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ABSTRACT Two novel linear camera calibration algorithms were investigated in this study. In general,
an occluding contour circle of a sphere and the optical centre of a camera form a right circular cone, and the
generalised eigenvectors of two right circular cones encode an infinity point that lies on two support planes
containing the contour circle. In the image plane, a vanishing line can be determined by connecting two
vanishing points. Furthermore, the direction of the diameter passing through the infinity point is orthogonal
to the direction of its conjugate diameter; thus, a set of orthogonal vanishing points can be computed. The
imaged circular points or orthogonal vanishing points provide constraints that enable the intrinsic parameters
to be recovered completely. The results of simulations and comparison data obtained from actual experiments
confirm the effectiveness and feasibility of the proposed algorithms.

INDEX TERMS Camera calibration, conjugate diameters, generalized eigenvalue, right circular cone,
vanishing point.

I. INTRODUCTION
Computer vision [1]–[3] is indispensable in the field of artifi-
cial intelligence. Hence, the rapid development of artificial
intelligence is closely related to the evolution of com-
puter vision. Computer vision is presently undergoing a
visual revolution from two-dimensional (2D) images to three-
dimensional (3D) space. Camera calibration is the process of
modelling the projective transformation between a 3D object
and its 2D image [4]. Therefore, it is an important step in
the estimation of camera parameters in computer vision, as it
enables the recovery of 3D data from a 2D image. Accord-
ing to scene differences, existing calibration algorithms are
generally classified into the following four types.

1) Self-calibration [5], [6]: In these calibration approaches,
only the corresponding constraints between multiple
images are used to complete the camera calibration,
and there are not many requirements for the 3D
space. In general, there is a close relationship between
the camera parameters and epipolar transformation.
Therefore, Pollefeys et al. [7] presented an algorithm
for determining the intrinsic parameters of a camera
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based on the epipolar transformation between moving
cameras.

2) Calibration based on one-dimensional (1D) calibration
objects [8]: In these methods, only a calibration pattern
with aligned points is used to calibrate the camera.
For a free-moving 1D calibration object, the camera
calibration will fail. For a 1D object that moves around
a fixed point where the distance between points is
known, a closed-form solution for the intrinsic param-
eters can be obtained. Using the collinear properties of
three known points, Zhang [9] derived a constraint on
the image of the absolute conic (IAC) [10]. Further,
the intrinsic parameters can be recovered by using at
least six images of a 1D calibration object. Lv et al. [11]
defined 3 × 2, 1D homography that relates the points
in a 1D object to the perspective image points thereof.
Then, from the 1D objects in a single image, the basic
constraint for camera calibration is derived so that the
camera calibration problem can be solved.

3) Calibration based on 2D calibration objects [12], [13]:
In these methods, only circle or conic images are
used, without the corresponding position informa-
tion in space. Huang et al. [14] showed that there
are infinitely many common self-polar triangles for
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concentric circles, but these common self-polar trian-
gles share a common vertex and its opposite side lies
on the same line.

4) An analysis of the algebraic properties of common self-
polar triangles indicates that the common vertex and
opposite side are the centre of the concentric circle and
the infinite line on the supporting plane, respectively.
Therefore, on the image plane, the image of the cir-
cle centre and the vanishing line can be determined
by the generalised eigenvalue decomposition of the
two concentric circles. Thus, the IAC can induce suit-
able constraints. Finally, the camera parameters can be
extracted by decomposing the IAC. Ying and Zha [15]
considered two principal-axis aligned (PAA) conics as
a calibration pattern. They demonstrated that if the
eccentricity of one of the PAA central conics is known,
the two constraints on the IAC can be obtained from
the image of the PAA, while if the PAA parameters
are not known, only one constraint on the IAC can be
obtained. When there are multiple images of the PAA
conic, the intrinsic parameters of the camera can be
uniquely determined.

5) Calibration based on 3D calibration objects [16], [17]:
A sphere has isotropic visibility from any view. There-
fore, given a sphere placed in the common field of view
of the cameras, its occluding contour can be projected
onto each perspective plane. The sphere image can
provide an effective projective constraint on the camera
parameters. Hence, calibration technology involving
the use of only a sphere as the pattern has been widely
studied. Ying and Zha [18] proposed the double-contact
theorem to complete camera calibration. Specifically,
they explained the geometric and algebraic properties
between the sphere image and IAC using the double-
contact theorem such that the IAC can be determined
linearly by using three sphere images. Huang et al. [19]
explored a new linear calibration algorithm based on
the properties of the common self-polar triangle of
sphere images. They found that for two separate sphere
images, there exists a unique common self-polar tri-
angle that can be determined from the eigenvector of
the two sphere images, and one of the vertices of
the common self-polar triangle is an infinity point.
Consequently, three sphere images can yield a van-
ishing line that can be used to calibrate the camera.
Zhang et al. [20] established the relationship between
the dual of the sphere image and dual of the image of
the absolute conic (DIAC), i.e. the common pole-polar
of the two sphere images is also the pole-polar with
regard to the IAC. Three sphere images can be used
to calibrate the camera completely according to these
algebraic constraints on the IAC.

