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ABSTRACT With the increasing requirements of the flexible and delay-sensitive computing services, UAV
has attracted widespread attention for assisting mobile edge computing (MEC) system. However, due to the
limited battery capacity, the UAV cannot always fly and serve the users in the air. To address this issue,
a UAV-enabled MEC system based on microwave power transmission is proposed in this paper. In this
system, the UAV periodically and continually flies over the users’ area to provide computing services and
will be charged over the microwave station. Considering profit-centric MEC service provider, the UAV
will charge fees from users for the computation services. Then, an optimization problem is formulated to
maximize the service utility of the UAV by finding the optimal UAV’s trajectory, computation offloading
decisions and offloading duration. Since the proposed optimization problem is non-convex, the original
problem is decomposed into three sub-problems and a three-stage alternative algorithm is presented to
solve them iteratively. The numerical results show that the proposed offloading method can achieve better
performance than other baseline methods.

INDEX TERMS UAV-enabled mobile edge computing, computation offloading, microwave power
transmission.

I. INTRODUCTION
With the rapid development of the Internet of things (IoT),
diversified mobile applications such as augmented reality,
face recognition, mobile online games, virtual reality, etc., are
increasingly appearing in industrial, residential and commer-
cial areas [1]–[4]. With the help of advanced communication,
computation and cache technologies, the IoT system achieves
highly scalable architecture to adaptively provide services
for numerous applications. Although the IoT framework can
achieve high magnitudes of connected objects and diverse
services, it is difficult to provide low-latency and high-speed
computing services for arbitrary applications. The bottleneck
of the IoT development is caused by multiple factors: the
limited computation and battery capacities of mobile users,
the long distance connection between users and servers in
remote areas, the dynamic computation demands generated
by different users, etc [5], [6].

Mobile edge computing (MEC) has been considered as
one of the promising technologies to meet aforementioned
challenges in IoT system [7]–[10]. The main feature of the
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MEC is that the users can be served by the (edge) servers
which are deployed at the edge of the network. Since the
edge servers are located near the users, they can provide
computing services for users with less energy cost and
low-latency [11]–[14]. However, the deployment of the edge
server at fixed locations may cause inflexibility and difficulty
of adjusting the service coverage which is affected by the
complicated topography and uncertain demands. Unmanned
Aerial Vehicle (UAV)-enabled MEC, which has flexible
and rapid deployment capacity, is deemed to be suitable
for providing services for particular areas and unexpected
computation requirements [15]–[17]. With high speed mobil-
ity, the UAV-based edge server can freely approach to the
mobile users and provide computation services, which can
significantly improve the network performance. In addition,
compared with the ground communication, the air-to-ground
communication in UAV-enabled MEC network can provide
higher link capacity because of the line of sight (LoS) trans-
mission between UAV and users. Hence, the UAV-enabled
MEC network is one of the hotspots in current MEC research.

In a UAV-enabled MEC network, the UAV communicates
with ground users and computes various tasks while main-
taining flight at a certain speed. In this case, it is very
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important to design an energy-efficient UAV-enabled MEC
system. In [18], the authors come up with an idea to reduce
the weight of UAVs to alleviate the energy consumption.
In [19], the authors propose an energy-aware path planning
for photogrammetric sensing UAVswhile satisfying coverage
and resolution. In [20], the authors minimize the energy
consumption for UAV-enabled communication network by
optimizing the UAVs’ trajectory. In [21], the authors consid-
ered a UAV-enabled wireless powered communication net-
work, in which a UAV can provide electricity charging and
communication services for ground users. In [22], the authors
present a comprehensive survey for the UAV-enabled MEC
networks which highlights the benefits and the challenges in
this domain. In [23], the computation efficiency is studied
for the UAV-enabled MEC network by jointly optimizing the
offloading times, the trajectory of the UAV, etc. In [24], a
UAV-enabled wireless powered MEC system is studied for
enhancing the quality of experience of mobile users which
is greatly limited by their computation capacity and finite
battery lifetime. Althoughmany energy-efficient methods are
proposed for UAV system, the battery-powered UAVs still
restrict the MEC network performance because of the limited
battery capacity.

