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ABSTRACT A control problem of an inverted pendulum in the presence of parametric uncertainty has
been investigated in this paper. In particular, synthesis and implementation of an automatic self–tuning
regulator for a real inverted pendulum have been given. The main cores of the control system are a swing–up
control method and a stabilisation regulator. The first one is based on the energy of an inverted pendulum,
whereas the second one uses the linear–quadratic regulator (LQR). Because not all of the inverted pendulum
parameter values are exactly known an automatic self–tuning mechanism for designed control system has
been proposed. It bases on a devised procedure for identifying parameters. The entire derived control system
enables effective a pendulum swing–up and its stabilisation at an upper position. The performance of the
proposed control system has been validated by simulation in Matlab/Simulink environment with the use of
the inverted pendulummodel as well as through experimental works using the constructed inverted pendulum
on a cart.

INDEX TERMS Dynamics modelling, identification procedure, inverted pendulum, parametric uncertainty,
self–tuning regulator.

I. INTRODUCTION
An inverted pendulum (IP) is one of the widespread bench-
marks of a non–linear, unstable and under–actuated (more
degrees of freedom than the number of control inputs)
mechanical dynamic systems. From the construction point
of view, two main structures of an IP can be distinguished,
i.e., linear and rotational. Moreover, each of them may con-
sist of multiple arms connected in such a way as to allow
rotational motion between them, e.g., [1]–[4]. In general,
solving a problem of an IP control is one of the basic issues
in control engineering and robotics. Therefore, it is often
used as an application, e.g., for the design of control and/or
estimation purposes. The balancing robots and vehicles, e.g.,
[5]–[10], humanoid robots, e.g., [11], [12] and oscillators
synchronisation, e.g., [13], [14] can be pointed out as the
most common applications. It is worth adding that there are
several types of ready–to–use, commercial, demonstration–
educational assets available on the market that enable the
study of inverted pendulum behaviour in general. As exam-
ples of these applications the Pendulum and Cart Con-
trol System from Inteco [15], the Ball with Pendulum
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Suspension from Feedback Instruments [16] or the Rotary
Inverted Pendulum from Quanser [17] can be indicated.

The main aim of an IP control is stabilisation at a given
equilibrium point and usually bringing a pendulum to the
neighbourhood of this point. Due to the non–linear dynamics
of an IP, it is well–known that this system holds more than
one equilibrium point. There are two physical equilibrium
points among which the only one stable (a bottom posi-
tion) is in the case of an IP. In connection with the after–
mentioned control goal, an upper equilibrium point (an upper
position) is considered primarily. Hence, to solve a control
task, an appropriate control system is necessary. The common
feature of most of these systems is the need to have a utility
mathematical model at the synthesis stage. This model is
usually based on a cognitive model that predicts the real
behaviour of the object. There are three main approaches to
an IP modelling, i.e., via Newton’s laws of motion, Euler-
Lagrange equation or Kane’s method [18]. The first method-
ology has been used in the manuscript. Note that the model is
only the end of an accurate representation of reality. Hence,
uncertainty modelling is necessary. A typical approach is to
stand out structural and parametric uncertainty. The structural
uncertainty usually includes model simplifications, whereas
parametric uncertainty holds inaccurate knowledge of the
values of given parameters. In the paper, since a structure
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of the cognitive white-box model of an IP is considered as
a good representation of reality, it is assumed that structural
uncertainty may be neglected. In turn, parametric uncertainty
has been modelled using one of the popular ways. Clearly,
a set–membership approach has been applied [19]. In this
approach, the uncertainty is described as an additive bounded
error where just only bounds are known. The boundedmodels
of uncertainty need less a priori information about the system
and they are less demanding than, e.g., probabilistic models.

In general, it is possible to distinguish two main control
strategies of an IP. Structurally, the first approach is based on
a single regulator, which is able to realise both the swing–
up and stabilisation phases. The different kinds of control
systems of this type can be found in literature, e.g., using
sliding mode control method [1], [20]–[22], by consider-
ing the passivity properties of an IP [23] or using methods
from the family of computational intelligence. In the latter
group, it is worth pointing out swarm algorithms, e.g., [1],
fuzzy control strategy also with stochastic sensor faults, e.g.,
[24]–[26] and artificial neural networks, e.g., [27]. Whereas
the second approach consists of separate controllers ensur-
ing a pendulum swing–up and its stabilisation at the upper
position, respectively. The whole control system is completed
by a proper switching condition between regulators. One
of the most widespread approaches to the swing–up control
method (a swing–up mechanism) based on the energy bal-
ance of an IP [28]. In turn, a stabilisation problem can be
solved using a feedback control system. Two main method-
ologies can be pointed out in this issue. The first one is
based on various configurations of PID controllers [29]–[33].
The latter one utilises state feedback where state feedback
gains are designed using i.a. pole placement method [34]
or optimisation tools leading to, e.g., the linear–quadratic
regulator (LQR) [30], [32], [34], [35]. In the further part of the
paper, a control system consisting of the LQR and swing–up
mechanism is considered.