In this study, we used three spheres as the calibration object
for the following reasons. First, it is easy to obtain a sphere
in daily life. In addition, the occluding contour of a sphere
from any view is always a circle. Moreover, the circle and

projection centre form a right circular cone. Because the
revolution axis of the right circular cone passes through the
sphere centre, the right circular cone is always projected as a
conic on the perspective image plane. The motivation for this
study arose from the properties of conic pairs on the 2D plane.
Ying and Zha [15] and Gurdjos et al. [21] identified an inter-
esting phenomenon in which some special conic pairs encode
an infinity point on the supporting plane. We studied the
properties of the right circular cone intensively and explored
how a pair of right circular cones encapsulates an infinity
point. These discoveries can be considered as a generalisation
from a 2D calibration pattern to a 3D calibration pattern.
According to the projective invariance of the right circular
cone, the imaged circular point and orthogonal vanishing
point on one of the sphere images can be determined. Only
three sphere images are required, and the camera can be fully
calibrated linearly without any assumptions, such as zero
skew or unitary aspect ratio. The calibration method has four
advantages. (1) There is no point or line matching. (2) There
is no quartic equation solving. (3) The linear approach runs
faster than non-linear calibration algorithms while maintain-
ing comparable accuracy [18], [19]. (4) Without consider-
ing the algebraic relation between the sphere images and
IAC [16], [17], [20], we initiated a new perspective to com-
plete the camera calibration using the projective invariants of
sphere images.

The remainder of this paper is organised as follows.
Section 2 briefly introduces the pinhole camera projec-
tion model and basic algebraic properties of the right cone
formed by the occluding contour circle and optical centre
of the camera. Section 3 describes the calibration algorithms
based on the projective invariants of sphere images in detail.
Section 4 presents the simulation results and comparison data
from real experiments. Finally, Section 5 summarises the
findings of the study.

II. PRELIMINARIES
In this section, we briefly review the camera imaging model
and equations of the right circular cone composed of the
sphere and optical centre.

A. IMAGING PROCESS BASED ON THE PINHOLE CAMERA
M =

[
X Y Z 1

]T are the projected homogeneous coor-
dinates of 2D point m =

[
x y 1

]T on the image plane,
the relationship between them may be written in matrix
form as

λmm = PM, (1)

where λm is a non-zero scale factor and the projection matrix
P describes the perspective projection process [22]. In gen-
eral, the 3 × 4 matrix P can be decomposed as the intrinsic
parameters K and extrinsic parameters R and T [23]; thus,
the following relationship holds:

P = K
[
R T

]
, (2)
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FIGURE 1. Projection model of three spheres in a pinhole camera.

where the upper triangular matrix

K =

 rf s u0
0 f v0
0 0 1


contains the focal length f , aspect ratio r , skew factor s, and
principle point

[
u0 v0 1

]T.
B. EQUATIONS OF THE RIGHT CIRCULAR CONE
We consider three spheres in space as the calibration target,
because the imaging process of a sphere is isomorphic to that
of the occluding contour of the sphere, and the occluding
contours can be seen as circles from any position. As shown
in Fig. 1, the world coordinate system Ow − XwYwZw is
established on an arbitrary point in space as the origin Ow,
where the Zw-axis passes through the centreO1 of sphere S1.
Point Ow and the occluding contour circles Ci (i = 1, 2, 3)
of the three spheres Si define three right circular cones Qi.
Here, in the world coordinate system Ow − XwYwZw, given
the homogeneous coordinates of the three sphere centres
O1 =

[
0 0 d1 1

]T, O2 =
[
nx ny nz 1

]T, and O3 =[
mx my mz 1

]T, the equation of support plane πi containing
circle Ci can be expressed as follows:

