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ABSTRACT Clustering is a basic tool applied to complex networks. However, the clustering of complex
networks is often based on a single objective function, which can obtain insufficient clustering effects.
To address the insufficiencies of single objective complex network clustering, multiobjective complex
network clustering was proposed. In this article, to improve multiobjective complex network clustering,
we prove the superiority of dynamic decomposition mathematically and propose a parallel discrete particle
swarm optimization algorithm based on dynamic decomposition (DDDPSO). First, solutions are obtained at
different levels by optimizing the objective functions of parallel subpopulations. Second, the decomposition
space is divided dynamically by the reference vector of dynamic decomposition. Particle swarms are used to
search for optimal solutions in the partitioned dynamic spaces. Finally, the individuals in the particle swarm
are sorted according to the obtained solutions to obtain individuals with good convergence and diversity.
We conduct comparisons with many state-of-the-art algorithms on many widely used test datasets to test the
DDDPSO. The experimental results show the effectiveness of the proposed approach for complex network
clustering.

INDEX TERMS Multiobjective optimization, complex network clustering, discrete particle swarm, dynamic
decomposition.

I. INTRODUCTION
In recent years, complex network clustering has attracted con-
siderable interest from researchers [1].Many problems can be
abstracted into complex network clustering approaches, such
as discovering extended social structures [2], investigating
community networks [3], and analyzing protein networks [4].
A complex network can be represented by a graph in which
the nodes represent objects in a complex network, and the
edges represent the relationships between objects. The pur-
pose of complex network clustering is to assign similar nodes
to the same class and different nodes to different classes [5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Sabu M. Thampi .

A good clustering method makes the nodes in a class dense
and the connections between classes sparse. Via complex
network clustering, people are better able to study, use, and
understand the structures of complex networks.

Recent studies have proposed a large number of complex
network clustering theories and techniques [6]–[8]. Among
these, complex network clustering based on optimization has
become the main research branch [9] by combining opti-
mization with complex network clustering. The distribution
of node locations is determined by optimizing the clustering
objective. Evolutionary algorithms are widely used in the
field of optimization problems [10]–[12]. An evolutionary
algorithm is a heuristic search algorithm based on changes
in populations that can obtain a solutions set in a single

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 32341

https://orcid.org/0000-0002-4394-2001
https://orcid.org/0000-0003-4558-9501
https://orcid.org/0000-0002-5794-0779
https://orcid.org/0000-0001-6453-5520


T. Gao et al.: Multiobjective Complex Network Clustering Based on Dynamical Decomposition Particle Swarm Optimization

execution [13]. Therefore, evolutionary algorithms can be
applied to the field of complex network clustering.

Evolutionary algorithms can be divided into single-
objective and multiobjective evolutionary algorithms.
A genetic algorithm optimizes complex network clustering
by selecting an optimal solution using a quality measure
function [14]. The clustering result is positively correlated
with the value of the A function. For example, the Meme-
Net algorithm optimizes clustering with a module density
function [15].

As research progressed, people found that clustering objec-
tive functions are gradually increasing functions that often
contradict each other. Multiobjective complex network clus-
tering can cause the nodes to connect more closely within the
class while also making the nodes between classes sparse.
Hence, multiobjective evolutionary algorithms have been
proposed to solve the complex network clustering prob-
lem. In the MOGA-net algorithm, two objective functions
are optimized using a multiobjective genetic algorithm to
identify networks with dense class connections and sparse
connections between classes, and different solutions contain
different numbers of classes [16]. A multiobjective optimiza-
tion framework was used to solve artificial complex network
clustering in [17]; the authors proposed a multiobjective
evolutionary algorithm to efficiently identify structures in
complex networks. To optimizemultiple clustering functions,
a clustering method based on decomposition of the discrete
particle swarm algorithm was proposed in [18] that uses the
Tchebycheff approach [19] to transform the multiobjective
optimization problem into a scalar solution problem in a
discrete particle swarm optimization framework. Label prop-
agation was used to initialize the algorithm.

Many recent studies have also proposed new multiobjec-
tive complex network clustering algorithms. MOEA based
on local information, termed LMOEA [20], improves the
quality of clustering results by selecting the best individual.
Mopso-net improves PSO algorithm and optimizes clustering
results simultaneously with KKM function and RC func-
tion [21]. Zhang et al. proposed the idea of reducing the
scale of complex networks in the process of multi-objective
evolutionary algorithm clustering [22]. The idea Narrows the
search space and improves the clustering accuracy.

At present, multiobjective complex network clustering is
based on node degree when constructing the objective func-
tion, and it ignores the weight between nodes. However,
in a real complex network, nodes have not only degrees but
also weights. Thus, it is unsuitable to construct the objec-
tive function of clustering based solely on node degree the
clustering result based only on node degree is not reasonable.
The clustering results do not reflect high cohesion and low
coupling. To address this problem, this paper proposes a
multiobjective complex network clustering model composed
of three objective functions that consider both node degree
and node weight.

Many types of multiobjective evolutionary algorithms
and multiobjective particle swarm optimization (MOPSO)

methods exist [23]–[25]. MOPSO has the advantages of
fast convergence and maneuverability and outstanding per-
formance in the continuous field. Because of its outstand-
ing performance on continuous problems, scholars began to
explore discrete multiobjective particle swarm optimization
(DMOPSO) [26]. In this paper, to improve the optimization of
multiobjective complex network clustering models, MOPSO
based on dynamic decomposition is proposed.

