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ABSTRACT Frauds and default payments are two major anomalies in credit card transactions. Researchers
have been vigorously finding solutions to tackle them and one of the solutions is to use data mining
approaches. However, the collected credit card data can be quite a challenge for researchers. This is because
of the data characteristics that contain: (i) unbalanced class distribution, and (ii) overlapping of class samples.
Both characteristics generally cause low detection rates for the anomalies that are minorities in the data.
On top of that, the weakness of general learning algorithms contributes to the difficulties of classifying
the anomalies as the algorithms generally bias towards the majority class samples. In this study, we used
a Multiple Classifiers System (MCS) on these two data sets: (i) credit card frauds (CCF), and (ii) credit
card default payments (CCDP). The MCS employs a sequential decision combination strategy to produce
accurate anomaly detection. Our empirical studies show that the MCS outperforms the existing research,
particularly in detecting the anomalies that are minorities in these two credit card data sets.

INDEX TERMS Anomaly detection, credit card, multiple classifiers.

I. INTRODUCTION

Credit cards are widely used because they ease our daily
transactions in many ways. However, banks need to take
note of these issues seriously, i.e., (i) the intervention of
unauthorised third parties — frauds, and (ii) the negligence of
repayment by cardholders — default payments.

According to [1], the global credit card fraud losses have
shown an uptrend, from USD 9.84 billion in the year 2011 to
USD 27.69 billion in the year 2017. It is also reported that
the worldwide credit card fraud is expected to reach a total of
USD 31.67 million by the year 2020. The Malaysian banking
sector also reported a total loss of RM 51.3 million in the
credit card fraud in the year 2016 [2]. It was reported that in
the year 2016, the outstanding balance of credit card holders
in Malaysia is RM36.9 million and 12.8% of them failed to
pay the minimum payment of the balance [3]. The Central
Bank of Malaysia (Bank Negara Malaysia) also reported that
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the high outstanding balance by the credit card holders, has
triggered an alarm to the Malaysian government [4].

Researchers have been vigorously finding ways to tackle
both issues, including data mining. Data mining is not an
option or a trend, but more of a necessity that the banking
sector should invest in [5], [6]. However, banking data such as
credit card fraud and default payment are quite of a challenge
to data mining researchers. This is because the data usually
exhibited characteristics: (i) unbalanced class distribution,
and (ii) overlapping of class samples.

The size of the important classes in the data, i.e., fraud
and default payment, are usually the minorities. Generally,
it is easy for learning algorithms to find their regularities
if they have sufficient records. But when their numbers are
very small, finding their regularities becomes difficult and so
as generalising their actual decision regions using learning
algorithms [7]-[10]. It adds difficulty if their attribute values
are overlapped by a large amount of normal transactions.
In general, the performance of learning algorithms will be less
affected if the minority classes are linearly separable, even
though the data involved are highly unbalanced [11]-[13].
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FIGURE 1. The decision boundary that separates the majority class and
minority class samples.

Another aspect to take note is the weakness of learn-
ing algorithms in assessing its own classification capabil-
ity [7], [11]-[14]. A commonly used metric to evaluate data
mining results, which computes the number of correctly clas-
sified records, is the classification accuracy. The learning
algorithms generally assume that positive and negative sam-
ples are roughly equal in data. Therefore, many learning algo-
rithms aim to maximize accuracy, which lean more towards
majority classes and against minorities. Subsequently, they
are unlikely to produce satisfactory results when dealing with
unbalanced data sets, especially the minority classes.

In a nutshell, the characteristics of the credit card data
and learning algorithms have caused the problem of low
anomaly detection rates. Therefore, single classifiers may not
give good classification results. Hence, this research aims to
design a Multiple Classifier System (MCS) for mitigating the
low anomaly detection rate problem on the credit card data
sets utilised in this study.

II. LITERATURE REVIEW

A. UNBALANCED CLASS DISTRIBUTION

A data set is unbalanced in its class distribution when one or
more classes have a much greater number of samples than the
other classes [17], [18]. In reality, the number of anomalies
are very much fewer than normal transactions in the credit
card data.

The unbalanced class distribution problem has been the
focus of many researchers [19]-[22]. This is due to the high
probability of producing errors in classification. The unbal-
anced class distribution is as illustrated in Fig. 1. The curved
line that separates between two classes is called the decision
boundary, which separates the region of different classes [23].