As it has been mentioned above, it is assumed that certain
parameters are not exactly known. Hence, a designed control
system has to be able to deal with it. On the background of
control theory, various techniques for such operation can be
identified. At the same time, it seems that the most popular
are robust control systems or control systems with adjustment
of parameter values. The main difference between them is
that the former are designed for the worst–case scenario and
the latter are able to adapt to current circumstances. This
paper focuses on the latter ones, which are known as adaptive
control systems. In general, four types of adaptive control
systems can be distinguished, that is, gain scheduling, self–
tuning regulators, model–reference adaptive control and dual
control [36]. It is worth adding that different kinds of adaptive
control have been utilised for an IP control purposes, e.g.,
adaptive sliding mode controller has been designed in [1],
adaptive control using reference model can be found in [37]
and self–tuning LQR has been proposed in [38].

The aim of this work is to provide an alternative self–
tuning LQR method. Clearly, an adaptation of the control
system by adjusting the LQR gains bases on improving the IP
model which is devised in the paper. Whereas, the approach
to adjust the LQR gains using modified weighted matrices
can be found in [38]. The proposed approach is based on a
devised procedure for identifying parameters. More specifi-
cally, for one of the IP parameters (mass placed at the end
of the arm), only value bounds are available. This mass is
found by means of identification and used for correcting
the IP model parameters. As a consequence, the LQR gains
are adjusted to the new circumstances. The entire control
system also includes proposed swing–up mechanism and
switching condition. Therefore, the influence of parametric
uncertainty on these elements is also discussed. As it has
been mentioned in the second paragraph, for control system
synthesis purposes, a proper IP mathematical model has been
prepared. This model is a linear state–space model and is
based on a derived, via Newton’s laws of motion, cognitive
model. The performance of the proposed control system has
been validated in simulation and experimental way. In other
words, the cognitive model of IP and the entire control sys-
tem have been implemented in Matlab/Simulink environ-
ment. Moreover, the devised solution has been implemented
in a real (constructed) IP. Hence, in the paper the above–
mentioned ready–to–use device have not been used. Themain
motivation for such approach has been the fact that, when
purchasing such equipment, the user receives a ready–to–run
workstation together with software and documentation, thus
it makes that it is impossible using the acquired engineering
knowledge to construct a plant on one’s own and involves a
certain financial outlay. Moreover, despite the fact that the
software provided usually allows for the implementation of
a control system other than that delivered by the producer,
e.g., [39], it usually requires some adaptation, in terms of
programming tools, code design, etc., to the standards used
by the producer. In addition, it is usually licensed software,
which typically involves additional implementation costs.
And although numerical analyses carried out in this paper are
based on license software (Matlab/Simulink), they could also
be carried out using open source environments, e.g., Python.
Nevertheless, the presented work does not aim at replacing
the specified commercial solutions, but may constitute their
extension (in the sense of using the proposed algorithms)
or alternative, if the user is interested in independent con-
struction of the plant. Moreover, it is worth noting that for
simulation and experimental research it has been necessary to
propose an approach to the issues of measuring devices and
actuators. Summarised, the main contributions of this paper
are as follows:

1) an adaptation of the control system by adjusting the
LQR gains bases on improving the IP model which
allows to take into account parametric uncertainty is
proposed,
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2) an appropriate IP model parameters identification pro-
cedure for the control system adaptation purposes is
devised,

3) the IP workstation has been constructed for experimen-
tal research of the proposed control system.

The paper is organised as follows. The problem formu-
lation and main assumptions are presented in section II.
Section III includes the derivation of the IP mathemati-
cal models. Next, the synthesis of an automatic self-tuning
control system is given in section IV. The simulation and
experimental results are described in section V. The paper is
concluded in section VI.

FIGURE 1. Graph of the IP.

II. PROBLEM STATEMENT
The IP is taken under consideration as depicted in Fig. 1.
It consists of several elements. First, the ’cart’ constitutes the
basis of the IP. It is mounted on the second element, namely
the gantry. In particular, the gantry is composed of two ’guide
shafts’. The third element is the ’arm’ which is mounted on
the ’cart’ at a mounting point called the joint. The ’arm’
consists of two elements, i.e., the ’rod’ and the ’mass’. The
’mass’ is mounted on the unlinked end of the ’rod’. The IP is
fastened on a supporting element, so–called the ’base’.

Taking Rn to denote the n–dimensional vector space over
a real number field R and notably a co–domain of real–
valued vector functions such as: T → Rn, where T is an
open set in R, with usual addition and scalar multiplication
satisfies a suitable set of axioms and given symbolically by
+ and ·, respectively and× as a Cartesian product. Moreover,
consider Z+ to signify a positive part of an integer field, a set(
nx, nu, nz, ny

)
⊂ Z+ and the quadruple (x,u, z, y), for which

∀t ∈ T the following holds:

(x,u, z, y) ∈
(
Xx,Xu,Xz,Xy

)
⊂
(
Rnx ,Rnu ,Rnz ,Rny

)
, (1)

the dynamics (MIP) of the IP yields:

MIP :

{
Xx × Xu × Xz 7→ Xv

Xx × Xu × Xz 7→ Xy
, (2)

where:Xx×Xu×Xz×Xy ⊂ Rnx×Rnu×Rnz×Rny denotes a
region in the state, control and disturbance inputs and outputs

spaces combined, respectively; Xv ∼= Xx represents the
velocity space. Additionally, for clarity of presentation, one
must consider (X ,Y ,Z ) ≡ R3 to span a three dimensional
Euclidean space in which the IP operates.

