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ABSTRACT This paper presents for the first time a method of mathematical synthesis involving chaining
of Chebyshev polynomials of the second kind for the application of a dual-band waveguide filter. This
method takes advantage of second kind Chebyshev polynomials that have high out-of-band rejection, and
overcomes unequal-ripple properties. It is applicable to high filter orders greater than five, and will always
possess symmetrical dual-band filter properties. This proposed approach is able to achieve an optimum and
constant ripple, the flexibility of return loss, and high adjacent band’s rejection. The design method is based
on suitably defined transmission zeros at the centred frequency to the chained Chebyshev of the second kind.
A sixth-order waveguide filter based on a prescribed return loss of 15 dB centred at a frequency of 28 GHz,
with a fractional bandwidth of 1% in each passband, has been implemented and fabricated. The measured
results show that the return loss, total bandwidth, and the frequency shift are 12 dB, 860 MHz, and 0.24%,
respectively. The measured and ideal responses of the waveguide model are in a good agreement.

INDEX TERMS Narrowband, second kind Chebyshev, symmetrical dual-bandpass filters, transmission
zeros, waveguide.

I. INTRODUCTION
Since modern communication uses complex frequency chan-
nels, dual-band and multi-band filters have a crucial role in
simplifying the system and reducing the mass and volume
of the circuit. In recent years, filtering characteristics with
more than one passband have been finding applications in
microwave telecommunication systems. Incorporating two
passbands within a single filter structure offers advantages
over the equivalent ‘dual-diplexer’ solution in terms of mass
per volume and ease of manufacturing and tuning [1], [2].
Four approaches are usually employed to implement multi-
band filters: (i) broadband bandpass and bandstop filter cas-
cading [3]; (ii) the use of multiple harmonic resonatingmodes
of resonators [4]; (iii) the use of parallel-connected filter [5];
and (iv) single filter structure realisation with transmission
zero [2], [6].

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

A. BROADBAND BANDPASS AND BANDSTOP FILTER
CASCADING
A dual-band filter consists of a bandstop filter and a wide-
band bandpass filter in a cascade connection. The bandstop
and the wide-band bandpass filters are implemented using
equal-length serial-shunted line configurations [3].

Using this method for dual-band bandpass filter design,
a minimum insertion loss can be obtained due to the Butter-
worth properties, which can reduce the Chebyshev insertion
loss. However, in order to synthesise the dual-band band-
pass filter, the Chebyshev filter has to be cascaded with the
Butterworth filter [3]. As a result, more components will be
involved, and the size of the filter will be increased.

B. MULTIPLE HARMONIC RESONATING MODES OF
RESONATORS
This method introduces a coupling structure with
transmission-line resonators coupled at the ends and the
centre to yield tunable dual-band couplings [4]. This is
designed to overcome the difficulty of finding the desired
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coupling coefficients at both fundamental resonant frequen-
cies f1 and f2 with different electric fields, magnetic fields and
electrical coupling properties.

The advantage of this method is the tuning flexibility of the
dual-band couplings, which utilises the properties of the elec-
tric and magnetic fields to introduce the transmission zeros
at the passbands. However, it needs the dual-band matching
network in order to achieve the dual-band loadedQs, meaning
that extra components are needed that cause the filters to be
larger in size [4].

C. THE USE OF PARALLEL-CONNECTED FILTER
A dual-band filter is constituted by two sub-networks con-
nected in parallel, which are obtained from suitable transfor-
mations of the lowpass transversal canonical prototype [5].
It is designed to allow a large separation of the two passbands
and the ease in tuning.

The advantage of this method is that it allows the practical
feasibility of dual-band filters especially for the case of need-
ing a large separation of the two passbands, with the help of
having shunt connections of two passbands sub-networks that
can each operates as a single passband. However, it needs the
input nodes and two-passband sub-networks to achieve dual-
band filters. As a result, extra components are needed that
cause the filters to be larger in size [5].