Classifying an unbalanced data set may lead to the low
classification rate problem [24]-[26]. According to [27], gen-
eral learning algorithms are able to give high accuracies on
balanced data sets, but not on unbalanced data sets. Many
researchers did comparative studies using some popular
learning algorithms on unbalanced data sets [21], [28], [29].
In the next section, some selected popular single learning
algorithms shall be discussed. A brief explanation on why
they are weak towards unbalanced data sets shall be given.
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FIGURE 2. The illustration of finding the class label for a new sample.

B. LEARNING ALGORITHM
1) NAIVE BAYES
NB is a simple, yet powerful learning algorithm that uses
the probabilistic method to classify data samples. It assumes
that every attribute is conditionally independent of the other
attributes [30]. It will predict whether a data sample belongs
to one class or another based on the Bayesian Theorem as
per (1).

P(X)

Let X be a data sample (evidence) that is described by
multiple attributes. The probability of X belongs to a class C
is calculated as P(C|X). P(C) is the initial or prior probability
while P(X|C) is the likelihood or the probability that the
sample data is observed. P(X) is the evidence with a constant
value and therefore can be omitted.

According to [31], NB is weak against unbalanced data sets
as it biases towards the majority class. As illustrated in Fig. 2,
given two classes of different class distribution (class A 20:
class B 10) and a new sample that needs to be classified.

Firstly, NB will find the prior probability P(C) of each
class; it is assumed that the new sample will belong to Class A
as it has more samples as compared with Class B. Secondly,
the likelihood is calculated based on the number of samples
of each class that is within the vicinity (within the circle) of
the new sample. Lastly, the posterior probability is calculated
by combining the result of the prior probability and the
likelihood of the new sample (refer to (2) and (3)).

20 3
Posterior prob. : Class A = 30 x — =0.100 (2)

1 osterior pl()D. . (:laﬂ I)’ X ().()(); :;

The new sample is classified as Class A because of the
largest posterior probability. Using this example, it shows that
NB is likely bias towards the majority class.

2) C45

C4.5 is a popular learning algorithm that uses a divide-
and-conquer method to build a decision tree from a training
set [32]-[34]. It is popular due to its ability to produce good
classification results in a much shorter time. To improve
classification performance, it prunes small and deep nodes
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FIGURE 3. The illustration of finding the class label for a new sample
using KNN.

in the preliminary tree caused by the ‘noises’ contained in
training samples. The advantage of pruning is that it will
decrease the risk of ‘over-fitting’ [33], [35], [36]. Over-fitting
refers to a classifier that learns a training data, the details as
well as noises, too well. Due to the inability of such classifier
in generalising the training data well, the classifier is weak in
classifying new or unknown data.

Avoiding over-fitting gives a more precise classification
for unknown data [37], [38]. Nevertheless, the pruning pro-
cess can also be a disadvantage to unbalanced data sets.
Removing ‘noises’ from such data set may also remove
small and deep nodes of the preliminary tree that belong to
a minority class, thus reducing the coverage for a precise
classification [14], [39]-[41].

3) K-NEAREST NEIGHBOUR (KNN)

KNN builds the classifier’s function by majority vote of
its local neighbouring data points [42], [43]. Fig. 3 shows
how KNN identifies the class of a new sample. Suppose the
number of neighbours, & = 5, and the Euclidean distance is
the distance measure. The KNN classifier will find the nearest
five samples to the new sample. The Euclidean distance
between the target sample (x) and the new sample (y) in
an n-dimensional space is calculated using the measure as
per (4), where p is 2.

L= lxi—yil)'” )

i=1

Out of five neighbours, the samples of class A is more
than the samples of class B. Therefore, the new sample is
classified as class A. This example shows that KNN is likely
bias towards the majority class. The chance of the new sample
to be classified as class B is relatively low as compared with
Class A.

4) ARTIFICIAL NEURAL NETWORK (ANN)

ANNs are made up of simple and highly interconnected
nodes that respond to inputs by the dynamic state of the
nodes [42], [44]. It is made up of layers, i.e., input layer, hid-
den layer, and output layer, as shown in Fig. 4. These layers
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FIGURE 4. The illustration of an ANN model that contains an input layer,
hidden layers, and an output layer.
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FIGURE 5. SVM transforms an original feature space into a higher
dimensional feature space for finding a better decision boundary.

are formed using interconnected ‘nodes’ that are associated
with activation functions.

ANNSs contain some forms of learning rules that modify
the weights of the connections according to the input pat-
terns — learning by examples [42], [45]. Similar to other
single classifiers, ANNs are also biased towards majority
classes when they involve unbalanced data sets [26], [46].
Due to overwhelming samples of majority classes, samples
of minority classes will be imperceptible to ANNS.

