 2016.

[10] M. W. A. Asad, ‘‘Optimum cut-off grade policy for open pit mining
operations through net present value algorithm considering metal price and
cost escalation,’’ Eng. Comput., vol. 24, pp. 723–736, Oct. 2007.

[11] X.-C. Xu, X.-W. Gu, Q. Wang, X.-W. Gao, J.-P. Liu, Z.-K. Wang, and
X.-H. Wang, ‘‘Production scheduling optimization considering ecological
costs for open pit metal mines,’’ J. Cleaner Prod., vol. 180, pp. 210–221,
Apr. 2018.

[12] Y. He, K. Zhu, S. Gao, T. Liu, and Y. Li, ‘‘Theory and method of genetic-
neural optimizing cut-off grade and grade of crude ore,’’ Expert Syst. Appl.,
vol. 36, no. 4, pp. 7617–7623, May 2009.

[13] S. Yu, K. Zhu, and Y. He, ‘‘A hybrid intelligent optimization method for
multiple metal grades optimization,’’Neural Comput Applic, vol. 21, no. 6,
pp. 1391–1402, Sep. 2012.

[14] M. R. Ahmadi and R. S. Shahabi, ‘‘Cutoff grade optimization in open
pit mines using genetic algorithm,’’ Resour. Policy, vol. 55, pp. 184–191,
Mar. 2018.

[15] Y. He, S. Gao, N. Liao, and H. Liu, ‘‘A nonlinear goal-programming-based
DE and ANN approach to grade optimization in iron mining,’’ Neural
Comput. Appl., vol. 27, no. 7, pp. 2065–2081, Oct. 2016.

[16] X. Wang, X. Gu, Z. Liu, Q. Wang, X. Xu, and M. Zheng, ‘‘Production
process optimization of metal mines considering economic benefit and
resource efficiency using an NSGA-II model,’’ Processes, vol. 6, no. 11,
p. 228, Nov. 2018.

[17] L. Xiaoqing, D. Haiying, L. Hongwei, L. Mingxue, and S. Zhiqiang,
‘‘Optimization control of front-end speed regulation (FESR) wind turbine
based on improved NSGA-II,’’ IEEE Access, vol. 7, pp. 45583–45593,
2019.

[18] Y.-Y. Han, D.-W. Gong, X.-Y. Sun, and Q.-K. Pan, ‘‘An improved NSGA-
II algorithm for multi-objective lot-streaming flow shop scheduling prob-
lem,’’ Int. J. Prod. Res., vol. 52, no. 8, pp. 2211–2231, Apr. 2014.

28856 VOLUME 8, 2020



X. Gu et al.: Multi-Objective Optimization Model Using Improved NSGA-II for Optimizing MMPP

[19] S. Jeyadevi, S. Baskar, C. Babulal, and M. Willjuice Iruthayarajan, ‘‘Solv-
ing multiobjective optimal reactive power dispatch using modified NSGA-
II,’’ Int. J. Elect. Power Energy Syst., vol. 33, no. 2, pp. 219–228, Feb. 2011.

[20] Y. Han, D. Gong, Y. Jin, and Q.-K. Pan, ‘‘Evolutionary multi-objective
blocking lot-streaming flow shop scheduling with interval processing
time,’’ Appl. Soft Comput., vol. 42, pp. 229–245, May 2016.

[21] M. Almasi, A. Sadollah, Y. Oh, D.-K. Kim, and S. Kang, ‘‘Optimal coordi-
nation strategy for an integrated multimodal transit feeder network design
considering multiple objectives,’’ Sustainability, vol. 10, no. 3, p. 734,
Mar. 2018.

[22] X.-J. Guo, J. Ma, H.-L. Liu, and Y. Chen, ‘‘Improved NSGA-II optimizing
coding-link cost trade-offs for multicast routing in WDM networks,’’
Photonic Netw. Commun., vol. 35, no. 3, pp. 309–315, Jun. 2018.

[23] C. Peng, H. Sun, and J. Guo, ‘‘Multi-objective optimal PMU place-
ment using a non-dominated sorting differential evolution algorithm,’’
Int. J. Elect. Power Energy Syst., vol. 32, no. 8, pp. 886–892,
Oct. 2010.