In general, the goal of this work is to construct an appro-
priate control system of the IP. Hence, the control objectives
of the IP are the IP swing–up and its stabilisation at the
upper position. As it has been mentioned above, the proposed
control system is composed of two main cores, i.e., a swing–
up mechanism and a stabilisation regulator, which are com-
pleted by a switching condition. Moreover, in order to cope
with parametric uncertainty, the self–tuning method is used.
Hence, the automatic self–tuning controller (MASTC) yields:

MASTC : Xym 7→ Xu∗ , (3)

where: Xym ≡ Xy and Xu∗ ≡ Xu (with respect to
assumption 6).

The control aim is achieved by closing a loop using
measuring information:

MMD : Xy 7→ Xym , (4)

and actuation by:

MA : Xu∗ 7→ Xu. (5)

As a result in obtaining aMIPCS given by:

MIPCS
def
= MIP |Xu=MA◦MASTC , (6)

where ◦ is a function composition operator.
The described setup is illustrated in Fig. 2.

FIGURE 2. General structure of the IP control system.

Summarised, the above theoretical background allows
describing the control problem of a non–linear, unstable and
under–actuated mechanical dynamic systems to which an
IP belongs. In the further parts of the paper, the particular
components of the structure showing in Fig. 2, i.e., MIP,
MA, MMD and MASTC are clarified, thus finally MIPCS is
obtained.

For the control system design purposes, the following
assumptions are formulated.
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Assumption 1: The IP is composed of interconnected rigid
body elements.

It causes that the geometry of the IP elements does not
distort during operation under considered mass.
Assumption 2: Movement is considered in two

dimensions.
The movement is constrained to the (X ,Y ) plane by the IP

geometry which disallows the rotation around the X and Y
axes. In other words, the connection restricts the movement
of the cart only to the linear motion in X direction and
the arm only to the rotary motion in respect to the Z–axis,
respectively.
Assumption 3: Friction effects are considered only

between the cart and the guide shafts.
By assumption, the other components of friction such as

effects in the IP joint can be neglected. Moreover, the friction
force is modelled as linearly dependent on the velocity of the
cart.
Assumption 4: The IP parameters are not exactly known.
It is considered that the mass placed at the end of the arm

is not perfectly known. However, by using a set–membership
approach to uncertainty modelling, the value bounds are
available. Hence:

mcd ≤ mc ≤ mcg, (7)

wheremcd,mcg denote the lower and upper bound of themass,
respectively.
Assumption 5: The disturbance input (the uncontrolled

external force) is considered to be external force applied to
the mass.
Assumption 6: Xym ≡ Xy and Xu∗ ≡ Xu.
By assumption, the measurement errors are negligible and

the control input is delivered by dedicated actuator system.

III. MODELLING AND IDENTIFICATION
As it has been mentioned above, for control system synthesis
purposes, the IP model is necessary. In this work, this model
is derived using the IP cognitive model MIP (see Fig. 2).
Therefore, in this section firstlyMIP is devised.

As it can be noticed in Fig. 1, the movement of the cart
is characterised by linear displacement s(t) and velocity ṡ(t).
In turn, the rotary motion of the arm is determined by angular
displacement θ(t) and angular velocity θ̇ (t). In order to set
the IP in motion an external input force F(t) is applied to the
cart. This force constitutes the control input u(t), thus ∀t ∈ T:
u(t) ∈ Xu. Moreover, by assumption 5 the surrounding envi-
ronmentmay affect the IP through uncontrolled external force
∀t ∈ T: Z (t) ∈ Xz. Additionally, according to assumption 3
the friction between the cart and the guide shafts is marked
by T (t). Utilising this characterisation allows one to define
the overall IP state (position and velocity) and control and
disturbance inputs vectors as:

x(t) def
=
[
s(t), ṡ(t), θ(t), θ̇ (t)

]T
,

u(t) def
= u(t), z(t) def

= Z (t), (8)

FIGURE 3. Detailed graph of the IP.

where: ˙(·) denotes the derivative with respect to t and ∀t ∈ T:
x(t) ∈ Xx.

The main parameters of the IP are marked in Figs. 1 and 3.
These are: mw, mp, mc – masses of: the cart, rod and mass
(static load), respectively; l, lp, lc – distances from the begin-
ning of the arm to centres of gravity of: the arm, rod andmass,
respectively. Moreover, the following quantities are shown
in Fig. 3: Fx(t) and Fy(t) are the interaction forces between
the particular elements of the IP in the X–axis and Y–axis,
respectively; g stands for the gravitational acceleration and(
xg(t), yg(t)

)
denotes coordinates of the centre of gravity of

the arm.

A. COGNITIVE MODEL OF IP
In order to derive a cognitive mathematical model of the IP,
the movement of its two main parts, i.e., the cart and the arm
is considered separately (with respect to assumption 1), as it
is shown in Fig 3. By applying Newton’s second law to the
linear displacement of the cart (see Fig. 3a) yields:

mws̈(t) = F(t)− T (t)− Fx(t), (9)

where ¨(·) denotes the second derivative with respect to t .
Again, by applying Newton’s second law to describe the

movement of the arm (see Fig. 3b) in the X and Y axes
(which justifies assumption 2), the following equations can
be written:

mrẍg(t) = Fx(t)+ Z (t), (10)

mrÿg(t) = Fy(t)− mrg, (11)

where:mr is themass of the arm; xg(t), yg(t) are the time vary-
ing coordinates of the centre of gravity of the arm, defined as:

xg(t) = s(t)+ l sin θ (t), (12)

yg(t) = l cos θ (t). (13)
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In turn, by applying Newton’s second law to the angular
displacement of the arm (see Fig. 3b) holds:

I θ̈(t) =
[
Fy(t)l + mcg(lc − l)− mpg(l − lp)

]
sin θ (t)

−Fx(t)l cos θ(t)+ Z (t)(lc − l) cos θ (t), (14)

where I denotes the moment of inertia for the arm (relative
to the axis of rotation passing through the centre of gravity of
the arm) given by:

I = l2p

[
mp

(
1
3
+
m2
c

m2
r

)
+ mc

m2
p

m2
r

]
. (15)

According to assumption 3, friction force between the cart
and the guide shafts can be written as follows:

T (t) = kTṡ(t), (16)

where kT is the friction coefficient between the cart and the
guide shafts.