Z1 − d1 = 0, (3)
nx
|d2|

X2 +
ny
|d2|

Y2 +
nz
|d2|

Z2 − d2 = 0, (4)

mx
|d3|

X3 +
my
|d3|

Y3 +
mz
|d3|

Z3 − d3 = 0, (5)

where |d1|, |d2| =

√
n2x + n2y + n2z , and |d3| =√

m2
x + m2

y + m2
z are the distances from Ow to planes π1, π2,

and π3, respectively.
Let the radii of the three spheres Si be ri. Then, the equa-

tions of Si can be expressed as follows:

X2
1 + Y

2
1 + (Z1 − d1)2 = r21 , (6)

(X2 − nx)2 +
(
Y2 − ny

)2
+ (Z2 − nz)2 = r22 , (7)

(X3 − mx)2 +
(
Y3 − my

)2
+ (Z3 − mz)2 = r23 . (8)

Ci can be considered as the section circles of Si and πi. Then,
by eliminating Xi, Yi, and Zi from Eqs. (3)–(8), Qi [(10) and
(11) are shown at the bottom of this page] can be expressed
in the world coordinate systemOw−XwYwZw in matrix form
as follows:

Q1 =


1 0 0 0
0 1 0 0
0 0 −

(
r1
/
d1
)2 0

0 0 0 0

 , (9)

where α = r22 − n
2
x − n

2
y − n

2
z and β = r23 − m

2
x − m

2
y − m

2
z .

Proposition 1: In Fig. 1, given a distinct pair of
cones(Q1,Q2), there exists a point at infinity, V1, which
corresponds to one of the generalised eigenvectors of
(Q1,Q2) on π1 containing C1.

Proof: For the generalised eigenvalue decomposition of
Q1 and Q2, the following relationship must be satisfied:

Q1u1 = λQ2u1. (12)

Substituting Eq. (10) into Eq. (9) gives the generalised eigen-
value λ1 of (Q1,Q2) and corresponding generalised eigen-
vector u1 as follows (computed by MAPLE): λ1 = 1

/
d42

and V1= u1 =
[
−ny

/
nx 1 0

]T. In the world coordinate
system Ow − XwYwZw, the unit normal vectors of planes
OwXwYw and π2 are

[
0 0 1

]T and [ nx ny nz ]T, respectively.
Then, point V1 =

[
−ny

/
nx 1 0

]T is an infinity point on
planes OwXwYw and π2. Because OwXwYw is parallel to π1,
according to the properties of projective space [24], point
V1 =

[
−ny

/
nx 1 0

]T is also an infinity point on π1. �
Similarly, the generalised eigenvectors of the other pair of

right circular cones (Q1,Q3) encode an infinity point V2 =[
−my

/
mx10

]T on planes π1 and π3.

Q2 =


d42 + (2d2 |d2| − α) n

2
x (2d2 |d2| − α) nxny (2d2 |d2| − α) nxnz 0

(2d2 |d2| − α) nxny d42 + (2d2 |d2| − α) n
2
y (2d2 |d2| − α) nynz 0

(2d2 |d2| − α) nxnz (2d2 |d2| − α) nynz d42 + (2d2 |d2| − α) n
2
z 0

0 0 0 0

 , (10)

Q3 =


d43 + (2d3 |d3| − β)m

2
x (2d3 |d3| − β)mxmy (2d3 |d3| − β)mxmz 0

(2d3 |d3| − β)mxmy d23 + (2d3 |d3| − β) n
2
y (2d3 |d3| − β)mymz 0

(2d3 |d3| − β)mxmz (2d3 |d3| − β)mymz d23 + (2d3 |d3| − β)m
2
z 0

0 0 0 0

 , (11)
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III. CAMERA CALIBRATION BASED ON PROJECTIVE
INVARIANTS OF SPHERE IMAGES
This section describes projective invariants of a pair of right
circular cones. Further, two linear calibration algorithms are
presented using sphere images.

A. ALGEBRAIC PROPERTIES OF A PAIR OF RIGHT
CIRCULAR CONES
Given pointM =

[
X Y Z 1

]T onQ1, the following relation-
ship holds [25]:

MTQ1M = 0. (13)

Let the inhomogeneous coordinates of point M be M =[
X Y Z

]T. Then, Eq. (13) can be rewritten as follows:
M

T
Q1M = 0, (14)

where

Q1 =

 1 0 0
0 1 0
0 0 −

(
r1
/
d1
)2
.

Similarly, right circular cones Q2 and Q3 [(15) and (16)
are shown at the bottom this page] can be obtained, both in
inhomogeneous coordinates as follows.