D. SINGLE FILTER STRUCTURE REALISATION WITH
TRANSMISSION ZEROS IN THE PASSBAND
Transmission zeros produced by cross-coupling or band-
stop resonators are used to split a single passband into
dual passbands or multiple passbands based on a single
filter circuit [2], [6], [7]. In this topology, a bandpass res-
onator and all the bandstop resonators that are properly
coupled to this bandpass resonator comprise of the inverter
coupled-resonator sections.

The advantage of using inverter coupled-resonator sections
is that it allows realising a single filter structure with
transmission zeros without extra components, such as the
two cascading filters and the dual-band matching network.
In addition, this configuration is able to generate the same
in-band and out-of-band responses for every band [8].
However, the complexity of the filter will be increased for
an extremely narrow band with high order filter design.

E. CHEBYSHEV FILTERS
The specifications of modern filter design require smaller
fractional bandwidths, higher frequencies of operation, lower
manufacturing costs and shorter development times. Most
of the microwave and millimetre-wave bandpass filters that
are currently manufactured are of the Chebyshev family.
Chebyshev filters have equal-ripple passbands with steeper
roll-off than Butterworth filters. The generalised expression
for the Chebyshev filtering function is shown below:

TN (ω) = cosh
∞∑
n=1

cosh−1 xn(ω) (1)

where xn(ω) is the function of the frequency variable ω.
The Chebyshev class of filtering function has the generic

features of equal-ripple amplitude in-band characteristics,
together with the sharpest cut-off at the edge of the pass-
band and high selectivity, giving an acceptable compro-
mise between the lowest signal degradation and highest
noise/interference rejection [9]. However, narrow-band high-
order conventional Chebyshev filters will have their reflec-
tion coefficient zeros distributed over an extremely small
frequency range and require a post-manufacturing tuning
process, due to the limitations of fabrication technology in
terms of delivering the actual filter design parameters [10].

One solution to these problems is the implementation of
a chained function in the design of the filter, which max-
imises the benefits of reduced sensitivity to manufacturing
errors. The chained function can produce a variety of trans-
fer functions based on pre-defined manufacturing limita-
tions [10]. The method in this paper can be divided into three
steps:

(i) Generating chained-function expressions based on
Chebyshev characteristic functions of the second kind;

(ii) Generating the chained-function ripple factor expres-
sions;

(iii) Generating the symmetrical dual-band chained- func-
tion expressions.

F. CHAINED-FUNCTION FILTERS
Chained functions can be considered in terms of a compro-
mise between the Butterworth and Chebyshev approxima-
tions. They contain a ‘‘Seed Function’’ and can form a bridge
between the low sensitivity, low resonator unloaded-Q, low
loss filter properties of the Butterworth approximations and
the high out-of-band rejection properties of the conventional
Chebyshev filters [10]. The key advantage of the chained
function is that it allows the designer to use this function
as a seed function and to chain with itself until the right
out-of-band rejection is achieved. This effectively means that
multiple reflection zeros can be placed at the same frequency.
The resulting chained function has been proven in [11], [12]
to have reduced sensitivity to manufacturing errors while
maintaining a rejection performance that is comparable to
conventional Chebyshev filters even in the case of using
a low-accuracy microstrip fabrication process. The transfer
function of the chained function (CF) can be expressed in
terms of the CF filtering function, CN (ω) and the CF ripple
factor, εc [9]:

|S21(ω)|2 =
1

1+ ε2CCN (ω)
2

(2)

II. THEORY OF SYMMETRICAL DUAL PASSBAND
PROTOTYPES
A. CHEBYSHEV POLYNOMIALS OF THE SECOND KIND
Fig. 1 shows the characteristics of the sixth-degree conven-
tional Chebyshev and Chebyshev of the second kind poly-
nomials. It can be observed that the conventional Chebyshev
demonstrates equal-ripple behaviours while the second kind
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FIGURE 1. Comparison of sixth-degree conventional Chebyshev,
T6(ω) and Chebyshev of the second kind, U6(ω) together with Chebyshev
of the second kind with a transmission zero, TZ at the zero frequency.