Wireless power transmission (WPT) technology is
expected to extend the energy supply of the UAV and prolong
the UAVs’ operation duration [25]. Particularly, microwave
power transmission technology is one of the important WPT
technologies which can provide sufficient power for the
UAV without landing. In this technology, a large disc-shaped
rectifying antenna attached to the fuselage of the UAV is
responsible for harvesting the microwave energy from the
microwave antenna array on the ground. Then, the UAV
turns the harvested energy into direct current to power the
electric motor or other equipments attached to the UAVs [26].
Microwave power transmission has been proved to be useful
for power supply of small aircraft and helicopters [27]. More-
over, the transfer efficiency of the microwave energy in space
exceeds 90% [28], which is higher than that of other scheme,
e.g., laser. The UAV-enabled MEC with microwave power
transmission, on the one hand, can still keep the advantage
of the UAV-enabled MEC to provide quick and convenient
computation services for ground users. On the other hand,
the microwaves energy transmission can avoid the landing of
the UAV for charging or replacing batteries, which increases
the practicability of the UAV-enabled MEC network in a
remote area with complicated geographical conditions.

In this paper, we propose a UAV-enabled MEC network in
which the UAV can be recharged by the microwave power
transmission station on the ground. In this network, the users
can offload the computing tasks to the UAV through ground-
to-air link or compute the tasks by themselves. Meanwhile,
the UAV is incentive to provide air-to-ground computation
services for users and be periodically flies over themicrowave
power station for charging. Considering the fixed operation
duration, there is a tradeoff between the recharging time
and service time of the UAV. The longer recharging time

FIGURE 1. System model of microwave powered UAV-enabled MEC
network.

will lead to more harvested energy for the UAV’s flight and
computation, but shorter service time. Hence, the UAV’s
offloading strategy, recharging/service time as well as the
flight trajectory should be carefully decided. Since the com-
putation services of the UAV is profit incentive, our goal is to
maximize the service utility of the UAV by jointly optimizing
the service (offloading) decisions, service duration, and flight
trajectory of the UAV. The proposed problem is a non-convex
optimization problem due to the discrete binary variable and
practical energy consumption model of the UAV. Hence,
we decompose the original problem into three subproblems,
which are alternately solved to obtain the optimal operation
parameters.

The remainder of this paper is organized as follows.
In Section II, the system model of the UAV-enabled MEC
network with microwave power transmission is introduced.
The problem formulation and the solutions are described in
Section III and Section IV, respectively. Section V shows the
numerical results of the proposed methods. Finally, the paper
is concluded in Section VI.

II. SYSTEM MODEL
A. NETWORK MODEL
We consider a UAV-enabledMEC network as shown in Fig. 1,
in which the UAV is powered by the carry-on battery and can
be recharged by the microwave power station without land-
ing. The UAV can approach to the users’ locations in the air
to simultaneously provide communication and computation
services. To achieve that, the UAV has an on-board computa-
tion processor, wireless communication module and interface
as well as the charging units which consists of rectenna array,
power management circuit and rechargeable batteries [29].
The ground user has an on-chip micro-processor and a single
antenna, which can execute the local task and communicate
with the UAV at the same time.We consider the number of the
users in the network is K and the set of the users is denoted
as K = {1, . . . ,K }.
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In our model, the UAV keeps a fixed altitude level denoted
by H (H > 0) in the air during an operation duration T . The
operation duration starts when the UAV leaves the charging
point (over the microwave power station) and terminates
when the UAV finishes the service operation and returns to
the charging point for a new round of recharging. Considering
the limited battery capacity of the UAV, we assume that the
operation duration T has fixed time length and consists of
recharging duration Tc and offloading duration Ts, i.e., T =
Tc + Ts. The offloading duration Ts is further divided into
N time slots. Each time slot t has the same length φt , then
we have Ts = Nφt . Without loss of generality, the horizontal
plane coordinate of the UAV during the service duration can
be presented by qu(t) = [xu(t), yu(t)], t = 1, 2, · · · ,N . Also,
we consider the location of the kth user is denoted by qk ,
where qk = [xk , yk ], k ∈ K. The UAV communicates the
users through Line of Sight (LOS) channel, which is the block
fading channel, i.e., the channel remains static during time
duration T .