Combining (12) with (10), then inserting the obtained
result and (16) into (9), the following holds:

s̈(t) (mw + mr) = −kTṡ(t)+ mrlθ̇2(t) sin θ (t)

−mrlθ̈ (t) cos θ (t)+ F(t)+ Z (t). (17)

Similarly, combining (12) with (10) and (13) with (11),
then inserting the obtained result into (14) reads:

θ̈ (t)
(
I + mrl2

)
=
(
mclc + mplp

)
g sin θ (t)

−s̈(t)mrl cos θ (t)+ Z (t)lc cos θ (t). (18)

The equations (17) and (18) constitute the cognitive math-
ematical model of the IP. As it can be noticed, this model
is in the differential-algebraic equations (DAE) format. It is
well–known that the DAE problem is numerically or algo-
rithmically more demanding then, e.g., ordinary differential
equations (ODE) problem. Therefore, by appropriate substi-
tutions, the DAE IP model is transformed into the following
ODE format:

s̈(t)
[
mw

(
I + mrl2

)
+ mrI + m2

r l
2 sin2 θ (t)

]
= −ṡ(t)kT

(
I + mrl2

)
+ mrlθ̇2(t)

(
I + mrl2

)
sin θ (t)

−0.5
(
mclc + mplp

)
mrlg sin (2θ(t))

+F(t)
(
I + mrl2

)
+Z (t)

[(
I + mrl2

)
− mrllc cos2 θ (t)

]
, (19)

θ̈ (t)
[
mw

(
I + mrl2

)
+ mrI + m2

r l
2 sin2 θ (t)

]
= (mr + mw)

(
mclc + mplp

)
g sin θ (t)

+ṡ(t)kTmrl cos θ (t)− 0.5 m2
r l

2θ̇2(t) sin (2θ (t))

−F(t)mrl cos θ(t)

+Z (t) [mwlc + mr (lc − l)] cos θ (t). (20)

Finally, MIP is obtained by rewriting (19) and (20) in the
state–space form by using (8).

1) MODEL PARAMETERS IDENTIFICATION
There are several parameters in the derived IP model (19)
and (20). In this paper, they are divided into two groups.
The first group includes masses, i.e., mw, mr, mp, mc and
distances, i.e., l, lp, lc. Their values can be directly obtained
by measurements. Typically, measurements are burdened by
measurement errors, however, according to assumption 4 the
uncertainty in mc is dominant. Therefore, other uncertainties
can be neglected.

FIGURE 4. Results of model parameters identification experiment –
trajectories of ṡ(t) and F (t).

The second group consists of the friction coefficient kT.
In order to identify its value, the following experiment, using
the constructed IP (with the dedicated actuators system), has
been carried out. For experiment purposes, the arm has been
detached, thus the interaction forces (see Fig. 3a) had no
influence on its results. The cart velocity ṡ(t) controller has
been implemented, based on a PI algorithm, and a constant
reference velocity has been set. Once the system has been in
the steady–state, the values of velocity ṡ(t) and motor current
i(t) have been registered. Next, using (26) and (28) (see
section III-C), the gathered motor current values have been
converted into external input force F(t) applying to the cart.
The obtained results are shown in Fig 4. It is worth noting that
the only forces acting on the cart during this experiment are
T (t) and F(t) (see Fig. 3a). Because the cart velocity is con-
stant, the value of obtained F(t) is equal to T (t). Taking the
average value of trajectories (red lines in Fig. 4), using (16),
the friction coefficient kT can be calculated as follows:

kT =
Favg
ṡavg

. (21)

It is worth adding that the above–described procedure is
not perfect in the identification theory, but it is sufficient for
further considerations.

B. MODEL OF IP FOR CONTROL DESIGN PURPOSES
As it has been mentioned above, in order to stabilise the IP
at the upper position (upper equilibrium point) S0 the LQR is
used. Hence, the necessity of deriving the linear state–space
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model has appeared. Therefore, the Taylor series expansion
(neglecting the second and higher–order terms) has been used
to obtain the linear approximation of (19) and (20) around S0.
This approximation can be written as follows:

s̈(t)
[
mw

(
I + mrl2

)
+ mrI

]
= −ṡ(t)kT

(
I + mrl2

)
− θ (t)

(
mclc + mplp

)
mrlg

+F(t)
(
I + mrl2

)
+ Z (t) [I + mrl (l − lc)] , (22)

θ̈ (t)
[
mw

(
I + mrl2

)
+ mrI

]
= ṡ(t)kTmrl + θ (t)g (mr + mw)