does not. However, after introducing a TZ to the second kind
Chebyshev filtering function, the ripple levels nearer to the
TZ position are higher than those closer to the out-of-band
rejection. As a result, it is possible to suitably introduce TZs
to the respective filter order so that the equal-ripple behaviour
can be reinstalled. Hence, the second kind Chebyshev filter-
ing functions are used in the design of the dual-band filter.
The second kind Chebyshev characteristic function, UN is
defined as:

UN =
sinh[(N + 1)θ ]

sinh θ
(3)

where N is the number of filter order. By substituting
ω = cosh θ , UN (ω) can be written as:

UN (ω) =

sinh(
N+1∑
1

cosh−1 ω)

sinh(cosh−1 ω)
(4)

By replacing the cosh−1 term in (4) with Euler’s identity,
the characteristic function, UN (ω) can be rewritten in expo-
nential form:

UN (ω) =

N+1∏
1
X −

N+1∏
1

1
X

X − 1
X

(5)

where X = ln(ω +
√
ω2 − 1).

B. CHAINED FUNCTION BASED ON CHEBYSHEV OF THE
SECOND KIND
Table 1 shows the sixth-degree chained-function polynomials
based on Chebyshev polynomials of the second kind for dif-
ferent seed function orders. The combination of seed function
orders (2, 4) was chosen as it has six distinct poles that can
clearly depict the passband equal-ripple behaviour after intro-
ducing TZs at ω = 0 rad/s. Similar seed function orders are
implemented for the eighth- and tenth-order chained function
polynomials by subsequently adding a seed function of order
two. By chaining the seed function orders (2, 4), (2, 2, 4), and

TABLE 1. Chained-function polynomials for NT = 6.

(2, 2, 2, 4), the comparisons between different filter orders
of second kind Chebyshev and chained-function responses
based on UN (ω) are illustrated in Figs. 2 (a) – (c).
Both second kind Chebyshev and chained-function

responses depict similar selectivity. In other words, rejection
properties of the second kind Chebyshev characteristic func-
tions were not sacrificed using chained-function characteris-
tic functions. This shows that the chained function for seed
function order (2, 4) only distorts the ripple levels. In addition,
the poles for the higher-order chained function will not be
distributed over an extremely small frequency range, since the
number of distinct poles will always be a constant at six due to
the properties of the chained function, thus reducing the effort
involved in the post-manufacturing tuning process compared
to Chebyshev filters [12]. The resultant responses, which
always have a constant six distinct poles for the higher-order
chained functions, facilitate the modelling of the dual-band
chained-function filter after introducing TZs at ω = 0 rad/s.
Thus, chained functions with seed function order (2n, 4) are
considered for the dual-band waveguide filter design.

C. NUMBER OF TRANSMISSION ZEROS (TZS) TO BE
INTRODUCED
To implement the single filter structure with TZs to the
chained functions, the sixth-order chained function based
on the seed function order (2, 4) is chosen. In addition,
by introducing TZs at ω = 0 rad/s to the chained func-
tion, the passband equal-ripple behaviours can be reinstalled.
In order to determine the number of TZs needed to realise
the symmetrical sixth-order dual-band chained-function fil-
ter with passband equal-ripple behaviours, several TZs have
been introduced at ω = 0 rad/s, as shown in Fig. 3.
The lower band-edge of the lowest frequency band and

the upper band-edge of the highest frequency band are
always fixed at ω = −1 rad/s and ω = +1 rad/s, respec-
tively. By introducing four and five TZs to the eighth- and
tenth-order chained functions, based on seed function orders
(2n, 4), symmetrical dual-band filter responses with passband
equal-ripple behaviours are obtained, as shown in Fig. 4.