5) SUPPORT VECTOR MACHINE (SVM)

SVM solves classification and regression problems.
As shown in Fig. 5, SVM plots each sample as a point in
n-dimensional space, where 7 is the number of attributes in
a data set. The value of each attribute will be the value of
a particular coordinate. Then, SVM will identify the best
hyper-plane that is able to differentiate classes [44].

SVM is powerful in getting the best decision boundary
between classes. However, SVM does not work well with
data sets that contain unbalanced class distribution, noises
and overlapping class samples. The parameters in SVM can
be altered to make the classifier more immune to noises and
to work well for balanced data sets. But when it involves
unbalanced data sets, minority class samples may consider
as noises. Therefore, minority class samples will be ignored
completely by SVM [47].

C. OVERLAPPING OF CLASSES
The other factor that contributes to the low classification rate
is the overlapping class samples. Overlapping happens when
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FIGURE 6. The unbalanced classes and overlapping samples that may
lead to a low classification rate.

the samples are located too close to the decision boundary of
classes and overlapped with each other [20], [21].

Based on a systemic study using a set of artificially gen-
erated data sets prepared by [48], the study result showed
that the degree of overlapping class samples had a strong
correlation with unbalanced class distribution. Fig. 6 shows
the relationship between unbalanced class distribution and
overlapping class samples. When the samples of two classes
are not well distributed, some samples may overlap with each
other. The grey area in Fig. 6 indicates the samples that are
overlapped.

Another reason of overlapping is because the samples in
both classes share almost that same value of attributes. Such
overlapping causes difficulties for a classifier to classify
the samples and may eventually lead to a low classification
rate [49], [50]. In the next section, solutions to the unbalanced
class distribution and the overlapping class samples shall be
discussed based on the previous work conducted by other
researchers.

D. MULTIPLE CLASSIFIERS SYSTEM (MCS)

Many researchers attempted different solutions to address the
low classification rate problem caused by the two problems,
as discussed in the earlier section [51]-[54], [83], [84]. One
of the solutions is MCS. MCS is the combination of a set
of classifiers to produce a better prediction. MCS employs
various decision combination strategies that are able to pro-
duce a more robust, reliable, efficient recognition and accu-
rate classification [55]-[59]. There are three combination
strategies when employing MCS: (i) sequential combination,
(ii) parallel combination, and (iii) hybrid combination.

1) SEQUENTIAL COMBINATION
Using the sequential combination, two or more single classi-
fiers process the input data in a sequential manner. As shown
in Fig. 7, the output resulted from a single classifier will then
be used as the input data for the subsequent single classifiers.
Usually, simple classifiers are utilised first, followed by
more accurate and complex classifiers [55]. However, this
order can be reversed depending on the needs of the design.
When the prior classifier is unable to accurately classify
one of the class samples, then the sample is given to the
next classifier for further classification [58]. An example
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FIGURE 7. The sequential combination of MCS. The MCS passes data from
one classifier to another.

of learning algorithm that uses sequential combination is
Boosting [60].

Reference [61] used AdaBoost on a credit card fraud data
set. The data set is highly unbalanced with only 0.173%
fraud transaction. The authors used Naive Bayes as the base
classifier. Upon completing the experiment, they obtained
0.999, 0.825 and 0.981 for accuracy, true positive rate and true
negative rate, respectively. However, accuracy is not a good
performance measure as compared to the other two measures
when involving unbalanced data sets. This is because the
accuracy measure favours the majority class.

Reference [62] used a fine-tuned boosting ensemble
approach, which is known as XGBoost, to solve a classifica-
tion problem. The problem was to decide on the granting of
loan application. The data sets used in the experiments were
German credit, Australian credit, Taiwan credit, P2P landing
data set A, and P2P landing data set B. Three of them are
unbalanced and the other two are approximately balanced in
class distribution. The classifier’s performance was measured
using accuracy and the highest accuracy obtained was 0.879.
Using accuracy in their work showed that the authors did not
explicitly address the issues of unbalanced data and overlap-
ping class samples. However, the authors suggested to inte-
grate XGBoost into MCS to further improve the classification
performance. MCS is one of the recommended approaches to
consider in data mining research when involving unbalanced
data sets.

Reference [79] also used boosting algorithm, AdaBoost.
M1. The authors boosted three different classifiers, which
were Multilayer Perceptron (MLP), Radial Basis Func-
tion (RBF), and Naive Bayes (NB), on the Taiwan credit card
default payment data. To handle the unbalanced data set issue,
the authors reduced the size of majority class samples by
using random under sampling.