B. COMPUTATION OFFLOADING MODEL
In the computation offloading model, the users are able to
offload the computation tasks to the UAV through wireless
communication channels. Let hk (t) denote the channel power
gain between the kth user and the UAV at time slot t , we have

hk (t) = ρ0d
−2
k (t) =

ρ0

H2+ ‖ qu(t)− qk ‖2
, (1)

where ρ0 is the channel power gain at a reference distance
d0 = 1m, dk (t) denote the distance between the UAV and the
kth user at time slot t . The data rate of the uplink between the
kth user and the UAV at time slot t can be described as

rk (t) = B log2
(
1+

Pkhk (t)
N0

)
, (2)

where B is the bandwidth of the communication channel, Pk
is the transmit power of the kth user andN0 is the noise power.
Then, the size of the computation task that user k offloads to
the UAV at t time slot is given by

Rk (t) = βk (t)φtrk (t), (3)

where βk (t) ∈ {0, 1} denotes the offloading factor, βk (t) = 0
means the user k computes the task by itself, βk (t) = 1means
the user k offloads the computation task to the UAV.

C. UAV ENERGY MODEL
1) ENERGY HARVESTING MODEL
We consider the UAV harvests energy from the microwave
power station which adopts a fixed transmit power PM .
In order to achieve the maximum charging efficiency,
the UAV hovers above the microwave power station for
charging. The gain of the microwave transmitting antenna is
denoted as GM and the gain of the receiving antenna on the
UAV is denoted asGR. Accordingly, the received power at the
UAV, denoted by PR, is expressed as

PR = PM
GMGRλ2

(4πds)2L
, (4)

where λ is the wave length, ds is the distance between the
UAV and the microwave power station when the UAV is
charging. L is the path loss factor. Let Eharv denote the
harvested energy of the UAV during the charging duration Tc,
we have

Eharv = PRTc. (5)

2) COMPUTATION ENERGY CONSUMPTION MODEL
The harvested energy of the UAV is used for the task compu-
tation and flight. To compute the task offloaded from users,
the CPU frequency of the UAV at the tth time slot is denoted
as fu(t) (cycles per second), which is given by

fu(t) = curk (t), (6)

where cu is the number of CPU cycles for calculating one bit
data. Then, the energy consumption of the computation can
be described as

Ecomp(t) = γuf 3u (t)βk (t)φt , (7)

where γu is the effective switched capacitance.

3) FLIGHT ENERGY CONSUMPTION MODEL
The UAV’s energy consumption during the flight can be
influence by many factors. To focus on designing the offload-
ing and charging strategy for the microwave powered UAV,
a flight energy consumption model which is related to the
UAV’s velocity vu and quality Mu is applied in this paper.
Hence, the flight energy consumption of the UAV at time slot
t is given by

Efly(t) = 0 ‖ vu(t) ‖2, (8)

where vu(t) =
‖qu(t)−qk‖

φt
and 0 = 0.5 Muφt .