The main contributions of this paper are as follows:
1) To address complex network clustering problems,

we construct a multiobjective complex network clustering
model by improving the average clustering degree (ACD)
function and apply it to complex network clustering. The
ACD function complements the signed ratio correlation
(SRA) function and the signed ratio cut (SRC) function, and
these three functions constitute the multiobjective clustering
model. These three objective functions consider not only node
degree also node weight. Compared with previous models,
the proposed model is more comprehensive, and the objective
functions achieve a more reasonable balance.

2) To better optimizemultiobjective complex network clus-
tering, a DPSO based on dynamic decomposition is proposed,
and the dynamic decomposition strategy of feasibility is
proven mathematically. Instead of dividing the solution space
of the objective function in advance, the dynamic decomposi-
tion algorithm divides the solution space dynamically based
on the solution. To balance the convergence and diversity
of the algorithm, the individuals are ranked based on their
individual performances. This approach uses the top-ranked
individuals to optimize the population.

3) To increase the applicability of the algorithm, a parallel
method based on objective function and individual population
is proposed. This parallel method has two phases. In the first
stage, the population is divided into several subpopulations,
and each subpopulation is assigned to a CPU. Then, the sub-
populations are each optimized on individual computing plat-
forms. The second stage constructs an information pool to
store the best objective function value. When a subpopulation
needs information, it signals the information pool. When
the information pool receives such a request, it sends the
objective function value to the requesting subpopulation and
updates the new objective function value.

The remainder of this paper is organized as follows.
Section II introduces the definition and background of com-
plex networks and clustering objectives. In Section III,
the superiority of dynamic decomposition is proved mathe-
matically, and discrete particle swarm optimization based on
dynamic decomposition is described. In Section IV, the pro-
posed DDDPSO is compared with other algorithms, verifying
the superiority of our algorithm. Finally, Section V summa-
rizes the article and provides a conclusion.

II. BACKGROUND AND RELATED WORK
In this section, firstly, a brief review of complex networks’
concepts, classification, and representation are presented;
then, we introduce the clustering objectives used in this work,
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including the role of each objective. By optimizing these three
objective functions, better clustering results can be obtained.

A. COMPLEX NETWORK DEFINITION
Complex networks are divided into signed and unsigned net-
works by their connecting properties [27]. Unsigned complex
networks can be modeled as a graph G = (V,E). In graph,
V represents the set of nodes and E represents the set of
edges [28]. AnAmatrix represents the node interconnections.
If node i is associated with node j, then Aij = 1; otherwise,
Aij = 0 is obtained. In addition, we use a B matrix that
references a similar weight in the unsigned complex network.
The elements in B are assigned by the node links. If node i is
associated with node j, then Bij = 1 is obtained; Otherwise,
Bij = 0. Complex signed networks can be expressed as G =
(V, E,W) [29], where V is the set of vertices, E represents the
nodes of edges, and W is the set of weights of nodes. When
the weights of nodes i and j are greater than zero, then Aij
= 1, and when the weight between node i and node j is less
than zero, then Aij = −1. When no weight exists, then Aij
= 0. If node i and node j are not connected, then Bij = 0;
otherwise, Bij is the real weight of the two points. Node

degree is calculated by D(i) =
n−1∑
j=0

Aij, while node weight

of nodes is calculated by W (i) =
n−1∑
j=0

Bij.

After clustering the complex network, we suppose that
there are n classes � = {C1,C2, , ,Cn}. In an unsigned
complex network, if ∀i∈Cm, Kin

i > Kout
i where K in

i =∑
i∈Cm,j∈Cm

Aij, K out
i =

∑
i∈Cm,j/∈Cm

Aij is a strongly connected

class; otherwise, it is a weakly connected class. In a signed
complex network, Cm is a strongly connected class if it sat-
isfies ∀i∈Cm, (K

+

i )
in > (K−i )

in, (K+i )
in
=

∑
i∈Cm,j∈Cm,Cij=1

Aij,

(K−i )
in
=

∑
i∈Cm,j∈Cm,Aij=−1

|Aij|. If (1) is satisfied, then Cm is

a weakly connected class.
∑
i∈Cm

(K+i )in >
∑
i∈Cm

(K+i )out∑
i∈Cm

(K−i )out >
∑
i∈Cm

(K−i )in
(1)

where (K−i )
out

=
∑

i∈Cm,j/∈Cm,Aij=−1
|Aij|, (K+i )

out
=∑

i∈Cm,j/∈Cm,Cij=1
Aij [30].

B. CLUSTERING OBJECTIVE FUNCTION OPTIMIZATION
The multiobjective optimization problem (MOP) can be
defined as follows:

min f (X ) = (f1(x), f2(x), , , fM−1(x), fM (x))

s.t x ∈ X (2)

where X∈ Rn is a decision space, x ∈ (x1, x2, , , , xn) is a
decision vector, and n represents the number of variables.

M denotes the number of functions in the multiobjective
optimization problem. F(X) is a solution vector composed by
an objective function.
Definition 1 (Pareto Domination): In the solution space of

the objective function, we will find the solution vector r =
(r1, r2, , , rN ) and other solution vectors h = (h1, h2, , , hN )
when multiple solution vectors satisfy the result conditions.
Among these, if{

∀n ∈ {1, 2, , ,N } : rn ≤ hn
∃n ∈ {1, 2, , ,N } : rn < hn

(3)

then vector r dominates vector h.
Definition 2 (Pareto Set): The elements in the Pareto set

must meet Definition 1, which can be expressed as follows:

PS = {X ∈ Dn|@X ′ ∈ Dn : y(X ′) ≤ y(X )} (4)

Definition 3 (Pareto Front): Each solution in the Pareto set
corresponds to a vector of the objective function. Therefore,
we can obtain the Pareto front (PF).