2) PARALLEL COMBINATION
The same data are processed by multiple single classi-
fiers using the parallel combination, where each classifier is
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FIGURE 8. The parallel combination of the MCS. All the single classifiers
involved are independent from each other.

independent from the others. The output from all the single
classifiers will be combined to get a final decision, as shown
in Fig. 8. An example of learning algorithm that uses parallel
combination is Bagging [60].

Reference [63] used Bagging with Random Forest as the
base classifier. The data set used was about credit card default
payment from a Taiwan bank. The data set is unbalanced
with 28% of it categorised as default-payment. The author
obtained 0.816 for accuracy, 0.371 for TPR, and 0.764 for
AUC.

Reference [64] used the bagged decision trees to classify
new transactions as fraudulent or legitimate type. The data
set used in the experiment was the UCSD-FICO competition
credit card data set. Out of 97,707 instances, the data set
contains only 2.9% of fraudulent instances. The authors did
some comparison with other single classifiers and the result
showed that bagging approach outperformed other single
classifiers.

The authors of [78] used Random Forest, an ensemble
method. Random Forest uses the same combination strategy
as Bagging. Similar to [63], credit card default payment
data set from a Taiwan bank was used. In the experiment,
the authors applied the Correlation Based Feature Selec-
tion (CFS) technique to reduce the data set dimension with the
purpose of improving classification accuracy. Based on the
experiment result, the authors obtained a good TPR f 0.816.

In the study by [81], the credit card fraud data set used was
obtained from a European bank with an unbalanced class dis-
tribution and overlapping class samples. The data set is highly
unbalanced with only 492 fraud transactions (0.173%). The
authors first partitioned and clustered the data set. Then,
a Random Forest framework, with C4.5 as the base classifier,
was trained using the resulted clusters. The final result was
determined based on the majority vote. The authors used
AUC as the performance measure. Based on the experiment
result, the author obtained an AUC value of 0.965.

The study by [82] used the similar data set used as [81].
The data set was bootstrapped such that each resulted data
set had a balanced class distribution. Then, the authors used
an ensemble of Deep Belief Network and applied to each of
the bootstrapped samples. The author used the performance
measures, i.e., accuracy, TPR, TNR, and AUC and obtained
0.906, 0.818, 0.995, and 0.978, respectively.
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FIGURE 9. The MCS that utilises the hybrid combination. The sequential
and parallel combinations are put into one architecture.

3) HYBRID COMBINATION

The hybrid combination puts the sequential and parallel com-
binations into one architecture. Fig. 9 illustrates the hybrid
combination.

In this case, the input data is fed to the first classifier. The
output from the first classifier will be the input to several
parallel classifiers. Then, a single combination function or
classifier will merge the output of the individual parallel
classifiers.

Reference [65] used the hybrid combination to classify
credit or loan applicants into good and bad applicants. The
data set used in the experiment is a German credit data
set. The data set has 20 attributes with 700 Good and
300 Bad Applicant data. The hybrid combinations used are
a two-level voting scheme: level I — AdaBoost approach,
and level II —single classifier approach. The authors used
accuracy as the performance measure. Both level I and level 11
had achieved an average accuracy of 76.33% and 78.33%),
respectively. However, the evaluation measure is not suitable
as the study involved the unbalanced data set.

Reference [80] also employed a hybrid model using a
combination of AdaBoost and majority voting. ANN and NB
were used as the base classifiers for AdaBoost that employed
sequential combination. Then, the final result was obtained
using majority voting, which was done in parallel. Similar
to [81], the credit card fraud data set obtained from the
European bank was used in this experiment. Upon completing
the experiment, the authors were able to obtain an accuracy
of 0.999, a TPR of 0.789 and a TNR 0.999.

E. EVALUATION MEASURES
Given a binary class problem, general learning algorithms
assume that the classes involved are approximately bal-
anced and attempt to maximise its accuracy regardless of
classes [66], [67]. With a balanced data set, accuracy is the
suitable measure to evaluate the performance of a classifier.
However, when it involves an unbalanced data set, learning
algorithms may bias towards the majority class [68]-[70].
This may lead to a high accuracy in overall, but a poor
classification rate for the minority class.

In this study, the True Positive Rate (TPR) was used to
evaluate the performance of the proposed MCS. By using
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TABLE 1. The attributes of the Credit card fraud (CCF) data set.