III. PROBLEM FORMULATION
In this paper, we consider a practical scenario where the
UAV has profit incentive to provide the computation services
for the users. In such case, the UAV will charge users for
executing (including computation and communication) the
computation task at the unit prices, denoted as ηk per Mbits.
Let Uk (t) denote the service utility of the UAV for providing
computation and communication services to the kth user at
time slot t . Then, we have

Uk (t) = ηkRk (t) = ηkβk (t)φtrk (t). (9)

The goal of this paper is to maximize the total service utility
of the UAV during the operation duration T by deciding the
UAV’s trajectory, offloading decisions and offloading dura-
tion. Then, we have the optimization problem as follows

P1 max
qu(t),βk (t),φt

K∑
k=1

N∑
t=1

Uk (t)

s.t. C1 :
N∑
t=1

Ecomp(t)+
N∑
t=1

Efly(t) ≤ Eharv,
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C2 :
K∑
k=1

βk (t) = 1, βk (t) ∈ {0, 1},

C3 :
N∑
t=1

βk (t)φtrk (t) ≥ RTH ,

C4 : ‖ qu(t + 1)− qu(t) ‖≤ φtVmax,

C5 : qu(1) = qu(N ) = q0,

C6 : Nφt + Tc = T .

where Vmax is the maximum velocity of the UAV. Constraint
C1 ensures that the energy consumption of the UAV for the
computation and flight is not exceeding the total harvested
energy during an operation duration. Constraint C2 indicates
that the UAV can only serve one user during a time slot.
Constraint C3 guarantees the amount of the offload data
from each user should exceed the threshold (RTH ). C4 is the
maximum allowable velocity of the UAV and C5 ensures
that the UAV can be charged over the location of microwave
power station (q0) at the beginning of each operation duration.
The limitation of the UAV’s operation duration is given by
constraint C6.

Problem P1 can be solved by finding the optimal trajec-
tory qu(t), offloading decision βk (t), and offloading dura-
tion φt . Since the objective function and the constraints
are non-convex, P1 is a non-convex optimization problem.
To solve this problem, we decompose the problem into three
subproblems and propose an alternative optimization method
to obtain the optimal solutions.

IV. ALTERNATIVE OPTIMIZATION METHOD
In the proposed method, the UAV’s trajectory, offloading
decisions and offloading duration of users are alternative
optimized. We first optimize the users’ offloading decisions
by given UAV’s trajectory and offloading durations, then
optimize the UAV’s trajectory by given offloading decision
and offloading durations. At last, we optimize the users’
offloading durations under obtained optimal users’ offloading
decisions and UAV’s trajectory.

A. OFFLOADING DECISION OPTIMIZATION
In this subsection, our goal is to maximizes the UAV’s service
utility by finding optimal offloading decision βk (t) under
given trajectory qu(t) and offloading duration φt . Hence,
problemP1 is reduced to the following optimization problem.

P2 max
βk (t)

K∑
k=1

N∑
t=1

Uk (t)

s.t. C1 :
N∑
t=1

Ecomp(t)+
N∑
t=1

Efly(t) ≤ Eharv,

C2 :
K∑
k=1

βk (t) = 1, βk (t) ∈ {0, 1},

C3 :
N∑
t=1

βk (t)φtrk (t) ≥ RTH .

Since the subproblem P2 is a 0-1 integer programming
problem, we develop a special branch-and-bound method,
named implicit enumeration method, to find the near-optimal
solutions. The implicit enumeration method consists of the
following steps:

Step 1: To use implicit enumeration, the P2 problem
should be firstly transformed to the standard 0-1 integer
programming form as follows

P2.1 min
βk (t)

−

K∑
k=1

N∑
t=1

Uk (t)

= −

K∑
k=1

N∑
t=1

ηkβk (t)φtrk (t)

s.t. C1,C2,C3.

Then, let β ′k (t) = 1 − βk (t) and substitute β ′k (t) into the
problem P2.1, we have

P2.2 min
βk (t)

K∑
k=1

N∑
t=1

ηkβ
′
k (t)φtrk (t)−

K∑
k=1

N∑
t=1

ηkφtrk (t)

s.t. C2.1 :
K∑
k=1

N∑
t=1

γuf 3u (t)φt−
K∑
k=1

N∑
t=1

γuf 3u (t)β
′
k (t)φt

+

K∑
k=1

N∑
t=1

Efly(t)− Ehav ≥ 0,

C2.2 :
K∑
k=1

β ′k (t) = K − 1, β ′k (t) ∈ {0, 1},

C2.3 :
N∑
t=1

φtrk (t)−
N∑
t=1

β ′k (t)φtrk (t) ≥ RTH .