Thus, in order to achieve symmetrical dual-band chained
functions with passband equal-ripple behaviours, the number
of TZs to be introduced at ω = 0 rad/s to the chained
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FIGURE 2. Comparison between the second kind Chebyshev and
chained-function responses in terms of S11.

functions with seed function order (2n, 4) can be deduced as:

α =
β

2
(6)

where α is the number of TZs to be introduced and β is the
filter order of the chained function based on seed function
order (2n, 4).

D. GENERAL EXPRESSION FOR THE CHAINED FUNCTION
POLYNOMIALS OF THE SECOND KIND
A sixth-order chained function, C6 (ω) can be obtained by
chaining a seed function order (2, 4) of the second kind

FIGURE 3. Comparison between sixth-order dual-band chained-function
responses with seed function order (2, 4) and different TZs in terms
of S11. Three TZs have to be introduced at ω = 0 rad/s to achieve the
passband equal-ripple behaviour.

FIGURE 4. Symmetrical eighth- and tenth-order dual-band chained-
function responses with seed function order (2n, 4) and different TZs
introduced in terms of S11.

Chebyshev characteristic functions, U2 (ω) and U4 (ω):

C6(ω) =
Y 3
− 1

Y (Y − 1)
×

Y 5
− 1

Y 2(Y − 1)
(7)

where Y = ln(ω +
√
ω2 − 1).

Using the partial fraction, C6(ω) becomes:

C6(ω) =
Y 3
− 1

Y (Y − 1)
+

Y 5
− 1

Y 2(Y − 1)
+

Y 7
− 1

Y 3(Y − 1)
(8)

or

C6(ω) =
3∑

k=1

Y 2k+1
− 1

Y k (Y − 1)
(9)

The eighth-order chained function, C8 (ω) is obtained by
chaining C6 (ω) and U2 (ω):

C8(ω) = C6(ω)× U2(ω) (10)
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By using partial fraction and the expression of C6(ω)
from (9), C8 (ω) can be expressed as:

C8(ω) =
3∑
i=1

i+1∑
k=|i−1|

Y 2k+1
− 1

Y k (Y − 1)
(11)

Generally, the higher-order chained functions, CN (ω) of
degree N ≥ 6, can be expressed using the recursive formula
as:

CN (ω) = CN−2(ω)× U2(ω) (12)

It should be mentioned that N = 2n + 4 where n is
an integer. To find CN (ω) using (12), it is useful to use
the developed general expression for the multiplication of
Chebyshev polynomials of orders i and j (Ui (ω) and Uj (ω)):

Ui(ω)× Uj(ω) =

i+j
2∑

k= |i−j|2

Y 2k+1
− 1

Y k (Y − 1)
(13)

E. RIPPLE FACTOR OF THE GENERALISED CHAINED
FUNCTIONS
Following [13], the transfer function (S21) for the Chebyshev
filtering functions is:

|S21(ω)|2 =
1

1+ ε2 × |FF(ω)|2
(14)

where ε is the ripple factor for the Chebyshev filtering func-
tions and FF(ω) is the Chebyshev filtering functions. When
|FF(ω)| is at maximum, e.g. |FF (ω)| = 1, the transfer
function for the chained function can be deduced by multi-
plying (14) with FFC (ω):

|S21(ω)|2 =
1

1+ [ ε
FFc(ω)

]2 × |FFC (ω)|2
(15)

where FFC (ω) is the chained-function filtering functions
which oscillate between −1 rad/s and +1 rad/s. When
|FFC (ω)| is at maximum, e.g. |FFC (ω)| = 1, by substi-
tuting the ripple factor of the Chebyshev filtering function,
ε = 1√

10
RL
10 −1

, the generalised passband ripple factor for

chained-function filtering functions εC can be derived as:

εC =
1√

10
RLC
10 −1 × |FFC |

(16)

where RLC is the prescribed chained-function return loss
in dB.