PF = {y(X )|X ∈ PS} (5)

Complex network clustering optimizes the node distribution
according to the objective function. For unsigned network
clustering, Girvan and Newman [31] proposed the module
function Q:

Q =
1
2m

(aij −
kikj
2m

)δ(i, j) (6)

where m is the sum of the degree of all nodes; aij is the
element in row i, column j of A; and ki is the degree of node i.
If node i and node j are in the same class, then we can obtain
δ(i, j) = 1; otherwise, we can obtain δ(i, j) = 0. Gomez
et al. [32] proposed the corresponding module function SQ
for signed complex networks:

SQ=
1

2w+ + 2w−
∑
i,j

(wij−(
w+i w

+

j

2w+
−
w−i w

−

j

2w−
))δ(i, j) (7)

where w+ means the sum of all the nodes whose weights
are greater than zero, w− denotes the sum of all nodes with
weights less than zero; and wij represents the elements in
row i and column j of matrix B. The advantage of this
function is that the topological structure of the class is
unimportant as long as the clustering result satisfies low
coupling and high cohesion and the function value is suit-
able. Intuitively, a higher function value indicates better
clustering. Although the performance of complex network
clustering is positively correlated with module functions,
Fortunato and Barthelemy [33] found that when the class
scale is smaller than a certain value, neither a signed module
function nor an unsigned module function can effectively
guide the clustering of complex networks. Therefore, to solve
the problems of evaluation functions so that they are unaf-
fected by the complex network structure as far as possible,
to extend the single clustering result and ameliorate one-sided
clustering bias, many papers have proposed new schemes.
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For example, Li et al. [34] proposed the module density
function. Lancichinetti et al. [35] proposed evaluation func-
tions for complex network clustering. Pizzuti [16] proposed
community scoring functions. This paper proposes multiob-
jective clustering for complex networks.

We abstract the clustering of complex networks into a
multiobjective optimization problem with three objectives.
The problem can be briefly expressed as follows:

min f (x) = (SRA(Ci), SRC(Ci),ACD(Ci))

s.t Ci ∈ � (8)

where� = {C1,C2, , ,Ck}means that the complex networks
are divided into K classes. The specific function in f(x) is as
follows [18]:

SRA = −
n∑
i=1

L+(vi, vi)− L−(vi, vi)
|vi|

SRC = −
n∑
i=1

L+(vi, v̄i)− L−(vi, v̄i)
|vi|

ACD =

SN∑
j=i
CD(i)

n

(9)

where SN represents the total number of nodes. In SRA,
the numerator is L+(vi, vi) =

∑
i∈Cm,j∈Cm

Aij, L−(vi, vi) =∑
i∈Cm,j∈Cm,Aij=−1

|Aij|; and in SRC, the numerator is

L+(vi, v̄i) =
∑

i∈Cm,j/∈Cm
Aij, L−(vi, v̄i) =

∑
i∈Cm,j/∈Cm,Aij=−1

|Aij|.

The numerator of the CD function [37] is

CD(i) = WD(i)× f (cw(i)) (10)

where the f(cw(i)) function is f(x) = 1
1+e−x ; and CW(i) =

1
W (i)[D(i)−1]

∑
j,k

w(i,j)+w(j,k)
2 aijaijajk and node i is connected to

both nodes j and k, andW(i) is the sum of the weights of node
i. The WD(i) function is WD(i) = α(D(i)) + (1 − α)W (i),
and α is a random number. SRA and SRC are improved by
kernel k-means (KKM) and ratio cut (RC), respectively. The
reason for selecting two functions is that the KKM function
mentioned in [36] increases the number of classes, while
the RC function reduces the number of classes. In other
words, the KKM function and the RC function are adver-
sarial. The ACD function represents improvements to the
CD function [37]. The ACD function balances these two
attributes using node degree node weight to determine the
average clustering ability of the nodes in the class. The
stronger the average clustering ability in a class is, the more
nodes that class will gather. However, as the number of nodes
increases, the degree of association between the nodes will
be reduced. Therefore, ACD is adversarial to the SRA and
SRC functions. All three functions are minimized during the
clustering process. Minimizing SRA and SRC ensures that
the node connections within the class are as dense as possible
and that the connections between classes are as sparse as
possible. Minimizing ACD by considering weights ensures

that the node connections within the class are more robust
and reasonable and that the connections between classes are
more reliable.

III. DISCRETE DYNAMIC DECOMPOSITION
PARTICLE SWARM OPTIMIZATION
In this section, a DPSO based on dynamic decomposi-
tion is proposed for multiobjective complex network clus-
tering. First, when dealing with a multiobjective problem,
the dynamic decomposition mechanism benefits the algo-
rithm, guiding it more accurately to find the Pareto solution
set, and we prove this assertion mathematically. In the second
part, we propose the DPSO based on dynamic decomposition
and show the optimization of multiobjective complex net-
work clustering in detail.

A. DYNAMIC DECOMPOSITION STRATEGY
Dynamic decomposition of the dynamic partition using ref-
erence vectors in the solution space guides the algorithm
to search the Pareto solution set of clustering more accu-
rately. To prove its superiority theoretically, first, the principle
of dividing the solution space by the reference vector of
dynamic decomposition is the same as that used to divide the
solution space by the reference vector of angular distance,
which works excellently in the field of multiobjective opti-
mization [38]. Second, when the Pareto solution is convex,
the dynamically decomposed reference vectors are proven
to be more evenly distributed than are the angular distance
reference vectors.