Fig. 1 shows the camera coordinate system Oc − XcYcZc,
where the common vertexOw ofQ1,Q2, andQ3 is set as the
origin Oc. Therefore, there exists only a rotational transfor-
mation between theworld and camera coordinate systems, i.e.
T =

[
0 0 0

]T. According to Eq. (1), image m of M should
satisfy the following relationship:

λmm = KRM. (17)

If conic c1 is the projection of S1 on π perpendicular
to the Zc-axis, according to the homogeneity of projective
transformation, image point m is on circle image c1, and the
following relationship holds:

mTc1m = 0. (18)

Because KR is a 3 × 3 invertible matrix, Eqs. (14), (17),
and (18) have the following relationship:

λc1c1 = K-TR-TQ1R
−1K−1, (19)

where λc1 is a non-zero scale factor.
Similarly, let c2 and c3 be the projections of S2 and S3 onπ ,

respectively. Hence,

λc2c2 = K-TR-TQ2R
−1K−1, (20)

λc3c3 = K-TR-TQ3R
−1K−1, (21)

where both λc2 and λc3 are non-zero scale factors.
Proposition 2: As shown in Fig. 1, considering the conic

images ci (i = 1, 2, 3) of Si , which are equivalent to the
projections ofQi , one of the generalised eigenvectors of each
cone pair (c1, c2) and (c1, c3) corresponds to the vanishing
points v1 and v2, respectively, which are the images of V1
and V2 on π1.

Proof: Firstly, consider the matrix pair (c1, c2). Alge-
braically, the generalised eigenvectors of (c1, c2) are equiva-
lent to the eigenvectors of the matrix c−12 c1. From Eqs. (19)
and (20), the following equations can be obtained:

c−12 c1 =
λc1

λc2
KRQ

−1
2 RTKTK−TR−TQ1R

−1K−1

=
λc1

λc2
KRQ

−1
2 Q1R

−1K−1 ∝ KRQ
−1
2 Q1R

−1K−1,

(22)

where ∝ indicates equality up to a non-zero scale factor.
For matrix Q−12 Q1, if there exists a transformation from

Q−12 Q1 to HQ−12 Q1H−1, the eigenvalues of Q
−1
2 Q1 are pre-

served [19]. According to Eq. (22), conic pair (c1, c2) and
cone pair (Q1,Q2) are correlated by a non-singular homog-
raphy H = KR, i.e. [26]

c−12 c1 ∝ HQ−12 Q1H
−1. (23)

According to the above discussion, an interesting fact is
evident, i.e. the generalised eigenvalue decomposition of Q1
andQ2 has projective invariance [15]. FromProposition 1, for
a pair of right circular cones (Q1,Q2), there is a generalised
eigenvector corresponding to infinity point V1 on π1 and π2.
In other words, the eigenvectors of matrix Q

−1
2 Q1 encode

infinity point V1. Hence, one of the eigenvectors of matrix
c−12 c1 corresponds to the image v1 of V1, i.e. the generalised
eigenvectors of the matrix pair (c1, c2) encode v1. Since V1
is an infinity point on π1 and π2, v1 is a vanishing point of π1
and π2.

Similarly, for conic pair (c1, c3), there exists a generalised
eigenvector corresponding to another vanishing point v2 on
π1 and π2.

B. TWO CALIBRATION ALGORITHMS USING THREE
SPHERE IMAGES
Proposition 3: Assuming that three 3× 3 symmetric matrices
c1, c2, and c3 represent three sphere images, the imaged

Q2 =

 d42 + (2d2 |d2| − α) n2x (2d2 |d2| − α) nxny (2d2 |d2| − α) nxnz
(2d2 |d2| − α) nxny d42 + (2d2 |d2| − α) n

2
y (2d2 |d2| − α) nynz

(2d2 |d2| − α) nxnz (2d2 |d2| − α) nynz d42 + (2d2 |d2| − α) n
2
z

 , (15)

Q3 =

 d43 + (2d3 |d3| − β)m2
x (2d3 |d3| − β)mxmy (2d3 |d3| − β)mxmz

(2d3 |d3| − β)mxmy d23 + (2d3 |d3| − β) n
2
y (2d3 |d3| − β)mymz

(2d3 |d3| − β)mxmz (2d3 |d3| − β)mymz d23 + (2d3 |d3| − β)m
2
z

. (16)
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circular points I and J on one of the sphere images can be
obtained.