No. Attribute(s) Description
The seconds elapsed between each
1 TIME transaction and the first transaction in the
dataset
2,3-29 VI1,V2...V28  Not disclosed
30 AMOUNT The transaction amount
31 CLASS Fraud transaction is 1 otherwise 0

TPR as the evaluation metric, we were able to identify the
classification rate for both majority and minority classes.
In this study, we focused on the minority classes: (i) the credit
card frauds and (ii) the credit card default payments.

lll. METHODOLOGY

A. DATA SETS OVERVIEW AND

THEIR INHERITED PROBLEMS

Two credit card data sets were utilised in this study to
demonstrate the challenges: (i) overlapping class samples
and (ii) unbalanced class distribution. The general learning
algorithms have difficulty in handling these two issues and
caused low detection rates for minority classes.

The first data set is the Credit card fraud (CCF) data set
released by [71]. Credit card fraud is an act of gaining unlaw-
ful advantage such as performing a variety of unauthorised
transactions using the victim’s credit card account [72], [73].
This data set was formed during a big data mining and
fraud detection research between Worldline and the Machine
Learning Group of Université Libre de Bruxelles (ULB).
The data set contains transactions made by European credit
card holders. The data set has a total of 284,807 transac-
tions and it is highly unbalanced with only 492 fraud trans-
actions (0.173%). Further, the data set has a total number
of 31 attributes, as shown in Table 1. Unfortunately, due to
confidentiality, the details of certain attribute are not dis-
closed. Most attributes of the CCF data set exhibit the sce-
narios as follows. Fig. 10 (a) shows the pairwise relationship
of attributes V20 and V14. The red crosses are samples of
Class 1 (frauds), while the blue crosses represent samples of
Class 0 (normal transactions). The class distribution is clearly
unbalanced and the samples of both classes are overlapped.
Fig. 10 (b) also displays the same scenario where the plot
involves attributes V24 and V12.

The second data set is the credit card default pay-
ment (CCDP) data set [74], [75]. Default credit card payment
refers to the failure of a credit card holder in performing
the minimum amount of credit card repayment within the
agreed period [76], [77]. This data set contains the payment
data of credit card holders of a Taiwan bank from April
2005 to September 2005. The CCDP data set is also slightly
unbalanced with a ratio of approximately 3:1 (non-default
payment: default payment). It has a total of 30,000 payment
instances. 23,364 instances belong to ‘no’ class (non-default
payment next month), and 6,636 of them belong to the ‘yes’
class (default payment next month). This means that there
are only 28% of default payment instances out of the whole
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FIGURE 10. The visualisation of the CCF data set showing the unbalanced
class distribution and the overlapping class problem between attributes
(a) V20 vs. V14, and (b) V24 vs. V12.

payment data. This data set has a total of 25 attributes. The
detail of each attribute is described in Table 2.

Fig. 11 (a) shows the scatter plot of attributes ‘“Repay-
ment status in April” and “Amount of previous state-
ment in April”’. The red crosses are samples of class ‘yes’
(non-default payment), while the blue crosses are samples of
class ‘no’ (default payment). The distribution of both classes
is clearly unbalanced and we can see that the blue crosses are
overwhelmed by the red crosses. Fig. 11 (b) shows the scatter
plot of attributes ““Bill statement in August’ and ‘“‘Repayment
status in August™.

Fig. 11 (a) and (b) show the overlapping samples of major-
ity and minority classes. It is expected to be difficult for clas-
sifiers to accurately detect the minority classes (class 1 and
class ‘yes’).

B. TACKLING THE PROBLEM USING MCS
MCS is the combination of predictions from a set of
classifiers to produce a better prediction. MCS employs
decision combination strategies that are able to produce
a more robust, reliable, efficient recognition and accurate
classification [55]-[58], [85].

Basically, there are three different combination strate-
gies when employing MCS: (i) sequential, (ii) parallel, and
(iii) hybrid. Among the three combination strategies of MCS,
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TABLE 2. The attributes of the CCDP data set.