The basic theory of dynamic decomposition assumes
that—without knowing the shape of the Pareto solution—
all the solutions can be pulled towards the hyperplane in the
direction of the reference vector. In other words, the refer-
ence vectors of the dynamic space pass through the same
hyperplane. The dynamic decomposition partition solution
space is given a population P = {p1, p2, p3,,,pn}, where
Pi = {f1(x), f2(x), , ,FM (x)}. We normalize each solution as
follows:

f ′i (x) =
fi(x)− zmini

zmaxi − zmini

(11)

where zmaxi represents the maximum function value of fi(x),
and zmini represents the minimum function value. To avoid
extreme cases, when zmaxi = zmini we set f ′i (x) = 1e−10. The
next step is to calculate the reference vector corresponding to
each solution as follows:

λ(x) =
F ′(x)
m∑
j=1

f ′j (x)
(12)

where F ′(x) = (f ′1(x), f
′

2(x), , , f
′

m−1(x), f
′
m(x))

T is a standard
set of objective value. From Formula (12), we know that

1 =
f
′

1(x)+ f
′

2(x)+ · · · + f
′

j−1(m)+ f
′

j (m)
m∑
j=1

f
′

j (x)
. (13)
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FIGURE 1. The dynamically decomposed reference vector passes through
the hyperplane.

And based on Formula (13), the reference vectors of dynamic
decomposition pass through a hyperplane. As shown in
Figure 1, the green vectors are the reference vectors of
dynamic decomposition, and the blue vectors are hyper-
planes. The function normalization of angular distance is the
same as that of dynamic decomposition; the difference lies is
the generated relation of the reference vector. The reference
vector of angular distance is as follows:

λ(x) =
F ′(x)√
m∑
j=1

f ′j (x)
2

. (14)

where F ′(x) = (f ′1(x), f
′

2(x), , , f
′

m−1(x), f
′
m(x))

T . We sum the
squares of λ(x) for each element to obtain the following
formula:

1 =
f
′

1(x)
2
+ f

′

2(x)
2
+ · · · + f

′

j−1(m)
2
+ f

′

j (m)
2

m∑
j=1

f
′

j (x)
2

. (15)

The reference vector for the angular distance also goes
through a hypersphere. As shown in Figure 2, the red vectors
are the reference vectors of dynamic decomposition, and the
blue vectors are hyperplanes. Therefore, the angular distance
reference vector and the dynamic decomposition of the refer-
ence vector principle are the same.

FIGURE 2. An angular distance reference vector passing through the
hypersphere.

Furthermore, when the Pareto solution set is convex,
the dynamically decomposed reference vectors are more
evenly distributed than are the angular distance reference
vectors. As shown in Figure 3, the reference vector in yellow
is the Pareto solution set across the convex graph, and the
hyperplane in blue is that of the angular distance in red.

FIGURE 3. The angular distance reference vector and dynamic
decomposition reference vector pass through the hyperplane.

As shown in the figure, the dynamic decomposition of the
reference vector is more uniform.

It can also be proven that the dynamic decomposition of the
reference vector distribution is more uniform when using the
geometric method. Given three pointsN = (x1, x2, x3, , , xm),
K = (y1, y2, y3, , , ym), H = (z1, z2, z3, , , zm), on the hyper-
plane of the dynamic decomposition, assuming that xm = t
and x1 = x2 = x3, , ,= xm−1, x1 = x2 = x3, , ,=
xm−1 = 1−t

m−1 can be obtained from Formula (13). According
to formula (13), when ym = t − u and y1 = y2 = y3, , ,=
ym−1, y1 = y2 = y3, , ,= ym−1 = 1−t+u

m−1 can be obtained.
If zm = t − 2u and z1 = z2 = z3, , ,= zm−1, z1 = z2 =
z3, , ,= zm−1 = 1−t+2u

m−1 can be determined. The distance
from point N to point K and the distance from point K to
point H can be expressed as dist(N,K) and dist(K,H), which
are calculated as follows:

dist(N ,K )

=

√
(m− 1)(

1− t
m− 1

−
1− t + u
m− 1

)2 + (t − (t − u))2

dist(N ,K )

=

√
(

u
m− 1

)2 + (u)2 (16)

dist(K ,H )

=

√
(m− 1)(

1− t + u
m− 1

−
1− t + 2u
m− 1

)2+(t−u−(t−2u))2

dist(K ,H )

=

√
(

u
m− 1

)2 + (u)2 (17)

Dist(N,K) and dist(K,H) are equal. Considering the vectors
−→
ON and

−→
OK and

−→
OK and

−→
OH the cosine of the angle can be

expressed as

cos <
−→
ON ,
−→
Ok >

=
(m− 1) 1−tm−1

1−t+u
m−1 + t(t − u)√

( 1−tm−1 )
2 + t2

√
( 1−t+um−1 )2 + (t − u)2

(18)

cos <
−→
OK ,
−→
OH >

=
(m− 1) 1−t+um−1

1−t+2u
m−1 + (t − u)(t − 2u)√

( 1−t+um−1 )2 + (t − u)2
√
( 1−t+2um−1 )2 + (t − 2u)2

(19)
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From (18) and (19), we know that cos<
−→
OK ,
−→
OH>

cos<
−→
ON ,
−→
OK>

6= 1. Based
on the mathematical proof above, the reference vector passes
through the Pareto solution set of the convex graph, and the
angle between ON and OK is not the same as the angle
between OK and OH. The distance in the hyperplane of the
dynamic decomposition is dist(N,K) = dist(K,H). In sum-
mary, when the Pareto solution set is convex, the dynamic
decomposition of the reference vector is more uniform than
is the angular distance of the reference vector.