Proof: Given three sphere images c1, c2, and c3, accord-
ing to Proposition 2, the generalised eigenvectors of two
conic pairs (c1, c2) and (c1, c3) include vanishing points v1
and v2 on π1, respectively. Because c1, c2, and c3 are sym-
metric matrices, and rank

(
c−12 c1

)
= rank

(
c−13 c1

)
= 3,

let the generalised eigenvalues of matrix pairs (c1, c2) and
(c1, c3) be η =

[
η1 η2 η3

]T and µ = [µ1 µ2 µ3]T,
respectively, where the generalised eigenvectors with corre-
sponding eigenvalues η1 and µ1 are vanishing points v1 and
v2, respectively.

Here, we discuss how to sort generalised eigenvalues η
and µ for matrix pairs (c1, c2) and (c1, c3). Furthermore,
we describe how to determine the generalised eigenvalues
η1 and µ1 corresponding to v1 and v2. Algebraically, the
problem of computing generalised eigenvalues η andµ is that
of determining the degenerate members of the conic families
c (η) = c1−ηc2 and c (µ) = c1−µc3, i.e. that of solving det
c (η) = 0 and det c (µ) = 0 [27]. Assume that for conic pairs
(c1, c2) and (c1, c3), there exists a generalised eigenvector
wk , zk ∈ C, k = 1, 2, 3. Then, the following relationship
holds: {

c1wk = ηc2wk

c1zk = µc3zk ,
(24)

or {
(c1 − ηc2)wk = 03×1
(c1 − µc3) zk = 03×1,

(25)

or {
wT
k c (η)wk = 0

zTk c (µ) zk = 0,
(26)

Hence, wk , zk represent the lines that form degenerate mem-
bers of the conic families c (η) and c (µ).

Based on the above discussion, the linear families of con-
ics c (η) and c (µ) have three members called degenerate
conics consisting of line pairs corresponding to the gener-
alised eigenvalues of (c1, c2) and (c1, c3), respectively [28].
An interesting property is that only the degenerate conic
with the corresponding parameters η1 and µ1 of v1 (w1) and
v2 (z1) consists of two real lines [28]. In general, the type of
lines constituting a degenerate conic depends on the absolute
signature [21], i.e. if the absolute signature is equal to or less
than 1, then the degenerate conic consists of real lines and its
corresponding eigenvalues are the generalised eigenvalues η1
and µ1 of v1 and v2.

For conic pairs (c1, c2) and (c1, c3), because the absolute
signature is invariant under congruence transformation, v1
and v2 can be determined on π using the absolute signature.
As shown in Fig. 2, vanishing line l∞ passes through v1 and
v2 [29]:

λl l∞ = v1 × v2, (27)

FIGURE 2. Acquisition of vanishing line and orthogonal vanishing point.

where λl is a non-zero scale factor and × denotes the cross
product. Because vanishing line l∞ is the projection of the
infinity line on π1, and circle C1 can be considered as the
intersecting line of cone Q1 and world plane π1, vanishing
line l∞ intersects sphere image c1 at the imaged circular
points I and J. Thus, the following two equations can be
obtained: {

IT c1I = 0
IT l∞ = 0,

(28){
JT c1J = 0
JT l∞ = 0,

(29)

Proposition 4: Assume that there exist three sphere images
ci (i = 1, 2, 3) , which are the projections of C1, C2 ,and
C3 on π . Then, two sets of orthogonal vanishing points(
v1, ṽ1

)
and

(
v2, ṽ2

)
on support plane π1containing C1 can

be obtained.
Proof: Given three conics ci that indicate three sphere

images, from Proposition 3, two vanishing points v1 and v2
of world plane π1 can be recovered using conic pairs (c1, c2)
and (c1, c3). Moreover, vanishing line l∞ can be determined
because there is a pole-polar relationship between image o1
of the centre of C1 and l∞ with respect to c1 [24], i.e.

λol∞ = c1 · o1, (30)

or

o1 = c∗1 · l∞, (31)

where λo is a non-zero scale factor, · denotes the dot product,
and the conic envelope c∗1 is the dual of the conic locus c1 [30].
When c1 is an invertible matrix, c∗1 ∝ c−11 .

From Fig. 2, line lj passing through points o1 and
vj (j = 1, 2) is called the image of the diameter of C1, and

λljlj = o1 × vj, (32)

where λlj is a non-zero scale factor. According to Semple and
Kneebone [31], the polar of vanishing point vj with respect
to sphere image c1 is image l̃j of the conjugate diameter of
line lj, and the following relationship should be satisfied:

λl̃ l̃j = c1 · vj, (33)
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where λl̃j is a non-zero scale factor. If vanishing line l∞
intersects line l̃j at point ṽj, the following equation holds:

λvjṽj = l̃j × l∞, (34)

where λvj is a non-zero scale factor. From the definitions of
diameter and conjugate diameter [32], the directions of diam-
eter and conjugate diameter are orthogonal. They intersect
with the infinity line on the support plane at a set of infinity
points in orthogonal directions. According to the projective
invariance, vanishing points vj and ṽj constitute a pair of
orthogonal vanishing points.