Step 2: Let β ′k (t) = 0,∀k, t , and calculate the value of the
objective functionU (β ′k (t)). If the constraints C2.1, C2.2 and
C2.3 are satisfied, β ′k (t) = 0,∀k, t , is the optimal solution.
Otherwise the problem should go to the third step.
Step 3: In this step, we sequentially let one of the variables
{β ′k (t),∀k, t, } equal to 0 or 1, and other variables equal to
0. Then, the former problem decompose into two subprob-
lems. If the constraints are satisfied, the current β ′k (t) is a
feasible solution. Otherwise, the branching will be continued.
For example, we set β1(1) = 0 and β1(1) = 1, the two
subproblems can be described as follows:

P2.3 min
βk (t)

K∑
k=1

N∑
t=1

ηkβ
′
k (t)φtrk (t)−

K∑
k=1

N∑
t=1

ηkφtrk (t)

s.t. β ′1(1) = 1,C2.1,C2.3.

P2.4 min
βk (t)

K∑
k=1

N∑
t=1

ηkβ
′
k (t)φtrk (t)−

K∑
k=1

N∑
t=1

ηkφtrk (t)

s.t. β ′1(1) = 0,C2.1,C2.3.
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We can check whether the solutions {β ′1(1) = 1, β ′2(1) =
0, · · · , β ′K (n) = 0} of the subproblems P2.3 and solutions
{β ′1(1) = 0, β ′2(1) = 0, · · · , β ′K (n) = 0} of the subproblems
P2.4 satisfies the constraints. If the constraints of the prob-
lems are satisfied, then the solutions are the feasible solutions.
The solution with lower objective value will be the optimal
solution. Otherwise, the branch will continue until a feasible
solution is found. The decision of continuing the branching
is according to the ‘‘Pruning’’ principles as shown in [30].
At last, the feasible solution of the reserved branch is the
optimal solution.

B. UAV’S TRAJECTORY OPTIMIZATION
In this subsection, we optimize the UAV’s trajectory qu(t) by
given offloading decision βk (t) and offloading duration φt .
The UAV’s trajectory optimization problem P3 is presented
as

P3 max
qu(t)

K∑
k=1

N∑
t=1

ηkβk (t)φtrk (t)

s.t. C1 : Eharv −
K∑
k=1

N∑
t=1

γuβk (t)φt (curk (t))3

−

K∑
k=1

N∑
t=1

Efly(t) ≥ 0,

C4 : ‖ qu(t + 1)− qu(t) ‖≤ φtVmax,

C5 : qu(1) = qu(N ) = q0.

Since C1 is non-convex and the objective function is non-
concave with respect to qu(t), P3 is a non-convex problem.
To solve this problem, we use the successive convex approx-
imation (SCA) method which can guarantee the obtained
solutions satisfy the Karush- Kuhn-Tucker (KKT) conditions
of P3 [31].
By using the SCA method, the following inequality can be

obtained

rk (t) = B log2
(
1+

Pkρ0
N0(H2+ ‖ qu(t)− qk ‖2)

)
≥ r lowk ,

(10)

where the r lowk is the lower bound of rk (t) and we have

r lowk

=B log2
(
1+

Pkρ0

N0(H2+ ‖ qju(t)− qk ‖2)

)
−

Pkρ0 log2 e

N0(H2+ ‖qju(t)−qk‖)(N0H2 +N0 ‖q
j
u(t)−qk‖+ρ0Pk )

× (‖ qu(t)− qk ‖2 − ‖ qju(t)− qk ‖
2) (11)

Since the maximum data rate between UAV and users can
be obtained when the horizontal distance between them is
zero, the upper bound of the rk (t) is given by

rupk = B log2
(
1+

Pkρ0
N0H2

)
, (12)

Then, the problem P3 can be transformed to

P3.1 max
qu(t)

K∑
k=1

N∑
t=1

ηkβk (t)φtr lowk

s.t. C3.1 : Eharv −
K∑
k=1

N∑
t=1

γuβk (t)φt (cur
up
k )3

−

K∑
k=1

N∑
t=1

Efly(t) ≥ 0,

C4,C5.