F. GENERALISED SYMMETRICAL DUAL-BAND CHAINED
FUNCTIONS
The generalised Chebyshev transfer function, S21 and reflec-
tion function, S11 are expressed [13]:

|S11(ω)|2 = 1−
1

1+ ε2 × |FF(ω)|2
(17)

|S21(ω)|2 =
1

1+ ε2 × |FF(ω)|2
(18)

where ε is the prescribed Chebyshev ripple factor and FF (ω)
is the Chebyshev filtering function.

Using (6), (12) and (16), the generalised symmetrical
dual-band chained function based on seed function order
(2n, 4) with TZs at ω = 0 for S11 and S21 can be derived
as:

|S11(ω)|2 = 1−
1

1+ ε2C × |
CN (ω)
ωα
|2

(19)

|S21(ω)|2 =
1

1+ ε2C × |
CN (ω)
ωα
|2

(20)

where εC is the prescribed chained-function ripple factor and
α is the number of TZs to be introduced.

G. PASSBAND EQUAL-RIPPLE RESPONSES
The chained-function filtering function for different filter
orders with TZs can be extracted from (19) and (20) as:

FFC (ω) =
CN (ω)
ωα

(21)

In order to prescribe the return loss, FFc(ω) has to be
differentiated to determine the ωworst location of the worst
return loss:

∂FFC (ω)
∂ω

= 0 (22)

The ωworst location of the worst return loss found in (22)
has been altered to the prescribed return loss value by
using (16). In order to normalise the frequency responses,
the cut-off frequencies have to be determined:

FFC (ωworst ) = FFC(max)

= FFC(cut_off ) (23)

After normalising the frequency responses, passband
equal-ripple responses have been achieved. In order to verify
the passband equal-ripple responses, ωnew locations of the
return losses can be found using (22) and substituted to (19).

III. HARDWARE REALISATION AND EXAMPLES
A. SIXTH-ORDER DUAL-BAND CHAINED-FUNCTION
WAVEGUIDE FILTER
The above theory is now implemented to the sixth-order
dual-band waveguide filter WR-34 with a prescribed return
loss of 15 dB centred at frequency of 28 GHz and a
cut-off frequency at 17.357 GHz, with a fractional band-
width of 1% in each passband to depict the narrow band.
The sixth-order chained function based on the seed function
order (2, 4) of second kind Chebyshev polynomials can be
expressed by using (12):

C2,4(ω) = 64ω6
− 64ω4

+ 16ω2
− 1 (24)

In order to design a sixth-order symmetrical dual-band
chained function, TZs have to be introduced at zero fre-
quency (ω = 0 rad/s). The number of TZs between
the two bands and the ripple factor are 3 and 0.0587,
respectively, using (6) and (16). The final coupling matrix for
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the sixth-order dual-band chained-function waveguide filter
is:

0 0.823 0 0 0 0
0.823 0 0.411 0 0 −0.418
0 0.411 0 −0.330 −0.235 0
0 0 −0.330 0 0 0
0 0 −0.235 0 0 0.709
0 −0.418 0 0 0.709 0


QC1 = QC6 = 167.879 (25)

The corresponding coupling/routing diagram is shown in
Fig. 5, where each node represents a unit capacitance and
the lines are admittance inverters (coupling coefficients). The
solid lines represent main couplings and the dotted lines
represent cross-couplings. S and L represent the source and
the load, respectively. The filter topology is implemented
in a waveguide filter whose 3D layout model is shown in
Fig. 6 using Ansys HFSS. After running several optimisa-
tions, the final physical dimensions are listed in Table 2.

FIGURE 5. Sixth-order dual-band chained-function waveguide filter
topology.

FIGURE 6. Sixth-order dual-band chained-function waveguide filter (top
view).

TABLE 2. Final dimensions of the sixth-order waveguide filter.

FIGURE 7. Fabricated sixth-order dual-band chained-function waveguide
filter.