C. ESTIMATION OF EXTRINSIC PARAMETERS
In computer vision, the extrinsic parameters mainly describe
the camera orientation and position. In our calibration model,
the origins of the world and camera coordinate systems are
aligned. Hence, computing the extrinsic parameters in our
approach involves determining the relative orientation of the
three spheres and camera.

Because the camera intrinsic parameters K can be recov-
ered using the approach described in the previous section,
for each sphere image ci, in the camera coordinate system
Oc−XcYcZc, back-projection coneQoi can be represented in
homogeneous matrix form as

Qoi = KTciK. (35)

As shown in Fig. 1, because the Zw-axis of the world coordi-
nate system Ow − XwYwZw passes through the centre O1 of
S1, and the origin is fixed, there exists a transformation R1
from the quadric Qo1 to a diagonal matrix, i.e.

RT
1Qo1R1 = diag

(
1, 1,−`21

)
(36)

where `1 = tan
(
θ1
/
2
)
and θ1 is the opening angle of the

cone Qo1. Clearly, the transformation R1 indicates rotating
the Zw-axis of the world coordinate system to the revolution
axis of right circular cone Qo1. Firstly, another right circular
cone Qo2 is transferred into the world coordinate system by
R1. Subsequently, the Zw-axis of the world coordinate system
and the revolution axis of right circular cone Qo2 coincide
through another transformation R2, and we have:

(R1R2)
TQo2 (R1R2) = diag

(
1, 1− `22

)
, (37)

where `2 = tan
(
θ2
/
2
)
and θ2 is the opening angle of cone

Qo2.
Similarly, there exists a transformationR3 from theZw-axis

of the world coordinate system coinciding with the revolution
axis of right circular cone Qo3. Hence, the following expres-
sion holds:

(R1R3)
TQo3 (R1R3) = diag

(
1, 1− `23

)
, (38)

where `3 = tan
(
θ3
/
2
)
and θ3 is the opening angle of

cone Qo3.

From the above description, transformations R2 and R3
indicate the relative orientations of S2 and S3 with respect
to S1, respectively.

Because matrix Qoi is similar to matrix diag
(
1, 1,−`2i

)
,

there are three eigenvalues κi1, κi2, and κi3 forQoi, where the
sign of κi1 is opposite to that of κi2 and κi3, and we obtain

`i =

(
−
κi2 + κi3

κi1

)1/2
. (39)

Let the radius of the sphere be ri. Then, the distance from
the optical centreOc to the sphere centreOi can be obtained:

di = ri
/
`i. (40)

In addition, after recovering the intrinsic parameters K,
image oi of the sphere centre can be estimated [33], [34]:

γici = ω∗ − oioTi , (41)

where ω∗ = KKT indicates the DIAC and γi is a non-zero
scale factor [35].

The sphere centre Oi can be determined by obtaining
image oi of the sphere centre. The sphere centre lies on the
line hi= K−1oi through back-projection. Hence, in the world
coordinate system Ow − XwYwZw, the sphere centre can be
estimated as

Oi = di · R1
hi
‖hi‖

. (42)

D. DETERMINATION OF THE DISTORTION COEFFICIENT
As is the case for most calibration methods in which spheres
are used [16]–[20], it is difficult to provide a solution for the
distortion coefficients compared with the chessboard since
the correspondence between the apparent contour point and
its projection is undetermined. In this report, we provide a
means of solving lens distortion.

Generally, a camera exhibits radial distortion, which is
dominated by the first radial components [24]. In this study,
we only considered a two-degree radial distortion model:{

Mdistorted = K−1m
Mdistorted = f (Mundistorted ) ,

(43)

where m represents the real image coordinates with dis-
tortion, Mdistorted = [Xdistorted Ydistorted 1]T indicates the
normalized coordinates with distortion, Mundistorted =[
Xundistorted Yundistorted 1

]T symbolizes the ideal normal-
ized coordinates without distortion, and the mapping
f (Mundistorted ) = [