[24] G. Yu, T. Chai, and X. Luo, ‘‘Multiobjective production planning optimiza-
tion using hybrid evolutionary algorithms for mineral processing,’’ IEEE
Trans. Evol. Comput., vol. 15, no. 4, pp. 487–514, Aug. 2011.

[25] J. Ding, C. Yang, Q. Xiao, T. Chai, and Y. Jin, ‘‘Dynamic evolutionary
multiobjective optimization for raw ore allocation in mineral processing,’’
IEEE Trans. Emerg. Topics Comput. Intell., vol. 3, no. 1, pp. 36–48,
Apr. 2019.

[26] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist
multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[27] N. Srinivas and K. Deb, ‘‘Muiltiobjective optimization using nondom-
inated sorting in genetic algorithms,’’ Evol. Comput., vol. 2, no. 3,
pp. 221–248, Sep. 1994.

[28] J. Huang, Y. Liu, M. Liu, M. Cao, and Q. Yan, ‘‘Multi-objective optimiza-
tion control of distributed electric drive vehicles based on optimal torque
distribution,’’ IEEE Access, vol. 7, pp. 16377–16394, 2019.

[29] T. Liu, X. Gao, and Q. Yuan, ‘‘An improved gradient-based NSGA-II
algorithm by a new chaotic map model,’’ Soft Comput., vol. 21, no. 23,
pp. 7235–7249, Dec. 2017.

[30] K. Q. Ye, W. Li, and A. Sudjianto, ‘‘Algorithmic construction of optimal
symmetric Latin hypercube designs,’’ J. Stat. Planning Inference, vol. 90,
no. 1, pp. 145–159, Sep. 2000.

[31] B. K. Rai and N. Singh, ‘‘Computer experiments for circuit optimisation
using symmetric Latin hypercube designs,’’ Int. J. Product Develop., vol. 4,
no. 5, p. 442, 2007.

[32] R. Storn and K. Price, ‘‘Differential evolution—A simple and efficient
heuristic for global optimization over continuous spaces,’’ J. Global
Optim., vol. 11, no. 4, pp. 341–359, 1997.

[33] R. Rivera-Lopez and J. Canul-Reich, ‘‘Construction of near-optimal axis-
parallel decision trees using a differential-evolution-based approach,’’
IEEE Access, vol. 6, pp. 5548–5563, 2018.

[34] J. Vesterstrom and R. Thomsen, ‘‘A comparative study of differential
evolution, particle swarm optimization, and evolutionary algorithms on
numerical benchmark problems,’’ in Proc. Congr. Evol. Comput., 2004,
pp. 1980–1987.

[35] S. Paterlini and T. Krink, ‘‘Differential evolution and particle swarm opti-
misation in partitional clustering,’’ Comput. Statist. Data Anal., vol. 50,
no. 5, pp. 1220–1247, Mar. 2006.

[36] D. Zou, J. Wu, L. Gao, and S. Li, ‘‘A modified differential evolution
algorithm for unconstrained optimization problems,’’ Neurocomputing,
vol. 120, pp. 469–481, Nov. 2013.

[37] Z. Zhao, J. Yang, Z. Hu, and H. Che, ‘‘A differential evolution algorithm
with self-adaptive strategy and control parameters based on symmetric
Latin hypercube design for unconstrained optimization problems,’’ Eur.
J. Oper. Res., vol. 250, no. 1, pp. 30–45, Apr. 2016.

[38] Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, K. Deb, and E. Goodman,
‘‘Push and pull search for solving constrained multi-objective opti-
mization problems,’’ Swarm Evol. Comput., vol. 44, pp. 665–679,
Feb. 2019.

[39] A. Metiaf, Q. Wu, and Y. Aljeroudi, ‘‘Searching with direction awareness:
Multi-objective genetic algorithm based on angle quantization and crowd-
ing distance MOGA-AQCD,’’ IEEE Access, vol. 7, pp. 10196–10207,
2019.

[40] E. Zitzler and L. Thiele, ‘‘Multiobjective evolutionary algorithms: A com-
parative case study and the strength Pareto approach,’’ IEEE Trans. Evol.
Comput., vol. 3, no. 4, pp. 257–271, 1999.