B. DPSO BASED ON DYNAMIC DECOMPOSITION
DPSO is widely used to solve optimization problems because
of its fast convergence [39], [40]. However, DPSO can eas-
ily become trapped in a local optimum. To find the global
optimum more accurately, we introduce a dynamic decom-
position strategy [41]. Each iteration serves as a founda-
tion that finds some clustering results with good balance
between convergence and diversity. Dynamic decomposition
references the ideas of quick selection [42]. First, dynamic
decomposition divides the initial population into Q and W.
Second, in population W, the individuals that divide set W
into SA and SB are identified. Finally, the individuals with
good balance and convergence are found in SA.

1) DYNAMIC DECOMPOSITION DIVIDES DPSO
In DPSO, each individual represents a clustering scheme.
Each element in an individual represents a node, and each
node has a value range of [1,N], where N represents the
total number of nodes. Figure 4 shows the encoding mode
of the discrete particle swarm in a complex network. When
the integers of two elements are equal, the two nodes belong
to the same class.

FIGURE 4. The encoding mode of discrete PSO for a complex network.

In DPSO, each particle has a velocity that determines its
search range and the time that it takes to find the optimal
solution. The particle velocity rule equation is as follows:

Vi = sig(ωVi + c1r1(Pbesti
⊕

Xi)+ c2r2(Gbest
⊕

Xi))

(20)

where ω represents random numbers in the range [0,1], and
c1 and c2 represent social and individual cognition, respec-
tively. Both parameters are set to the value of 1.494 [18].
r1 and r2 represent two random numbers in the range [0,1].
In (26), the

⊕
symbol represents a logical XOR operation.

The function f(x) = sig(x) is defined as follows:{
yi = 0 if rand(0, 1) < sigmoid(x)
yi = 1 if rand(0, 1) ≥ sigmoid(x)

(21)

where the sigmoid(x) function can be described as
sigmoid(x) = 1

1+e−x [18]. Based on the velocity update rules,
the velocity and position update rules are as follows:

X ti = X ti
⊗

V t
i (22)

where
⊗

influences the position of the velocity at the next
moment; therefore, the operator is important. Given X2 =
(x21, x22, , , , x2n) and a velocity v = (v1, v2, , , , , vn), and
the position

⊗
, the velocity generates a new position. The

elements in X2 are defined as follows:{
X2i = X2i vi = 0
X2i = Nbesti vi = 1

(23)

Suppose the velocity element is equal to zero, and the cor-
responding position in X2 does not change. If the position
of the velocity is 1, then the corresponding position in X2 is
calculated in terms of Nbesti = argmax

∑
j∈Nei

ϕ(X2j, r). Nei

is the set of neighbors of node j. When i = j, ϕ(i, j) is 1;
otherwise, ϕ(i, j) = 0. In other words, when the velocity
element is 1, the corresponding position is the number that
appears most frequently in the neighbor node.

After the particle swarm has completed two evolutions,
the population is divided into two parts: one part is the sorted
set Q, and the other part is the setW= {P−Q}, which must be
sorted. Dynamic decomposition then iterates to assign rank
values to the solution in the set W until all the solutions
have been sorted. It is worth noting that when the individual
in W is sorted, it will be removed from W and placed in
Q. The resulting set in Q can be used to influence the next
generation or the final solution. The formula for finding Q is
as follows: 

ej = argmin g(x|w) x ∈ P
wi = 1 i = j
wi = 1e− 6 i 6= j

(24)

where ej s the population closest to the j-th axis, w =
(w1,w2, , ,wm)T is the axis direction, and g is the same
aggregation function described previously.

2) DYNAMIC DECOMPOSITION SELECTS INDIVIDUALS
FROM THE DIVIDED POPULATIONS
In set W, the algorithm finds an individual that can divide the
set into parts SA and SB. The formula for dividing W is as
follows [41]:{

distance(x,Q) = mindst(x, y) y ∈ Q
p = argmax dist(x,Q)

(25)

where p is the individual for the division, and the distance
formula is [41]

dist(x, y) = ‖λ(x)− λ(y)‖2 (26)
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Individual P divides set W into SA and SB as follows [41]:

SA = {f (x) ∈ Rm|dst(x, p) ≤ distance(x,Q)} (27)

SB = {f (x) ∈ Rm|dst(x, p) > distance(x,Q)} (28)

3) DYNAMIC DECOMPOSITION SELECTS BEST INDIVIDUAL
It can be seen from the formula that SB is closer to the Q set
but that adding the SB population to Q will be detrimental
to the population diversity. Therefore, we consider the SA
population as a candidate population from which we select
the best individual in each iteration. The formula to select the
best individual s in SA is as follows [41]:

S = argmin g(x|λ(p)) x ∈ SA (29)

where Lambda (p) is the reference vector for individual p, and
the function g is an aggregate function. The individual in SA
is multiplied by the same reference vector, which ensures that
the selected optimal individual will have good convergence.
At the same time, diverse individuals are selected from the
SA population; thus, they have both good convergence and
diversity.

FIGURE 5. The dynamic decomposition selection process.