(
1+ k1r2 + k2r4

)
Xundistorted 1 + k1r2+

k2r4)Yundistorted 1]T, r2 = Xundistorted 2 + Yundistorted 2. Given
(distorted) points mn (n = 1, 2 · · ·) sampled from the sphere
image and projection oi of the sphere centre, the (dis-
torted) directions of lines lmn= K−1mn and hi= K−1oi can
be obtained through back-projection using the calibration
results [24]. Moreover, the angle ϑni between lmn and hi can
be easily derived:

ϑni = arccos
(
‖lmn · hi‖
‖lmn‖ · ‖hi‖

)
, (44)
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where ‖·‖ is 2-norm. From the above discussion, the ideal
(undistorted) directions of lines l′mn and h′i satisfy the
following: {

l′mn = f −1 (lmn)
h′i = f −1 (hi) ,

(45)

where f −1 (·) indicates the inverse mapping of f (·). Simi-
larly, the ideal angle ϑ ′ni satisfies

ϑ ′ni = arccos

( ∥∥l′mn · h′i∥∥∥∥l′mn∥∥ · ∥∥h′i∥∥
)
. (46)

In fact, l′mn and h′i indicate generator lines and the revolution
axis of right circular cone Qi, respectively. From the prop-
erties of the right circular cone, ϑ ′ni (n = 1, 2 · · ·) are equal
to each other. Hence, radial parameters k1 and k2 can be
estimated by minimizing the following functional:

3∑
i=1

N∑
n=1

∥∥ϑ ′n+1i − ϑ ′ni∥∥2. (47)

The final results can be obtained using the Levenberg-
Marquardt algorithm [33] with the initial values k1 = 0 and
k2 = 0.

E. ALGORITHM
In projective geometry, two special points on a circle (circular
points) are important, because the imaged circular points
on the image plane encode the Euclidean structure and are
used to deduce the constraints for estimating the IAC. Hence,
the following relationship can be satisfied:{

ITωI = 0
JTωJ = 0,

(48)

whereω is the matrix form of the IAC. Sinceω is a 3×3 sym-
metric matrix with five degrees of freedom and the imaged
circular points I and J are a pair of complex conjugate points,
only the real and imaginary parts of I or J are considered
separately to provide a constraint. Hence, at least three pairs
of circular points are necessary to recover the IAC.

Two vanishing points vi and ṽi in orthogonal directions are
conjugates with respect to the IAC [24], i.e.

vTi ωṽi = 0. (49)

Because ω has only five degrees of freedom, ω can be fully
estimated if at least five pairs of orthogonal vanishing points
are known. However, in general, for all orthogonal vanishing
points on a plane, only two sets of orthogonal vanishing
points are linearly independent. Hence, there are at least three
sphere images for estimating ω.
From the above-mentioned discussion, the proposed cam-

era calibration algorithms are summarised as follows:
Step 1: Take n (n ≥ 3) sphere images at different orien-

tations, and extract the pixel coordinates of three sphere
images on each image. Further, fit the equations of the three

sphere images cni (i = 1, 2, 3) by using the least-squares
method [36].
Step 2: Using Eq. (24), compute the generalised eigen-

values ηnk , µnk and generalised eigenvectors wnknnn, znkn of
conic pairs (cn1, cn2) and (cn1, cn3) on each image.
Step 3: Sort the generalised eigenvalues ηnk , µnk of matrix

pairs (cn1, cn2) and (cn1, cn3) according to the absolute signa-
ture of the singular matrix. Furthermore, the vanishing points
vnj (j = 1, 2) on the world plane πn1 can be obtained using
Proposition 3.
Step 4:Obtain ln∞ on πn1 using Eq. (27). On the one hand,

estimate In and Jn on cn1 from Eqs. (28) and (29). On the
other hand, compute two pairs of orthogonal vanishing points
vnj and ṽnj according to the relationship between the diameter
and conjugate diameter of cn1, i.e. from Eqs. (33) and (34).
Step 5: Determine the IAC ω according to the constraint

given by Eq. (48) or Eq. (49) of the IAC, and then recover the
intrinsic parameters K by Cholesky factorisation and matrix
inversion of ω.
Step 6: Obtain the extrinsic parameters Ri of the cameras,

the radical distortion coefficients k1 and k2, and sphere cen-
tres Oi, as described in III. C and D.

F. MULTIPLE CAMERA CALIBRATION
In practice, our approach can be adopted for the calibration
of multiple cameras. Firstly, three spheres are placed in the
common field of view (FOV) of the cameras. Subsequently,
the intrinsic parameters of each camera can be determined
using the algorithms described in the previous subsection.
Without loss of generality, for multiple cameras, the first
camera coordinate system is chosen as the world coordinate
system. After recovering the intrinsic parameters of each
camera, the rotation R and translation T with respect to the
world coordinate frame can be estimated [37], [38]. Hence,
the relative positions of the cameras can easily be obtained.