No. Attribute(s) Description
1 1D The ID of each client
Amount of given credit in NT dollars
2 LIMIT BAL  (includes individual and
family/supplementary credit
3 SEX Gender (1=male, 2=female)
(1=graduate school, 2=university, 3=high
4 EDUCATION  school, 4=others, 5=unknown,
6=unknown)
5 MARRIAGE Marital status (1=married, 2=single,
3=others)
6 AGE Age in years
Repayment status in September, 2005 (-
1=pay duly, 1=payment delay for one
month, 2=payment delay for two
7 PAY_0 months, ... 8=payment delay for eight
months, 9=payment delay for nine months
and above)
3 PAY 2 Repayment status in August, 2005 (scale
same as above)
9 PAY 3 Repayment status in July, 2005 (scale same
as above)
10 PAY 4 Repayment status in June, 2005 (scale
- same as above)
1 PAY 5 Repayment status in May, 2005 (scale same
- as above)
12 PAY 6 Repayment status in April, 2005 (scale
- same as above)
Amount of bill statement in September,
13 BILL_AMTL 065 (New Taiwan (NT) dollar)
Amount of bill statement in August, 2005
14 BILL_AMT2 (NT dollar)
15 BILL AMT3 Amount of bill statement in July, 2005 (NT
— dollar)
Amount of bill statement in June, 2005
16 BILL_AMT4 (NT dollar)
17 BILL AMTS Amount of bill statement in May, 2005 (NT
— dollar)
Amount of bill statement in April, 2005
18 BILL_AMT6 (NT dollar)
Amount of previous payment in September,
19 PAY_AMTL 5505 (NT dollar)
20 PAY AMT2 Amount of previous payment in August,
- 2005 (NT dollar)
Amount of previous payment in July, 2005
21 PAY_AMT3 (NT dollar)
Amount of previous payment in June, 2005
22 PAY_AMT4 (NT dollar)
Amount of previous payment in May, 2005
23 PAY_AMTS5 (NT dollar)
Amount of previous payment in April,
24 PAY_AMT6 2005 (NT dollar)
default payment _ -
25 next month Default payment (1=yes, 0=no)

we expect the sequential combination to perform well. Using
the sequential combination, the output of the first classifier
will be an input of the subsequent classifier. This means that
the same piece of sample will be classified more than once.
Taking credit card fraud data set (CCFD) as the example,
our primary concern will be the frauds that are misclassi-
fied as normal transactions. Therefore, the sample classified
as normal by the first classifier will be fed to the subse-
quent classifier for re-classification purpose. Further, having
one classifier for each class is an advantage. Since each of
the classes shall be handled by one classifier, then it will
mitigate the effect of the unbalanced class distribution and
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FIGURE 11. The visualisation of the CCDP data set showing the
unbalanced class distribution and overlapping class problem between
attributes (a) “Amount of previous statement in April” vs. “Repayment
status in April”, and (b) “Repayment status in August” vs. “Amount of bill
statement in August”.

overlapping classes. Employing the MCS with sequential
combination will therefore reduce the overall misclassifi-
cation rate and improve the detection rate, particularly for
the minority class. Algorithm 1 shows the pseudocode of
the proposed MCS that utilises the sequential combination
scheme.

The credit card data set shall be classified by classifier
CI (Line 1, Algo. 1). Classifier CI is the expert classifier
to classify majority class samples. During the classification,
if the sample is classified as 1 or ‘yes’, then the sample will
be stored in the data set F_ds. Conversely, if the sample is
classified as 0 or ‘no’, then the sample will be stored in a
different data set called N_ds (Line 2 — 8, Algo. 1). Our pri-
mary concern for this project is the samples of class 1 or ‘yes’
that are misclassified as 0 or ‘no’. To address the concern,
we will re-classify the data by feeding N_ds into classifier
C2 (Line 9, Algo. 1). Classifier C2 is the expert classifier
to classify minority class samples. During the classification,
if the sample is classified as 1 or ‘yes’, then the sample
will be stored in data set F_ds. If the sample is classified as
0 or ‘no’, then the sample will remain in the data set N_ds
(Line 10 — 14, Algo. 1). Subsequently, we combine F_ds and
N_ds into one data set called C_ds (Line 15, Algo. 1).Finally,
a confusion matrix as per Table 3 shall be generated based
on C_ds (Line 16 — 19, Algo. 1). Once the confusion matrix
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Algorithm 1 Detect_Anomaly (CC_db)

Input: The credit card data set, CC_db that comprises of x features for
each credit card transaction
Output: A confusion matrix of classified data
1. classify CC_db with classifier CI //Cl classifier to classify
// majority class samples

2. for each transaction, s in the CC_db do

3. if Cl. class(s) isequal to 1 or ‘yes’  //itis a fraud transaction
4. assignsto F_ds  // F_dsis a data set to keep 1 or ‘yes’ data
5. else {CI. Class(s) is or ‘no’} /I it is a normal transaction