[41] C. Scheepers and A. P. Engelbrecht, ‘‘Vector evaluated particle
swarm optimization exploration behavior part II: Quantitative
analysis,’’ in Proc. IEEE Congr. Evol. Comput. (CEC), Jul. 2016,
pp. 1855–1861.

[42] S. Chen, X. Hong, and C. Harris, ‘‘Regression based D-optimality exper-
imental design for sparse kernel density estimation,’’ Neurocomputing,
vol. 73, nos. 4–6, pp. 727–739, Jan. 2010.

[43] R. Sheikhpour, M. A. Sarram, and R. Sheikhpour, ‘‘Particle swarm opti-
mization for bandwidth determination and feature selection of kernel
density estimation based classifiers in diagnosis of breast cancer,’’ Appl.
Soft Comput., vol. 40, pp. 113–131, Mar. 2016.

[44] Y.-R. Zeng, Y. Zeng, B. Choi, and L. Wang, ‘‘Multifactor-influenced
energy consumption forecasting using enhanced back-propagation neural
network,’’ Energy, vol. 127, pp. 381–396, May 2017.

[45] Z. Chiba, N. Abghour, K. Moussaid, A. El Omri, and M. Rida, ‘‘A novel
architecture combined with optimal parameters for back propagation neu-
ral networks applied to anomaly network intrusion detection,’’ Comput.
Secur., vol. 75, pp. 36–58, Jun. 2018.

XIAOWEI GU was born in Liaoning, China.
She received the Ph.D. degree in mining engi-
neering from Northeastern University, Shenyang,
China, in 2005. She is currently a Professor with
the College of Resources and Civil Engineer-
ing, Northeastern University. She has published
more than 80 articles in some international or
national journals and conferences. Her current
research interests include mine optimization, mine
resources, and mine ecological economy.

XUNHONG WANG received the B.S. degree in
mathematics and applied mathematics and the
M.S. degree in mining engineering from the
Jiangxi University of Science and Technology,
Ganzhou, China. He is currently pursuing the
Ph.D. degree in mining engineering with the Col-
lege of Resources and Civil Engineering, North-
eastern University, China. His research interest
focuses on the application of the evolutionary algo-
rithm in mine engineering.

ZAOBAO LIU received the Ph.D. degree in civil
engineering from University of Lille 1 - Sciences
and Technologies, in 2013. He worked at the Lille
Laboratory of Mechanics, from 2013 to 2018.
He was granted the "Overseas Hundred Program"
of Northeastern University, as a Full Professor,
in 2018. His research experiences in more than
ten research projects during the last ten years
allow him authoringmore than 60 refereed interna-
tional journal articles and conference proceedings.

His main research interests include multiscale approaches for multi-physics
problems in rock mechanics, and intelligence prediction and safety control
of engineering failure and hazards.

VOLUME 8, 2020 28857



X. Gu et al.: Multi-Objective Optimization Model Using Improved NSGA-II for Optimizing MMPP

WENHUA ZHA was born in Anhui, China.
He received the B.S. and M.S. degrees from
the Anhui University of Science and Technol-
ogy, Huainan, China, in 1998 and 2001, respec-
tively, and the Ph.D. degree fromHohai University,
Nanjing, China, in 2008. He is currently a Profes-
sor and a Doctoral Supervisor with the East China
University of Technology, China. His research
interests focus on the prevention of engineer-
ing disasters and deep disposal of high-level
radioactive waste.

XIAOCHUAN XU was born in Sichuan, China.
He received the B.S., M.S., and Ph.D. degrees in
mining engineering from Northeastern University,
Shenyang, China, in 2010, 2012, and 2015, respec-
tively. He is currently a Teacher with the School
of Resources and Civil Engineering, Northeastern
University, China. He has published more than
30 articles in some international or national jour-
nals and conferences. His current research interests
include mine production optimization and mine
ecological economy.

MINGGUI ZHENG was born in Anhui, China.
He received the B.S. and M.S. degrees from the
Jiangxi University of Science and Technology,
Ganzhou, China, in 2001 and 2003, respectively,
and the Ph.D. degree from the Beijing Univer-
sity of Science and Technology, Beijing, China,
in 2009. He is currently a Professor and a Doc-
toral Supervisor with the Jiangxi University of Sci-
ence and Technology, China. His research interests
focus on mining technology economy and man-

agement, and mining enterprise management.

28858 VOLUME 8, 2020