To clarify the dynamic decomposition optimization DPSO,
we provide an example. Figure 5 shows a schematic diagram
of the dynamic decomposition selection process of a bi-
objective function in which the number of populations is 9,
and each individual is assigned a unique number. According
to Formula (20), we first divide P into SA and SB. The yellow
individuals (4 and 5) represent the individuals in Q = {4, 5}.
The remaining individuals are selected from the set W =

{0, 1, 2, 3, 6, 7, 8}. First, we select p individuals using (21)
and (22), which are the individuals marked in green. Next,
using Formulas (22) and (23), we divide W into set SA =
{0, 1, 2, 3, 6} and set SB = {7, 8}. The area occupied by the
points in SA are marked in light green, and the individuals
in SB are marked in blue. Then, in the solution space of
SA, according to Formula (25), we can conclude that the red
individual 6 is the closest to the green individual 0. Therefore,
number six is selected as the best individual. We repeat the
above process until the number of selected individuals meets
the requirements.

It is worth noting that in the last iteration, the final non-
dominated set is selected in an unsupervised way. First, one
individual selected by Formulas (25)-(28) is divided into SA
and SB. Then, the real clustering results are selected from SA
by Formula (29).

C. PARALLELIZATION METHOD BASED ON OBJECTIVE
FUNCTION AND POPULATION
As the number of objective functions and the number of nodes
in the network increase, the running time of the algorithm
also increases. Therefore, to improve the computational effi-
ciency, we propose a parallel method based on the objective
function and population consisting of three parts. First, within
a neighborhood, individuals communicate with each other.
Second, individuals receive neighborhood information and
use their own computing resources to update the individual
state. Finally, the optimal objective function of the individual
information is stored to update the subpopulation. When a
subpopulation needs the optimal objective function, the pro-
gram sends that information to the subpopulation.

Assuming that there are N CPUs to execute parallel
processes and NP individuals, the number of populations
assigned to each CPU is NP

N . Thus, each CPU is responsible
for complete sets of individuals. The MOP can be opti-
mized by all the CPUs simultaneously, which greatly reduces
the running time. The CPU exchanges information in order
according to the physical structure of the computer where the
distribution of CPU nodes is abstracted into a network. In this
network, each crossover node represents a CPU. To identify
the CPU neighbor node, the CPU step size should be cal-
culated to determine which CPU should send information to
the current CPU and which CPU should receive current CPU
information. The calculation formula for the step size and
neighbor nodes is as follows:

step =
√
N

Nodeitop = (nodei − step+ N )%N
Nodeibottom = (nodei + step)%N
Nodeileft = (nodei − 1+ N )%N
Nodeiright = (nodei + 1+ N )%N

(30)

where step is the step length, Nodei is the rank of MPI
process i, and Nodeiup,Nodeidown, Nodeidown and Nodeidown
are the ranks of the four neighboring nodes (top, bottom, left
and right).

The running time of the algorithm primarily involves the
population evolution and the objective function calculations;
therefore, the time consumption of the serial algorithm is

T1 ≈ t1 + t2 (31)

where t1 is the time evolution of the population and t2 is
the time required to calculate the objective function. When
the algorithm is combined, the time consumption formula
becomes

T2 ≈
t1
N
+
t2
N

(32)

where N is the number of CPUs. Consequently, the parallel
form of the algorithm is approximately N timesmore efficient
than is the serialized form.
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D. ALGORITHM FRAMEWORK
The overall framework of the DDDPSO is shown in Table 1.
In step 3.4, DDDPSO applies the mutation operator [18]
whose algorithm framework is shown in Table 2. After two
DPSO iterations, dynamic decomposition is used to guide
the DPSO to select individuals with both convergence and
diversity as the parent of the next generation.

TABLE 1. Algorithm framework.

TABLE 2. Individual mutation algorithm.

E. COMPLEXITY ANALYSIS
1) The storage space of the algorithm is mainly composed

of two parts.The first part is used to store experimental
data.The second part is used to store individuals in a popu-
lation.The space needed to store data is O(n2). N is node of
number. The space needed to store individual is O(mn), where
m is size of the population. Therefore, the total storage space
required by the algorithm is O(n2).
2) Time Complexity: Step 3 and step 4 take up most of the

calculation time of the algorithm because the other steps can
be ignored. In the process of analyzing the time complexity
of the algorithm, the number of nodes in the complex network
is represented by n, and the degree is represented by m.
Steps 3.4, 3.5, 4.5, 4.6, 4.7 and 4.8 require O(1) basic opera-
tions. Steps 3.1, 3.2, 4.1, 4.2, 4.4 and 5 of time need for execu-
tion is O(n), and step 3.3 of tome needO(K 2). K is the average

degree of the network. Finally, step 4.3 requires O(2n) basic
operations. According to the abstract rules of time com-
plexity, The worst-case calculation time for DDDPSO is
O(iterations · population · (m+ n)). In the time complexity of
DDDPSO, iterations is the number of iteration and population
is the number of individuals in a population.

IV. EXPERIMENTAL STUDIES
A. COMPARED ALGORITHMS
We compare our algorithm with seven similar algo-
rithms: GA-net [14], MOEA/D-net [43], MOCD [17],
MOGA-net [16], Informap [44], MOPSO-r2 [45],
LMOEA [20] and CCLPA [46]. proposed the GA-net algo-
rithm. The main purpose of GA-net is to apply EA to network
clustering. Pizzuti defined a community score to evaluate the
clustering results. MOCD,MOGA-net, andMOEA/D-net are
network clustering algorithms based on MOEA. To compare
the derived algorithms based on MOEA and the derived
algorithm based on DPSO, we chose these three algorithms
and our proposed DRVPSO for comparison. Decomposi-
tion strategies are used in our algorithm and these three
algorithms. The biggest difference between MOCD and our
algorithm lies in the optimization mechanism. MOCD uses a
genetic algorithm for optimization, while our algorithm uses
a reference vector. Informap is a complex network clustering
algorithm based on informatics. MOPSO-r2 is an extension
of MOPSO that uses heuristic search methods. CCLPA uses
a propagation algorithm to cluster nodes based on clustering
parameters.