It can be seen that the constraint C3.1 and the objective
function of problem P3.1 is convex with respect to qu(t).
Hence, the problem P3.1 is a convex problem and can be
readily solved by using CVX method [20].

C. OFFLOADING DURATION OPTIMIZATION
The objective of this subsection is to optimize the offloading
duration φt under given UAV’s trajectory qu(t) and offloading
decisions βk (t).

P4 max
φt

K∑
k=1

N∑
t=1

Uk (t)

s.t. C4.1 : Pr (T − Nφt )−
K∑
k=1

N∑
t=1

γuβk (t)φt fu(t)3

−

K∑
k=1

N∑
t=1

0.5Mu
‖ qu(t + 1)− qu(t) ‖

φt
≥ 0

C4 : ‖ qu(t + 1)− qu(t) ‖≤ φtVmax.

Since φt ≥ 0, we can rewrite the constraint C4.1 as

−[NPr +
K∑
k=1

N∑
t=1

γuβk (t)fu(t)3]φ2t + PrTφt

−

K∑
k=1

N∑
t=1

0.5Mu ‖ qu(t + 1)− qu(t) ‖≥ 0

It can be seen that the objective function and constraints of
problemP4 are convex with respect to φt . Hence, the problem
P4 is a convex optimization problem which can be solved by
the CVX method [20].

D. ALTERNATIVE ALGORITHM FOR SOLVING P1
In this subsection, we propose a three-stage alternative algo-
rithm to solve problem P1. As shown in Algorithm 1,
the radio environment parameters and the operation param-
eters are firstly initialized. In the first stage, in order to obtain
the optimal offloading decisions (βk (t),∀k, t), the problem
P2 is solved by using implicit enumeration method given the
offloading duration (φt ,∀t) and UAVs’ trajectory (qu(t),∀t).
In the second stage, the optimal offloading duration is
obtained by solving the problem P3 by given UAVs’ tra-
jectory and the optimal offloading decisions obtained in P2.
In the third stage, based on the solutions from the previous
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Algorithm 1 Three-Stage Alternative Algorithm
Initialization:

1: Initialize the radio environment parameters B, ρ0, Pk , H ,
N0, the operation parameters GM ,GR, λ,PM , ds,L and the
tolerance error ε1, ε2
2: Initialize β1k (1), q

1
u(1), φ

1
t and U

1
k (1)

3: For each iteration j
4: Solving P2 by using implicit enumerationmethod for given
qju(t) and φ

j
t , obtain optimal βoptk (t)

5: β j+1k (t) = βoptk (t), qiu(t) = qju(t)
6: For each iteration i
7: Solving P3 by using CVX for given β j+1k (t) and φjt and
obtain qi+1u (t)
8: If

∑N
t=1 ‖ q

i+1
u (t)− qiu(t) ‖≤ ε2, q

j
u(t) = qiu(t), break

9: End If
10: Update i = i+ 1
11: End For
12: Solving P4 by using CVX for given qj+1u (t) and β j+1t ,
obtain φoptt and φj+1t = φ

opt
t

13: Compute S j+1 =
∑K

k=1
∑N

t=1 U
j
k (t) by using qj+1u (t),

β
j+1
t and φj+1t

14: If
∑N

t=1 ‖ S
j+1
− S j ‖≤ ε1, break

15: End If
16: Update j = j+ 1
17: End For

two problems, the sub-optimal UAVs’ trajectory is archived
by solving the problem P4. In this three-stage alternative
algorithm, the tolerance error ε1 and ε2 are used to guarantee
the convergence.