(
mclc + mplp

)
−F(t)mrl + Z (t) [mwlc + mr (lc − l)] , (23)

where: S0 =
(
sS0 , ṡS0 , s̈S0 , θS0 , θ̇S0 , θ̈S0 ,FS0 ,ZS0

)
=

(0, 0, 0, 0, 0, 0, 0, 0).
Finally, the linear state–space model of IP (MSS

IP ) for con-
trol design purposes is obtained by rewriting (22) and (23) by
using (8) as:

MSS
IP :

{
ẋ(t) = Ax(t)+ Bu(t)+ Ez(t)
y(t) = Cx(t),

(24)

where:

A

=



0 1 0 0

0
−kT

(
I+mrl2

)
mw

(
I+mrl2

)
+mrI

−
(
mclc+mplp

)
mrlg

mw
(
I+mrl2

)
+mrI

0

0 0 0 1

0
kTmrl

mw
(
I + mrl2

)
+mrI

(mr+mw)
(
mclc+mplp

)
g

mw
(
I+mrl2

)
+mrI

0


,

B =



0
I + mrl2

mw
(
I + mrl2

)
+ mrI

0
−mrl

mw
(
I + mrl2

)
+ mrI

 ,

E =



0
I + mrl (l − lc)

mw
(
I + mrl2

)
+ mrI

0
mwlc + mr (lc − l)

mw
(
I + mrl2

)
+ mrI

 ,

C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
It is worth adding that the denominator (mw

(
I + mrl2

)
+

mrI ), from its nature, is always positive.

C. MODELLING OF ACTUATOR SYSTEM
According to Fig. 2, the signal u∗(t) generated by the auto-
matic self–tuning controller (MASTC) is realised by the ded-
icated actuator system (MA). The block diagram of MA is

FIGURE 5. Block diagram of actuator system.

shown in Fig. 5. This system is composed of: a DC motor,
gearbox, PI controller, motor current sensor and scaling
factor.

DC motor
In order to derive the DC motor model, the following

assumptions are made: the DC motor shaft is inert and a lack
of friction forces associated with its movement, the losses in
the magnetic circuit can be neglected, the back EMF is not
taken under consideration (due to zero motor angular velocity
in the neighbourhood of the upper position of the IP). Hence,
the considered model of the DC motor is as follows:

i̇(t)+
R
L
i(t) =

1
L
Uz(t), (25)

MN(t) = kmi(t). (26)

where: Uz(t), MN(t), R, L, km denote supply voltage, torque,
winding resistance, winding inductance and torque constant,
respectively.

In order to identify the model (25) and (26) parameters,
the following experiments have been made.
Identification of R and L
Assuming zero initial conditions of (25), by using the

Laplace transform, the transfer function of (25) yields:

I (s)
Uz(s)

=
k

τ s+ 1
, (27)

where: k = 1
R is the DC gain; τ = L

R denotes the time
constant.

The values of k and τ have been determined in the follow-
ing identification experiment using the constructed IP. The
step change of Uz(t) has been applied to the DC motor and
the motor current i(t) has been registered. The experimental
results are shown in Fig. 6. As it can be noticed in Fig. 6
the trajectory of Uz(t) is not perfect, but it is sufficient for
this experiment purposes. The values of k and τ have been
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FIGURE 6. Results of DC motor model parameters identification
experiment – trajectories of Uz(t) and i (t).

identified based on the step response - i(t). Finally, the values
of R and L can be determined.
Identification of km
The km value has been determined in the following identi-

fication experiment way using the constructed IP. By using
the spring dynamometer, when the motor shaft has been
stopped, for several values of i(t) the values of F(t) have
been measured. Next, the obtained results of F(t) have been
converted into torqueMN(t) values by:

MN(t) = rpF(t), (28)

where rp is the pulley radius.

FIGURE 7. Results of km identification experiment.

Then, the data (Fig. 7) have been used to estimate the km
value by utilising least squares method to fit (26) model.

Gearbox
The second element of the actuator system is the gearbox

(see Fig. 5). The main task of this element is to convertMN(t)
into F(t) according to (28).

PI controller
In order to control the DC motor, the PI controller is used.

The transfer function of this controller can be written as
follows:

GPI(s) = KP + KI
1
s
, (29)

where KP, KI are the coefficients for the proportional and
integral terms, respectively.

This regulator generates signal Uz(t) based on continu-
ously calculated error value ei(t) as the difference between the
reference value iref(t) and the measurements im(t) of i(t). The
tuning of the PI controller has been performed experimentally
with the use of the constructed IP.

Motor current sensor
The feedback information for the PI controller (im(t)) is

provided by the Hall effect motor current sensor. It is worth
adding that the dynamics of this sensor can be neglected,
therefore, its transfer function can be approximated by a static
element with a gain equal to 1.

Scaling factor
The reference value (iref(t)) for the PI controller results

from an appropriate scaling of the signal generated by the
controller (u∗(t)). In order to realise u∗(t) of satisfactory
quality, the DC gain of the actuator system should be equal
to 1. Hence, it can be written:

Ku∗−IrefKIref−F = 1, (30)

where: Ku∗−Iref is the scaling factor; KIref−F denotes the gain
in the track iref(t) – F(t) given by:

KIref−F = KIref−IKI−F. (31)

The gainKIref−I in the track iref(t) – i(t) can be determined by:

KIref−I = 1, (32)

whereas the gainKI−F in the track i(t) –F(t) can bewritten as:

KI−F =
km
rp
. (33)

Combining (30) – (33), the scaling factor yields:

Ku∗−Iref =
rp
km
. (34)

Hence,MA has been now completed.