6. assign s to N_ds  // N_ds is a data set to keep or ‘no’ data

7.  endif

8. end for

9

. classify N_ds with classifier, C2 // C2 classifier to classify minority
// class samples
10. for each transaction, sn in the N_ds do
11.  if C2. class(sn) is equal to 1 or ‘yes’
12. assign sn to F_ds
13.  endif
14. end for
15. combine F_ds and N_ds assign to C_ds // C_ds are combination of
// dataset F_ds and N _ds
16. actual = C_ds //actual class
17. predicted = C_ds //predicted class
18. result < confusion matrix (actual,predicted)
19. return result
20. TPRmin<— Calculate TPRmin(result) // calculate the TPR for
// minority class samples
21. TPRmaj<—Calculate TPRmaj(result) // calculate the TPR for
// majority class samples
22. return TPRmin, TPRmaj

TABLE 3. The Confusion matrix for the classified data.

(Predicted) (Predicted)
yes/1 no/0
TP FN (Actual)
yes/1
. N (Actual)
no/0

is obtained, the True Positive Rate (TPR) for both majority
and minority classes shall be calculated using (5) and (6)
(Line 20 — 22, Algo. 1).

To implement Algorithm 1, we need to identify the expert
classifiers, CI and C2. An experiment had been conducted
to identify them. A few popular single classifiers, namely,
Naive Bayes (NB), C4.5, Random Forest, Random Tree,
Logistic Regression (LR), Multilayer Perceptron (MLP), and
IBk were tested on both CCF and CCDP data sets. The
experiments were evaluated using TPR. The TPR for both
majority and minority classes can be calculated using (5)
and (6).

Num. of detected frauds or

o default payments
TPR (minority) = (5)
Total frauds or default payments

Num. of detected non frauds or
TPR (najority) non default payments ©
majority) =
yorty Total non frauds or
non default payments

Apart from TPR, Area under the ROC Curve (AUC) were
also used as the performance metric. In general, AUC tells the
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TABLE 4. The experimental results of using single classifiers. on both CCF
and CCDP data sets.

CCF Data set
Classifier TPR(0) FPR(0)) TPR(1) FPR(1) AUC
Naive Bayes 0.978 0.171 0.829 0.022 0.960
C4.5 (C:0.025 M:2) 1.000 0.222 0.778 0.000 0.871
C4.5(C:0.0325M:2)  1.000 0.217 0.783 0.000 0.879
Random Forest 1.000 0.224 0.776 0.000 0.951
Random Tree 1.000 0.232 0.768 0.000 0.884
Logistic 1.000 0.376 0.624 0.000 0.975
Multilayer 1.000 0.191 0.809 0.000 0.955
Perceptron
K-Nearest 1.000 0.213 0.787 0.000 0.891
Neighbours
CCDP Data set
Classifier TPR (no) FPR (no) TPR (yes) FPR (yes) AUC
Naive Bayes 0.634 0.281 0.719 0.366 0.745
C4.5 (C:0.25 M:2) 0.941 0.655 0.345 0.059 0.677
C4.5 (C:0.09 M:2) 0.955 0.653 0.347 0.045 0.703
Random Forest 0.939 0.623 0.377 0.061 0.759
Random Tree 0.820 0.588 0.412 0.180 0.619
Logistic 0.952 0.642 0.358 0.048 0.767
Multilayer 0.922 0.596 0.404 0.078 0.714
Perceptron
K-Nearest 0.827 0.601 0.399 0.173 0.615
Neighbours

*C4.5 Parameters:
o C- The confidence factor that is used for pruning where the smaller the
values, the more pruning will be incurred.
o M The minimum number of instances per leaf.

capability of a classifier in differentiating classes. The closer
the AUC value to 1, the better a classifier is in distinguishing
between classes.

As shown in Table 4, most classifiers including C4.5 were
able to achieve the perfect TPR for the majority class (class
0) of the CCF data set. C4.5 also scored the highest TPR,
0.955, for the majority class (class ‘no’) of the CCDP data
set. Therefore, we identified C4.5 as the CI as it is able to
produce high TPRs for the majority class of both data sets.

On the other hand, NB obtained the highest TPR, 0.829,
for the minority class (class 1) of the CCF data set. NB also
obtained the highest TPR for the minority class (class yes),
0.719, of the CCDP data set. Therefore, we identified NB as
C2 as it is able to produce high TPR for the minority class of
both data sets.

We employed sequential combination in our proposed
MCS, with C4.5 and NB as the first and second expert clas-
sifiers. The results shall be discussed in the next section.