Note that the proposed Algorithm 1 only solves convex
sub-problem at each stage for each iteration. The iteration
number of Algorithm 1 is mainly influenced by the stop
criterion (the tolerance error ε1 and ε2) rather than the
problem scale N and K . Hence, the overall computational
complexity of Algorithm 1 is polynomial. We also note that
with alternating optimization and usage of SCA method in
the sub-problems, global optimum cannot be strictly guaran-
teed. Hence, the maximize service utility achieved by Algo-
rithm 1 might be affected by the initial variables setting, e.g.,
the UAV’s initial trajectory and initial offloading duration.

V. NUMERICAL RESULTS
To illustrate the performance of the proposed methods,
we consider a 450 × 450 m2 area which includes 5 deployed
users, each of which is served by one UAV. The flight altitude
and the maximum speed of the UAV are set as H = 50m and
Vmax = 30 m/s, respectively. The charging distance ds = H .
Other input parameters are listed in table 1. The performance
of the proposed offloading method which jointly optimizes
the offloading decisions, offloading duration and UAV’s tra-
jectory is compared with other three UAV-enabled offload-
ing methods: 1, the offloading method with fixed offloading

TABLE 1. The input parameters.

FIGURE 2. The trajectory of the UAV for the circle deployment of users.

decisions in which the UAV sequentially provide offloading
service for users, 2, the offloading method with fixed offload-
ing duration where the time length of the duration is φt=2s
and 3, the offloading method with fixed trajectory which is a
circle around users with radius equal to 100m.

A. TRAJECTORY ANALYSIS
Fig.2 shows the UAV trajectory of the proposed offloading
method with respect to different transmitting power (Pt ) val-
ues of the microwave station. In the Pt = 2000 W case, the
trajectory of the UAV is inclined to user 2 and user 4 while
other users are served on the way. In the Pt = 4000 W case,
the trajectory of the UAV can approach to all users for provid-
ing computation services. The reason is that the higher trans-
mitting power from the microwave station, the more energy
can be harvested by the rechargeable UAV, andmore users can
be served closely. Note that the flying distance during each
time slot (the length between two dots of the trajectory line) is
distinct in both cases. This is because the incentive offloading
method propel the UAV to reach the users’ locations as soon
as possible to provide computation services.
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FIGURE 3. The trajectory of the UAV for the straight line deployment of
users.

FIGURE 4. The offloading decision for the straight line deployment of
users.

In Fig.3, we show that the UAV’s trajectory under Pt =
2000 W case in another user deployment scenario where the
users are deployed near a straight line. We can see that the
UAV can provide computation services for all users because
the energy consumed for flight is largely saved. This indicates
that the deployment of the users can largely affect the service
performance of the UAV as the flight energy occupies a large
part of the energy.

Fig.4 shows the offloading decisions of the UAV when it
approaches each user. We can see that the UAV can provide
computation services for users during a round trip. It is
interesting to see that the UAV can provide the computa-
tion services in both of the depart and return routes of the
charging point. Meanwhile, the UAV flies to the farthest node
(user 5) only provide basic computation services (with short-
est offloading time among all users). The reason is that the
proposed offloading method can obtain the optimal trajectory
and offloading decision of the UAV which is motivated to
consume more energy on the computation service near the
users and avoid to fly too far to provide services.

FIGURE 5. Service utility comparison of the UEC network.

B. SERVICE UTILITY COMPARISON
Fig.5 shows the service utility comparison of the proposed
offloading method with other three offloading methods with
different fixed parameters. It can be seen that the proposed
method achieves the highest service utility among all the
methods. This is because the proposed offloading method can
maximize the service utility of the UAV by jointly optimizing
the UAV’s trajectory, offloading decisions and offloading
duration. By contrast, other three methods only optimize
two of the three parameters and cannot obtain the maximum
service utility of the UAV. In addition, we can observe that the
service utility of the proposed method increases quickly and
then slow down with the increase of the transmitting power of
microwave station. That is, the higher level of the transmitting
power of the microwave station can lead to higher level of the
harvested energy of the UAV which achieves higher service
utility. However, for given operation duration of the UAV,
the charging duration will stop increasing when the optimal
offloading duration is achieved, then the increment of the har-
vested energy of theUAVonly depends on the charging power
from microwave station which may not achieve remarkable
increase.