D. MODELLING OF MEASURING DEVICES
According to Fig. 2, the measurements to the automatic
self–tuning controller (MASTC) are delivered by measur-
ing devices (MMD). The block diagram of MMD is shown
in Fig. 8. In this work, two optical rotary encoders are used
to deliver the measurements for the control system purposes.
One of them is coupled with the DC motor shaft, whereas
the second one is mounted to joint. The motor shaft position
is related to the cart position s(t) by pulley radius rp. It should
be noted that only two of state variables, i.e., s(t) and θ (t)
can be measured directly using encoders. Thus, in order to
obtain values of other variables – ṡ(t) and θ̇ (t), a derivative
approximation algorithm (DAA) is used.

It is worth adding that the dynamics of the measuring
devices in comparison with the dynamics of the IP is neg-
ligible. Additionally, it is assumed that the DC gain of the
measuring devices is equal to 1. Therefore, the MMD model
can be approximated by a static element with a gain equal to 1
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FIGURE 8. Block diagram of measuring devices.

during synthesise the control system. Moreover, according
to assumption 4 the measurement errors can be neglected.
Hence, assumption 6 is justified and MMD has been now
completed.

IV. SYNTHESIS OF THE CONTROL SYSTEM
In general, the proposed control system of the IP (MIPCS)
(see Fig. 2), in accordance with (6), still needs to be designed,
based on the models MIP, MA and MMD, MASTC.
The automatic self–tuning controller (MASTC) includes the
swing–up mechanism and the stabilisation regulator, which
are completed by the switching condition. Moreover, in order
to cope with parametric uncertainty (with respect to assump-
tion 4), the self–tuning method has to be designed.

A. SWING–UP MECHANISM
For swinging up a pendulum, a mechanism based on the
energy balance of the IP is used. Therefore, the swing–up
control law can be written as [28]:

uSU(t) = satFSU
[
kSU(E(t)− E0)sgn(θ̇ (t) cos θ (t))

]
, (35)

where: uSU(t) denotes the external input force which is being
applied to the cart during swing–up phase, hence during this
phase u∗(t) ≡ uSU(t); satFSU [·] stands for the linear function
with symmetric saturates FSU; FSU is the limit value of F(t);
kSU signifies the swing–up mechanism parameter; sgn(·) is
the signum function; E(t), E0 denote the energy and energy
at the upper position of the IP, respectively given by:

E(t) = mrgl cos θ (t)+ 0.5 I θ̇2(t), (36)

E0 = mrgl. (37)

The value of uSU(t) is based on the difference between
the current and reference energy value, which is multiplied
by kSU. Moreover, (35) contains the condition that the force
applied to the cart is changed so that its value always increases
the energy of the IP. Additionally, the maximum value of
uSU(t) is constrained by FSU, to take into account the limited
length of the guide shafts.

In order to determine the values of kSU and FSU, taking into
accountmc = 0.1 kg, a simulations series inMatlab/Simulink
environment as well as an experiments on the constructed IP

have been performed. The final results are as follows:

kSU = 100, (38)

FSU = 7N. (39)

B. LQR DESIGN
In order to stabilise the IP at the upper position, a regulator
based on the state feedback is designed. According to (24)
the whole state vector is available. Therefore, the stabilisation
control law can be written as [40]:

uFB(t) = −Ky(t), (40)

where: uFB(t) denotes the external input force which is being
applied to the cart during stabilisation phase, hence during
this phase u∗(t) ≡ uFB(t); K ∈ R1×4 is the matrix of state
feedback gains.

The uFB(t) ensures the stability of internal dynamics of
the IP. Thus, by choosing the values of feedback gains the
desired pole placement of closed–loop system is achieved.
Hence, the internal dynamics is asymptotically stable, which
can be written as:

lim
t→∞
‖x(t)‖2 = 0, (41)

where ‖ · ‖2 denote the Euclidean norm.
It is well–known that pole placement is a viable design

technique only for a system that is controllable. It is easy
to show that the pair (A,B) of (24) is controllable. As it has
been mentioned above, in this work the state feedback gains
are designed by solving a linear–quadratic optimisation task.
This approach – LQR is one of the most common in optimal
control. In the approach, for the considered linear state–space
model of IP (MSS

IP ) the minimised objective function yields:

J (y(t), uFB(t))=

∞∫
0

[
yT(t)Qy(t)+ uFB(t)RuFB(t)

]
dt, (42)

where: J (·) is the objective function; Q ∈ R4×4, R ∈ R
denote diagonal semi–positive and positive definite matrices,
respectively.

The solution to the LQR problem is given by (40) with:

K = R−1BTP, (43)

where P ∈ R4×4 is a positive definite, symmetric matrix that
satisfies the following algebraic Riccati equation [40]:

ATP + PA− PBR−1BTP + Q = 0. (44)

The values of particular elements of Q and R determine
the IP behaviour and control quality. In order to determine
the values of Q and R and as a consequence K , taking into
account the parameter values from the table 1, a simulations
series have been performed in Matlab/Simulink environment
(using the lqr command). The final results are as follows:

Q =


10 0 0 0
0 2 0 0
0 0 10 0
0 0 0 10

 , (45)
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R =
[
1
]
, (46)

K =
[
k1 k2 k3 k4

]
=
[
−3.16 −16.68 −57.16 −9.81

]
. (47)