IV. RESULTS & DISCUSSION

A. DETECTION RESULTS USING SINGLE CLASSIFIERS
Based on our studies in the literature review, it was found
that single classifiers are weak against classifying data sets
that contain unbalanced class distribution and overlapping
classes. This is proven by our experiment using some popular
single classifiers, as shown in Table 4.

The majority class of the CCF data set was classified per-
fectly, with a TPR of 1.000, by most of the single classifiers.
As for the minority class, the TPRs were mostly just average.
The highest TPR for class 1 is 0.829, which was achieved by
using NB.

On the other hand, the TPRs for the majority class of the
CCDP data set were quite promising, except for NB which
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TABLE 5. The comparison between the proposed MCS and the other researchers’ work on the CCF data set.

Performance Evaluation

‘Work Approach Base Learner
Accuracy TPR TNR
Our Approach Multiple classifier C4.5+NB 0.999 0.872 1.000
Randhawa et al. [80] AdaBoost + Majority Voting NN+NB 0.999 0.789 0.999
Sohony et al. [61] Multiple classifier RF+FFNN 0.999 0.867 -
Xenopoulos, P. [82] Ensemble Learning Deep Belief Network 0.906 0.818 0.995

TABLE 6. The comparison between the proposed MCS and the other researchers’ work on the CCDP data set.

Performance Evaluation

Work Approach Base Learner
Accuracy TPR TNR
Our Approach Multiple classifier C4.5+NB 0.930 0.840 0.955
Xia et al. [62] Boosting (XGBoost) CART 0.694 - -
Singh [63] Bagging RF 0.816 0.371 -
Venkatesth & Jacob [78] RF Ensemble learning method RF - 0.816 -
Charleonnan [79] Multiple Classifiers MLP+RBF+NB - 0.534 0.831

achieved only 0.634. As for the minority class, the TPRs were
generally low, except for NB that scored an average TPR of
0.719.

In general, the single classifiers did not perform well
in detecting the minority class in both CCF and CCDP
data sets.

B. DETECTION RESULTS USING THE PROPOSED MCS
Table 5 shows the comparison between our approach and
the other researcher’ approach in classifying CCF data set.
All the other researchers’ work listed above used ensem-
ble approaches in tackling the unbalanced class distribution.
By using our proposed MCS, we managed to achieve the
highest TPR of 0.872 for the minority class and outperformed
the other researchers” work. Our proposed approach also
gave a good accuracy of 0.999 and a TNR of 1.000.

Our MCS was also tested on CCDP data set. Table 6 shows
the comparison between our approach and the other
researchers’ work. We outperformed their work by obtain-
ing the highest TPR for the minority class, which is 0.840.
Our proposed approach also achieved an accuracy of 0.930
and a TNR of 0.955, which are better than their work.

In summary, we can conclude that our proposed approach
is able to tackle the unbalanced class distribution and the
overlapping class samples that exists in both credit card data
sets.

V. CONCLUSION

Credit card is one alternative of cash payment. Some card
holders may abuse their responsibility in credit card usage
and repayment. Apart from that, credit card transaction is
also prone to fraudulent where unauthorized parties perform
illegal transactions using credit cards. Therefore, it is the
responsibility of card issuers or the banks to find an effective
way to reduce the cost that may incur when the issues above
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happen. One way to address these issues is via data mining.
Due to the characteristics such as overlapping class samples
and unbalanced class distribution that exist in credit card data
sets, it gives challenges to data mining researchers. On top
of that, the weakness of general learning algorithms also
contributes to the difficulties of classifying the minority class,
which is usually the important class, of the data sets.

This study proposed a MCS to tackle the issues as dis-
cussed above. Based on our analysis using single classifiers,
we found that C4.5 is the expert in classifying the majority
class samples and NB is the expert in classifying the minor-
ity class samples. Therefore, they were arranged sequentially
in our proposed MCS to detect credit card anomalies. Our
proposed MCS was evaluated using two different credit card
data sets: CCF and CCDP. We have compared our work
with the other researchers’ work. The experimental results
showed that the proposed MCS outperformed their work.
In general, our proposed MCS demonstrates its superiority
in handling the credit data sets that inherit the characteris-
tics of overlapping classes and unbalanced class distribution.
However, there are rooms to improve the TPR for the minor-
ity classes. We are looking into other MCS combination
strategies for our future work, particularly the hybrid com-
bination. Currently, researchers had attempted deep learn-
ing algorithms such as Long Short-term Memory (LSTM)
and Deep Belief Networks for detecting anomalies in credit
card transactions [86]. We are also considering combining
the deep learning algorithms, as in the study of [87], for
promising detection results.
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