In Fig.6, we also compare the service utility of the pro-
posed offloading method with other three offloading methods
in terms of the transmitting power of users. We can see that
the service utility of the proposed offloading method and
other three offloading methods increase with the increase of
the transmitting power of users. The reason is that the users
can offload more computation tasks to the UAVs when the
transmitting power is increasing. Then, the UAV is capa-
ble of obtaining more computation tasks to compute and
achieving higher service utility. Still, we can observe that the
proposed offloading method can achieve the highest service
utility among all offloading methods. That is, the proposed
offloading method is able to make the optimal choices of
the UAV’s trajectory, offloading decisions and offloading
duration according to the system environment and UAV’s
conditions.
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FIGURE 6. Service utility comparison in terms of the transmitting power
of users.

FIGURE 7. Service utility comparison in terms of the maximum speed of
UAV.

Fig. 7 shows the effects of the operation duration of the
UAV during one cycle. Similar to the above analysis, the
service utility achieved by the proposed offloading method is
higher than that in other three offloading methods. In addi-
tion, except the offloading method with fixed trajectory,
the service utility of the proposed offloading and other two
methods firstly increase and then flatten with the increase of
the maximum speed of the UAV. This is because the higher
speed will make the UAV faster close to the users for compu-
tation services. However, the faster speed may cause more
energy consumption for flight and reduce the computation
energy of the UAV, then the increase of the service utility
is slow down whatever the speed constraint is loosing. Note
that the service utility of the offloading method with fixed
trajectory is a constant. That is, the fixed trajectory means the
UAV flies the same distance at each time slot which implies
the UAV approach the user with a constant speed. Hence,
the maximum speed constraint will not affect the service
utility of the UAV in this case.

Fig.8 shows the service utility comparison in terms of the
operation duration of the UAV. We can see that the proposed

FIGURE 8. Service utility comparison in terms of the operation duration
of UAV.

FIGURE 9. Convergence of the proposed Algorithm 1.

offloading method can achieve much higher service utility
than that of other three offloading methods as the operation
duration increase. The reason is that the UAV can obtain
more energy during the charging duration and provide more
computation services during the offloading duration. Then,
the UAV is capable of obtaining higher service utility by
making the optimal choices of the flight trajectory, offloading
decisions and offloading duration. In contrast, other three
offloading methods only optimize two of the three parame-
ters, which can obtain lower service utility.

C. ALGORITHM CONVERGENCE
In this subsection, we evaluate the convergence performance
of the proposed Algorithm 1 as shown in Fig.9. We can
obverse that Algorithm converges within a few rounds of
iteration, e.g. 3 iterations in the case with transmitting power
of the microwave station Pt = 2000W . Moreover, we can see
that the case with higher transmitting power of the microwave
station converges less efficiently compared to the case with
lower transmitting power of the microwave station. This is
because the larger value of Pt implies larger solution space
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of the proposed problem P1 and may affect the convergence
rate of the proposed Algorithm 1.

VI. CONCLUSION
In this paper, we proposed an incentive UAV-enabled MEC
network based on the microwave power transfer framework.
In this framework, the UAV with rechargeable batteries peri-
odically provide computation services by flying close to the
users and recharge itself by hovering over the microwave
power station. Given the operation duration of a round trip,
there is a tradeoff between the charging time and the offload-
ing time of the UAV to obtain the maximum service utility.
Considering the microwave station and UAV’s conditions,
the joint trajectory and offloading optimization problem was
carefully addressed. A three-stage alternative algorithm was
proposed for solving the proposed problem. We obtained the
results which showed that the proposed offloading method
and related solutions can achieve higher service utility than
that of other traditional computation offloading methods.
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