Figs. 7 (a) – (b) present photographs of the fabricated
filter without tuning screws. The realisation of the negative
(capacitive) coupling and the input/output coupling through
taps to the first and last resonator are shown.

The simulated sixth-order dual-band chained-function
waveguide S-parameter responses are plotted in Fig. 8
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FIGURE 8. Comparison between the simulated and the ideal sixth-order
dual-band chained-function waveguide S-parameters.

FIGURE 9. Comparison between the measured and the simulated
responses of the sixth-order dual-band chained-function waveguide
filter.

together with the ideal responses. The simulated results show
an in-band return loss performance of 14 dB, which is com-
parable to the ideal return loss of 15 dB for both bands. The
three TZs, total bandwidth and insertion loss in the simu-
lation are 27.99 GHz, 810 MHz, and 0.85 dB, respectively.
In addition, the simulation shows that the lower and upper
bands are centred at 27.715 GHz and 28.275 GHz, respec-
tively. The simulated and ideal responses of the sixth-order
dual-band chained-function waveguide model are in a good
agreement.

A comparison between simulated and measured responses
is shown in Fig. 9. Centre frequencies of the filter for
the lower band and the upper bands are 27.65 GHz and
28.25 GHz, respectively. The measured return loss is better
than 12 dB for both passbands. The measured insertion loss
of 0.93 dB is slightly higher than the simulated 0.85 dB.
The total measured bandwidth of 3.07% is very close to
the simulated bandwidth of 2.89%. It can be observed that
there is a frequency shift of only 0.24%. The discrepancy of
frequency shift is lower when realizing the filter with filter
order greater than nine based on the mathematical syntheses
as shown in Table 4.

FIGURE 10. Eighth-order dual-band chained-function waveguide filter
topology.

B. EIGHTH-ORDER DUAL-BAND CHAINED-FUNCTION
WAVEGUIDE FILTER
To further validate the above theory for the higher filter order
applications, an eighth-order dual-band chained-function is
implemented in the similar WR-34 waveguide filter with
a prescribed return loss of 15 dB centred at a frequency
of 28 GHz to indicate the high frequency applications, and
a fractional bandwidth of 0.65% in each passband to depict
the narrow band.

Using (12) and (24), the eighth-order chained function
based on the seed function order (2, 2, 4) can be rewritten
as:

C2,2,4(ω) = 256ω8
− 320ω6

+ 128ω4
− 20ω2

+ 1 (26)

The number of TZs between the two bands and the ripple
factors are 4 and 0.0452, respectively, using (6) and (16). The
final coupling matrix for the eighth-order dual-band chained-
function waveguide filter can be found as shown in (27), as
shown at the bottom of the next page.

The corresponding coupling/routing diagram is shown in
Fig. 10, where each node represents a unit capacitance and
the lines are admittance inverters (coupling coefficients). The
solid lines represent main couplings and the dotted lines
represent cross-couplings. S and L represent the source and
the load, respectively. The filter topology is implemented
in a waveguide filter whose 3D layout model is shown in
Fig. 11 using Ansys HFSS. After running several optimisa-
tions, the final physical dimensions are listed in Table 3.

TABLE 3. Final dimensions of the eighth-order waveguide filter.
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FIGURE 11. Eighth-order dual-band chained-function waveguide filter
(top view).

The simulated eighth-order dual-band chained-function
waveguide S-parameter responses are plotted in Fig. 12
together with the ideal responses. The simulated results show
an in-band return loss performance of 13.5 dB, which is
comparable with the ideal return loss of 15 dB for both bands.
The three TZs, total bandwidth and insertion loss in the sim-
ulation are 27.99 GHz, 510 MHz, and 0.89 dB, respectively.
In addition, the simulation shows that the lower and upper
bands are centred at 27.81GHz and 28.185GHz, respectively.
The simulated and ideal responses of eighth-order dual-band
chained-function waveguide model are in a good agreement.