B. EXPERIMENTAL SETTINGS
The parallel technique used in the algorithm is MPI. MPI is
a parallel communication scheme based on the C++ frame-
work. The computer used in the experiments was equipped
with 2 Intel e5-2665 CPUs running at 2.4 GHz with 128 GB
of memory: each CPU has 8 cores. The development envi-
ronment of the experiment was Visual Studio 2017 under a
Windows 10 operating system, and the language used in the
experiment was C++. The program code is available upon
email request.

When the real clustering results are known, the measure we
use is normalized mutual information (NMI) [47]. The NMI
effectively measures the similarity between the clustering
results of the algorithms and the true clustering. Suppose
the clustering result of an algorithm is set A but the real
clustering result is set B. We define a fuzzy-proof C such
that the elements in matrix C are the number of nodes jointly
owned by class i in set A and class j in set B. The NMI(A,B)
is then defined as follows [47]:

NMI =

−2
CA∑
i=1

CB∑
j=1

Cijlog(CijN/Ci·C·j)∑CA
i=1 /Ci·log(Ci·)+

∑CB
i=1 /C·jlog(C·j)

(33)

where CA and CB are the number of classes in sets A and B,
N is the number of nodes, and Ci· and C·j are the sums of
the elements of row i and column j, respectively. The value
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TABLE 3. Average rankings of the algorithms on the GN dataset(Aligned
Friedman).

range of NMI is [0, 1]. When NMI is zero, A and B are
completely different, andwhenNMI is equal to 1, A and B are
identical. Danon et al. [48] previously proved the feasibility
and rationality of NMI.

1) GN NETWORK EXPANSION EXPERIMENT
The GN benchmark network [31] consists of 128 nodes
divided into 4 categories. The average degree of nodes is 16.
In the GN benchmark network, r represents the proportion
of nodes connected to nodes that are not in the same class,
and 1-r represents the proportion of nodes connected to nodes
within the same class. When r<0.5, we say that the network
structure is strong and vice versa. In the experiment, the r
value ranged from 0 to 0.5.

FIGURE 6. On the GN extended base dataset, the results of different
algorithms have an average of 30 NMI values.

In Figure 6, the abscissa shows r increasing from 0 to 0.5
with a step size of 0.05, while the ordinate represents the
average value of NMI obtained by each algorithm over
30 runs. From Figure 6, before r reaches 0.2, DDDPSO is
not significantly different from the other algorithms. Between
0.2 and 0.3, DDDPSO moves toward second place. After
03, DDDPSO clearly begins to show its superiority. From
03 to 0.5, DDDPV ranks first. This shows that DDDPSO is
more effective on networks with complex structures. From
the perspective of the overall curve, our algorithm is more
promising than are the other algorithms at clustering networks
that possess more complex node structures. To convincingly
demonstrate DDDSO’s significant advantages over the other
algorithms, we calculated the aligned Friedman score of all
the algorithms. As shown in Table 3, DDDPSO achieves
first place. In addition, we calculated the variance of the
NMI obtained by the algorithms running on the GN dataset.
As shown in Table 6, our algorithm is generally stable.

FIGURE 7. On the GN extended base dataset, the results of different
population num have an average of 30 NMI values.

TABLE 4. Average rankings of the population (aligned Friedman).

The population number has a large influence on the
outcome of the algorithm; therefore, we performed some
experiments. Figure 7 shows representations of different pop-
ulations on the datasets. We varied the population number
from 80 to 160 and observed which population performed
well on the datasets. The population increases by 20 individu-
als at a time. Between 0 and 0.2, the results (the red line) does
not clearly show advantages over the other cases. However,
when r>0.2, the red line indicates a substantially supe-
rior performance over other cases. The red line represents
a population of 120. Populations 140 and 160 also performed
well in the 0.45 and 0.5 datasets. However, according to
the Friedman population in Table 4, we fixed the population
at 120.

FIGURE 8. On the GN extended base dataset, the results of different
maxgen as an average of 30 NMI values.

Apart from the population parameter, we also explored the
effect of the number of iterations on clustering by fixing the
other parameters while varying the number of iterations. The
iteration parameter was varied from 60 to 140 at a step size
of 20. Figure 8 shows the NMI obtained by the different
numbers of iterations: when the number of iterations exceeds
a certain value, the NMI decreases. An iteration number
between 60 and 100 increases the value of NMI; however,
after the number of iterations reaches 100, the NMI value

VOLUME 8, 2020 32349



T. Gao et al.: Multiobjective Complex Network Clustering Based on Dynamical Decomposition Particle Swarm Optimization

TABLE 5. Average rankings of the maxgen (aligned Friedman).

TABLE 6. Variance of the algorithms on GN datasets.

FIGURE 9. On the LFR extended base dataset, the results of different
algorithms obtain an average of 30 NMI values.

decreases. According to Table 5, based on the maxgen of a
Friedman test, we fixed the number of iterations at 100.