C. SWITCHING CONDITION
Only one of the two control laws presented above, i.e., uSU(t)
or uFB(t) is proper for the given IP state. In this work,
the choice between uSU(t) and uFB(t) is based only on the
value of the IP current angular displacement (θ(t)). Hence,
the switching condition can be written as:{

uFB(t), for |θ (t)| < θS

uSU(t), for |θ (t)| ≥ θS
. (48)

where θS denotes the threshold value, which has been deter-
mined in simulation and experimental way as:

θS = 0.6 rad. (49)

D. AUTOMATIC SELF–TUNING CONTROL SYSTEM
According to assumption 4, the only bounds on the mass
placed at the end of the arm are known. Hence, to adapt to the
control system, improving the IP model (MSS

IP ) is used. Three
main stages of this mechanism can be distinguished: the
mass identification, IP parameter estimation and regulators
self–tuning.

1) MASS IDENTIFICATION
It is assumed that mc satisfies (which justifies assumption 4):

0 kg ≤ mc ≤ 0.2 kg. (50)

The identification of the current value of mc is based on a
result of an experiment performed on the constructed IP auto-
matically each time system is powered. Nevertheless, before
experiments, the identification procedure had been imple-
mented in Matlab/Simulink environment. This procedure is
as follows. For the IP at the bottom position the constant
force F(t) has been applied to the cart and θ (t) has been
registered. This force causes the cart to accelerate and the
arm to swing. Maximum value of the first fluctuation – θM is
varied for different values of mc which is illustrated in Fig. 9.
The trajectories of θ (t) for the three exemplary values of mc
with marked θM are shown in Fig. 9. Moreover, the program
implemented in the Matlab/Simulink environment allows to
generate trajectories from Fig. 9 is available under [41].
By performing a series of similar simulations (the loop

with a step of 0.01 kg), enough data have been gathered to
obtain the trajectory of θM which is shown by a blue line
in Fig. 10. This allows determining the value of mc based
on known value of θM. The program implemented in the
Matlab/Simulink environment allows to generate trajectories
from Fig. 10 is available under [41].
The identification procedure presented above has been

repeated in the constructed IP. The trajectory of θM is pre-
sented in Fig. 10 by a yellow line. As it can be noticed,
the trajectory is only slightly different from that obtained

FIGURE 9. Mass identification (simulation results) – trajectories of θ(t).

FIGURE 10. Mass identification – θM = f (mc).

from the simulation. This confirms the good quality of the
devised model of the IP. It should be added that the non–
smooth shape of the yellow trajectory is due to that during
the experiments fewer different mc values have been used
(represented by the red circles) and linear interpolation has
been performed between them. Moreover, this identification
procedure is sufficiently accurate for regulator self–tuning
purposes.

2) IP PARAMETER ESTIMATION
For value of mc determined in identification way, the values
of the other IP parameters can be found. There are three
parameters depend on mc, i.e., mr, l and I . The first one can
be calculated as follows:

mr = mp + mc. (51)

By applying a balance of the torque of the gravity forces
acting on the centre of gravity of the rod and the mass and
assuming that the rod has a constant cross–sectional area
along its whole length and the mass is always placed at its
end, i.e., lc = 2 lp (see Fig. 3b), the second parameter can be
calculated as:

l = lp

(
1+

mc

mr

)
. (52)

In turn, the value of I can be estimated using (15).

3) REGULATORS SELF–TUNING
It is obvious that the change of mc and as a consequence mr,
l and I has an impact on the IP dynamics. Therefore, the val-
ues of particular elements of A and B have to be updated.
It should be added that the values of Q and R are constant in
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FIGURE 11. Trajectories of the state feedback gains.

the presented approach. Hence, the new values of state feed-
back gains (the values of K elements) are being calculated
and uploaded to the control algorithm. For the further imple-
mentation purposes, in the constructed IP the trajectories of
the state feedback gains have been appointed. They are shown
in Fig. 11. The program implemented in the Matlab/Simulink
environment allows to generate trajectories from Fig. 11 is
available under [41]. Moreover, according to (36) and (37)
the new values of energies are calculated which are used in
the swing–up control law. Nevertheless, the values of kSU
and FSU remain unchanged. Hence, the switching condition
is also unchanged.

V. SIMULATION AND EXPERIMENTAL RESULTS
The MIPCS system with the set of parameters which is
shown in table 1 has been implemented and validated
in Matlab/Simulink environment. Clearly, the IP cognitive
model (19) and (20) (MIP) with appropriate parameters (see
table 1), which values have been determined during iden-
tification process (see point 1) in subsection III-A), repre-
senting the real behaviour of the IP have been implemented
in Matlab/Simulink. Moreover, the actuator system (MA)
given in subsection III-C has been implemented in the same
computing environment. The necessary values of parameters
R, L, km, Ku∗−Iref and rp have been taken from table 1, with
details of the process of identifying them can be found in

TABLE 1. The values of the IP parameters.

subsection III-C. It should be noted that PI controller has
been also implemented with the KP and KI values adjusted
(see table 1). Furthermore, the measuring devices (MMD)
according to Fig. 8 have been also implemented. Finally,
in order to complete MIPCS, the automatic self–tuning con-
troller (MASTC) in accordance with the considerations set
out in section IV has been implemented in Matlab/Simulink
environment.

FIGURE 12. Simulation results (stabilisation) – trajectories of F (t), s(t)
and θ(t).