IV. SENSITIVITY TO MANUFACTURING ERRORS
To evaluate the sensitivity to manufacturing errors of the
chained-function waveguide filter, sixth-, eighth-, tenth-,
twelfth-, and fourteenth-order chained-function waveguide

FIGURE 12. Comparison between the simulated and the ideal
eighth-order dual-band chained-function waveguide S-parameters.

filters are compared with its respective filter order responses
of conventional Chebyshev andChebyshev of the second kind
waveguide filters shown in Fig. 13. The sensitivity analysis
is conducted by applying a±10% tolerance to their coupling
matrices and compared their filter performances to those of
the ideal models [14], [15]. It should be noted that [14]
and [15] are only limited to single-band filter realisations.
To have a fair comparison, the worst-case passband return
loss level is prescribed to 15 dB before distortion for filter
responses of chained functions, conventional Chebyshev, and
Chebyshev of the second kind.

Fig. 13 depicts the effects of tolerance towards the
S-parameters responses for the chained functions, conven-
tional Chebyshev, and Chebyshev of the second kind. The
percentage differences in their return loss levels, insertion
loss levels, and bandwidths are summarized in Table 4.
Rejection levels of these filters are also summarised in
Table 5 and Table 6. It should be noticed that the rejec-
tion levels for sixth-order filters are taken at frequencies
of 27.2 GHz and 28.8 GHz, which are different from other
filters that are taken at frequencies of 27.5GHz and 28.5GHz.
It is because sixth- order filters have 1% larger total band-
width than other filters. From Table 4, sixth- and eighth-
order chained-function responses have 1.67% and 2.47%
higher percentage changes of return losses, 4.55% and 4.54%
higher percentage changes of insertion loss, together with
4.76% and 1.78% higher percentage changes of bandwidths,



0 0.81 0 0 0 0 0 0 0 0
0.81 0 0.801 0 0 0 0 0 0 0
0 0.801 0 0.456 0 0 0 −0.202 0 0
0 0 0.456 0 −0.543 0 0 0 0 0
0 0 0 −0.543 0 −0.149 0 0.359 0 0
0 0 0 0 −0.149 0 0.352 0 0 0
0 0 0 0 0 0.352 0 −0.281 0 0
0 0 −0.202 0 0.359 0 −0.281 0 0.801 0
0 0 0 0 0 0 0 0.801 0 0.81
0 0 0 0 0 0 0 0 0.81 0


(27)
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FIGURE 13. The effect of tolerance towards the S-parameter responses for chained-function, conventional Chebyshev, and Chebyshev of
the second kind for filter order of six, eight, ten, twelve, and fourteen.
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FIGURE 13. (Continued.) The effect of tolerance towards the S-parameter responses for chained-function, conventional Chebyshev, and
Chebyshev of the second kind for filter order of six, eight, ten, twelve, and fourteen.
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TABLE 4. Comparison of return losses, insertion losses and bandwidths.

TABLE 5. Rejection levels at 27.2 GHz and 28.8 GHz.

TABLE 6. Rejection levels at 27.5 GHz and 28.5 GHz.

respectively, after applying −10% tolerance to its coupling
matrices, while sixth- and fourteenth-order chained-function
responses have 5.06% and 2.4% higher percentage changes of
return loss, together with 5.45% and 6.37% higher percentage
changes of insertion loss, respectively, after applying +10%
tolerance to its coupling matrices.

In terms of comparisons of rejection levels shown in
Table 5 and Table 6, chained-function responses of different
orders, for a given maximum return loss level of 15 dB with
cut-off frequencies at the stopbands, have an overall of higher
rejection levels than the respective filter order responses of

conventional Chebyshev and Chebyshev of the second kind.
Therefore, it can be deduced that the overall implementation
of the chained-function concept in a waveguide has the least
amount of percentage changes for filter order of ten and above
as comparedwith their respective performances of return loss,
insertion loss, and total bandwidth.