2) LFR COMPLEX NETWORK
The degree of each node in the GN-based network is sim-
ilar. The number of nodes in each class is approximately
the same, and the total number of nodes is relatively small.
These properties do not reflect complex networks in real life.
Lancichinetti proposed that the number of LFR data
aggregation points should be 1000. The LFR dataset belongs
to a complex large-scale network. In the dataset, the param-
eters µ1 and µ2 should be set to control the node degree
and the number of nodes in the class after clustering [49].
A node’s connections to nodes in its own class occupies a
ratio of µ to all the connections for that node, while its
connections to nodes in another class constitute the ratio 1-µ
to all connections. The range of µ is [0, 1]. We varied µ
from 0.1 to 0.8 with a step size of 0.1. After the LFR data
aggregation class, the number of classes varied from 10 to 50.
We set the parameters µ1 = 2 and µ2 = 1 so that the
average degree of all the nodeswas 20 and themaximumnode
degree was 50. The experimental results of 30 runs are shown
in Figure 9. On the LFR data, the population and iteration
parameters of DDDPSO are 120 and 100, respectively.

As shown by the curves in Figure 9, our algorithm
performs stably across different datasets and achieves excel-
lent clustering. Between 0 and 0.5, our algorithm consis-
tently produces NMI values above 0.9. In other words,

even when applied to large-scale complex network clus-
tering, DDDPSO can accurately identify the locations of
nodes and obtain good clustering results. Between dataset
values of 0.4 and 0.6, our algorithm performed consistently
and ranked second. Although DDDPSO fluctuates somewhat
between 0.5 and 0.6, it still ranks second and is well ahead of
third place and well behind first place. Surprisingly, after 0.6,
the performance of Informap changed substantially: its NMI
value suddenly drops from 1 to 0. Thus, DDPSO, after
some fluctuations, moved from second-place to first place.
From the datasets with values of 0.6 to 0.8, the algorithm
structure becomes very complex, and the number of nodes
becomes very large. Nevertheless, our algorithm still per-
forms well, indicating the universality of DDDPSO. Further-
more, according to the Friedman test results in Table 7, our
algorithm has promising potential for addressing large-scale
complex networks.

TABLE 7. Average rankings of the algorithms (aligned Friedman).

3) REAL-WORLD DATASET
We also applied algorithms to an American College Football
dataset [31]. This dataset contains a total of 115 nodes and
613 edges representing the Iowa college football grouping in
the fall of 2000. The dataset constitutes 12 subclasses after
clustering. Due to the complex connections and the unbal-
anced classification of nodes in this dataset, no algorithm can
comprehensively find the correct structure. On the American
college football data, the population and iteration parameters
of DDDPSO were set to 120 and 100, respectively. The NMI
data of each algorithm for this dataset are shown in Table 8,
which shows that DDDPSO performs better than the other
algorithms.

The dolphin network includes a network of 62 bottlenose
dolphins. According to the gender, the network naturally is
separated into the female group and the male one. The NMI
data of each algorithm for this dataset are shown in Table 9,
which shows that DDDPSO performs better than the other
algorithms.

C. THE DIVERSITY AND CONVERGENCE OF DDDPSO
Algorithm diversity and convergence are two important per-
formance indicators for multiobjective complex network
clustering algorithms. To improve the convergence and
diversity of DPSO, we proposed creating a DPSO based
on dynamic decomposition. To evaluate the influence on
the clustering effect achieved by dynamic decomposition,
we visualized and quantified the clustering solution set of
DPSO both with and without dynamic decomposition.
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TABLE 8. NMI values of different algorithms on the American college football datasets.

TABLE 9. NMI values of different algorithms on the dolphin datasets.

FIGURE 10. The encoding mode of discrete PSO for a complex network.

As shown in Figure 10, the solution sets obtained by DPSO
with dynamic decomposition are close to circular in shape.
The more the solution set of a the multiobjective algorithm
tends toward circularity, the better the convergence and bal-
ance of the algorithm are. Clearly, the DPSO-based dynamic
decomposition algorithm is better. To form a more convinc-
ing demonstration, the complex network clustering results
obtained by DDDPSO are not only visualized but also quan-
tified. As shown in Figure 10, the DDDPSO scores 0.8622,
while DPSO scores 0.5524 (the score range of this value is
[0, 1], and the closer the value is to 1, the better the con-
vergence and balance of the algorithm are). DDDPSO with
dynamic decomposition performs better than does DPSO
without dynamic decomposition. There are two main rea-
sons why DDDPSO is better. First, the reference vector used
in dynamic decomposition divides the solution space more
evenly. The particle swarm perturbations in these subspaces
yield clustering results closer to the Pareto front. Second,
based on their convergence and diversity, the dynamic decom-
position sorts the individuals in the population. The ranking
results directly affect the survival of individuals.

V. CONCLUSION
In this paper, we proposed using ACD objective functions in
combination with SRC and SRA functions to form a multiob-
jective complex network clustering method. The ACD func-
tion considers both the weight and degree of nodes, resulting
inmore reasonable clustering results.Multiobjective complex
network clustering is executed to obtain several different
solutions, each of which has a different emphasis. To better
solve multiobjective complex network clustering problems,
DPSO has been widely used for clustering. DPSO has the
advantages of simple operation and rapid convergence; how-
ever, is also has the disadvantage of becoming trapped in
local optima. To balance the diversity and convergence of
algorithms, we proposed a DPSO variant based on dynamic
decomposition. We first proved that the principle of dividing
the solution space by dynamic decomposition is the same as
that of dividing the solution space by distance. The, on that

basis, we proved mathematically that when the square Pareto
solution set is convex, the dynamically decomposed reference
vectors are more evenly distributed than are the angular dis-
tance reference vectors. To increase the universality of the
algorithm, we proposed a parallelization method centered
on the population and the objective functions. This parallel
method calculates the top, bottom, left and right neighbors
according to von Neumann’s system.
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