The results of representative simulation experiments are
presented in Figs. 12–14. First, the performance of stabilisa-
tion regulator (LQR – see subsection IV-B) has been qualita-
tively assessed. The obtained results are presented in Figs. 12
and 13. For arbitrarily selected initial conditions, i.e., x0 =
[0 0 0.4 0]T which represent an over 20–degree swing
of the arm from its upper position the trajectories of F(t),
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FIGURE 13. Simulation results (stabilisation) – trajectories of Z (t), F (t),
s(t) and θ(t).

FIGURE 14. Simulation results – trajectories of F (t), s(t) and θ(t).

s(t) and θ (t) have been registered (see Fig. 12). As it can be
noticed, the force applied to the cart causes its linear displace-
ment, which also involves angular displacement of the arm.
After about 10 seconds the IP has been stabilised at the upper

position (S0). This naturally results in F(t) reaching zero. The
program implemented in the Matlab/Simulink environment,
containing detailed simulation conditions, allows to generate
trajectories from Fig. 12 is available under [41].

The next simulation experiment shows the performance of
the stabilisation regulator in the presence of disturbances (see
Fig. 13). For simulation purposes, zero initial conditions have
been assumed. During the simulation, as a result of the action
Z (t) (external force applied to the mass), the IP has been
perturbed from the upper position. The Z (t) trajectory as well
as the registered trajectories of F(t), s(t) and θ (t) are shown
in Fig. 13, whereas an associated program implemented in the
Matlab/Simulink environment is available under [41]. As it
can be noticed, the LQR rejects the disturbances and conse-
quently stabilises the IP at the upper position. Thus, taking
into account the results presented in Figs. 12 and 13, it can be
claimed that the stabilisation performance is satisfactory.

In turn, the performance of the entire control system
has been validated by the following simulation experiment,
the results of which are shown in Fig. 14 and an associated
program implemented in theMatlab/Simulink environment is
available under [41]. Starting the IP from the bottom position
the swing–upmechanism has been activated. Thus, at the first
moment of the simulation, the given value of F(t), i.e., FSU
has been applied to the cart. The cart accelerates and swings
the arm. The angular acceleration (θ̇ (t)) of the arm or the
sign of cos θ (t) is changed successively, which according
to (35) causes the control input sign to change and the energy
to increase further. At about t = 4 s, the arm reaches the
appropriate angular position (θ(t)) to meet the switching
condition (48). The control law changes, i.e., from uSU(t) to
uFB(t) and the LQR stabilises the IP at the upper position.
Hence, the performance of the designed control system is
satisfactory.

The devised control system has been implemented in the
constructed IP. The following main components have been
used to build the IP. The two hardened guide shafts with
a length of 1 m and a diameter of 0.016 m constitute the
gantry. The arm has been composed of the aluminium rod
with length lc, width 0.025 m and thickness 0.003 m and the
varied mass (mc). The cart frame has been made of 0.008 m
thick plywood. The entire mechanical structure has been
complemented by brackets, bearings, limit switches, etc.
Documentation of the main elements of mechanical construc-
tion is available under [42]. As the measuring devices two
encoders of types OMRON E6B2-C (for θ (t) measurements)
and LPD3806 (for s(t) measurements) have been used. The
KAG M48x25/l-type motor has been selected as the DC
motor. The STM32F302R8 microcontroller has been used as
the computing unit. The power supply is composed of two
transformers with secondary voltages of 9 V (for the logic
devices) and 26 V (for the DC motor). The whole electrical/
electronic structure has been complemented by rectifiers,
voltage stabilisers, H-bridge, a sensor of motor current type
ACS712, etc. Documentation of the electronic circuits design
is available under [43]. The three–dimensional drawing of
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FIGURE 15. Picture of the constructed IP.

FIGURE 16. Experimental results – trajectories of s(t) and θ(t).

constructed IP is available under [42], whereas a photo of the
constructed IP is presented in Fig. 15.

The control laws (35) and (40) in discrete time with
the switching condition (48) and the automatic self–tuning
mechanism have been implemented in the microcontroller.
The main program for the STM32F302R8 microcontroller
is available under [44]. As it has been mentioned in
section IV-D.3, the trajectories of the state feedback gains
(see Fig. 11) have been saved in the microcontroller memory
in order to update the LQR gains depending on the identified
value of mc. The trajectories of s(t) and θ (t) obtained during
the example work experiment are shown in Fig. 16. As it can
be noticed, after about 3 seconds the IP has been stabilised
at the upper position. Naturally, the main advantage of the
designed control system is its adaptation to an unknown value
ofmc. Concluding, a video of this experiment, illustrating the
operation of the devised control system in the presence of the
unknown mc, is available under [45].

VI. CONCLUSIONS
In this paper, the control problem of the classical inverted
pendulum on the cart in the presence of parametric uncer-
tainty has been investigated. The designed control system
includes the stabilisation regulator (LQR), the swing–up

control method, the switching condition and the auto-
matic self–tuning mechanism. This mechanism is based on
the devised procedure for identifying the IP parameters.
Moreover, the IP modelling and identification issues and
the approach to take into account the actuator system and
measuring devices have been widely discussed. The perfor-
mance of the proposed control system has been success-
fully demonstrated in the simulation way as well as in the
experimental setting on the constructed IP. Hence, in general,
extensive knowledge about the IP control problem has been
aggregated in this paper. It can be found interesting and useful
for the relevant community, both in research and engineering
applications.
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