However, the novel approach described in this paper is
still applicable to sixth- and eighth-order chained-function
filters, but with higher sensitivity to manufacturing errors.
This proves the dual-band chained-function concept is a novel
approach that can be exploited to extend the state-of-the-art in

VOLUME 8, 2020 28581



Y. Leong et al.: New Class of Dual-Band Waveguide Filters Based on Chebyshev Polynomials of the Second Kind

TABLE 7. Comparison with previous works.

tuning-less high-performance filter implementations towards
higher frequencies and narrowband applications.

V. COMPARISON WITH PREVIOUS WORKS
Table 7 shows a comparison of previous works with the
method proposed in this paper. For comparison, the method
of chaining second kind Chebyshev polynomials proposed in
this paper gains the advantage of having a smaller number
of filters used than the methods listed in [3], [5]. This is
essential for narrowband filter designs as the more filters
involved will contribute to a higher filter loss. This method
is also able to produce an optimum and constant ripple if
compared to the approaches listed in [2]–[4], [16], [17], as the
constant ripple ensures the filters to have minimum insertion
loss. In addition, this method is able to support filter orders
greater than five without increasing the bandwidth, rather
than enlarging the bandwidths listed in [2]–[6], [16], [17] for
the narrowband applications. This is because the proposed
method will always produce a constant number of six distinct
reflection poles for the higher filter orders, instead of having
many reflection poles distributed over an extremely small
frequency range, leading to time-consuming simulations and
fabrication issues.

To add on, the adjacent bands’ rejection at f0 of this method
is also higher if compared to [2], [4]–[6], [16], [17] due
to having multiple transmission zeros placed at the centre
frequency. Higher adjacent bands’ rejection ensures that two
bands will not interfere with each other and thus, eliminating
the unwanted signals efficiently. This is vital for the appli-
cation of the Internet of Things (IoT) which has proximity
bands that cause multichannel interferences.

Besides that, the proposed method allows flexibility in
return loss using the generalised ripple factor of chained
function derived in (16). This is able to achieve identical
passband equal ripple if compared to the methods men-
tioned in [2]–[4], [16], [17], which use methods that possess
non-identical passband equal ripple. Not to mention, the
respective number of TZs for different filter orders can also

be calculated to achieve dual-band filters with passband equal
ripple.

VI. CONCLUSION
This paper presented for the first time a method of synthesis
involving uncommon Chebyshev of the second kind that has
passband unequal ripple, and realize it as an equal-ripple
dual-band filter by introducing transmission zeros at the cen-
tre frequency to the chained Chebyshev of the second kind.
The method is flexible, is not restricted to certain filter types
or topologies, and is capable of being implemented for higher
filter orders.

The advantages of this proposed technique are the char-
acteristics of optimum and constant ripple, the flexibility
of return loss, and the high adjacent bands’ rejection. The
proposed technique has been realised to the sixth-order dual-
band waveguide filter with a prescribed return loss of 15 dB
centred at a frequency of 28 GHz and a total bandwidth
of 840 MHz. The measured responses show that the return
loss, bandwidth, and the frequency shift are 12 dB, 860MHz,
and 0.24%, respectively. By referring to the filter sensitivity
tests, in order to have a lower discrepancy of frequency shift,
filter order greater than nine is considered as the number
of distinct reflection poles will always be a constant at six,
due to the seed function characteristics of chained functions.
The proposed synthesis approach is limited to symmetrical
dual-band filter designs with identical passband equal ripple.
In fact, it is possible to realise asymmetrical dual-band filter
designs by adjusting the position of the transmission zeros.
However, identical passband equal ripple will not be achieved
which lead to a higher filter loss in either band.

The feasibility of this technique is demonstrated for fil-
ter configurations in waveguide technology. The sixth-order
dual-band filter design is verified by measurements. This
technique can be applied to realize multi-band filters by
introducing transmission zeros at different locations in the
future.
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