G. SINGULARITIES
As in other algorithms [20], [23], several singularities exist in
the proposed calibration procedure. A very important prop-
erty is described in [39]. If two conics c1, c2 intersect at four
different points, i.e. if the equation |c1 − ρc2| = 0 has no
repeated roots, they have one and only one common self-polar
triangle. If conics c1, c2 have only two contact points, i.e. if
the equation |c1 − ρc2| = 0 has a double root ρ1 and the
rank of the matrix c1 − ρ1c2 is 1, they have infinitely many
common self-polar triangles with one of the vertices serving
as the intersection point of two common tangents. In all other
cases, two different conics c1, c2 have no common self-polar
triangles.

When two conics c1, c2 neither intersect at four different
points nor are tangent to two points, no common self-polar
triangles exist for them. As shown in Fig. 3, the situation in
which conics c1, c2 are tangent to point w2 (w3) corresponds
to one type of the above-mentioned degenerate cases without
common self-polar triangles 1w1w2w3. The three vertices
w1,w2,w3 of a common self-polar triangle are located on
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FIGURE 3. If two sphere images are tangent to a point, they have no
common self-polar triangles.

line lw, and vertex w2(w3) is the common tangent (double)
point of two conics c1, c2. In this case, there is no calibra-
tion method in the literature [19], [33] that can be utilized
to distinguish the vanishing point and the projection of the
sphere centre. Due to lack of space, we demonstrate only
a degenerate case in which no common self-polar triangles
exist for conics c1, c2 in this paper. However, for various
singular cases of sphere images without common self-polar
triangles, the problem of camera calibration can be solved
from a new perspective since the proposed method only
utilizes the algebraic properties of the sphere images and is
unrelated to the position of the sphere images.

IV. EXPERIMENTS
The previous sections presented the theoretical part of our
study. Next, we describe the numerous simulations and actual
experiments that were conducted to evaluate the performance
of the proposed calibration algorithms. In the simulations,
we tested the algorithm sensitivity under different noise levels
as well as the influence of the sphere radius and number of
images on the accuracy of the algorithm. Meanwhile, in the
actual experiments, we estimated the camera pose according
to the actual intrinsic parameters obtained using the algo-
rithms. In addition, analyses of the rotation angle error and
Euclidean distance of the position are presented. Finally, the
proposed algorithms are compared with other algorithms to
demonstrate their effectiveness and feasibility. In the descrip-
tions of the experiments, the calibration algorithms based on
the images of the circular points and orthogonal vanishing
points are denoted as ICP andOVP, respectively. Themethods
using the bi-tangent lines of the projection conics [33], semi-
definite programming [35], the common pole and polar with
respect to two sphere images [20], grid spherical images [17],
and homography deduced by conic features [40] are denoted
as BTL, SDP, CPP, GSI, and HCF, respectively.

A. SIMULATION
Let the initial intrinsic matrix of the simulation camera be

K =

 680 0.7 320
0 650 240
0 0 1

. (50)

According to our calibration algorithms, the camera can
be fully calibrated using at least three sphere images. Hence,
we simulated three sphere images, one of which is shown
in Fig. 4.

FIGURE 4. Sphere image generated by simulation camera.

TABLE 1. Mean values and percentage errors (in parentheses) of
recovered intrinsic parameters based on synthetic data.

In each image, we used the Canny edge detection opera-
tor [41] to extract 200 data points from the conic image of the
spheres and then obtained the equation of each sphere image
using the least-squares method [36]. Furthermore, we per-
formed 500 independent experiments and obtained the aver-
age values and percentage errors of the intrinsic parameters
based on the five approaches listed in Table 1. The results
clearly show that ICP and OVP perform better than SDP,
CPP, and HCF in terms of estimating the intrinsic parameters;
however, the accuracies of our algorithms are slightly lower
than that of BTL. In addition, GSI exhibits higher precision
than ICP and OVP, because it involves the use of a precisely
made grid sphere, which can provide more constraints.

The performances of the proposed algorithms and those
of BTL, SDP, CPP, GSI, and HCF were also analysed in
the presence of noise. Here, 200 pixel points on each sphere
image were corrupted with zero-mean Gaussian noise with
different square deviations σ from 0 to 3 pixels. Further,
the noisy points were fitted to obtain each sphere image. For
each noise level σ , we performed 500 independent trials using
the five above-mentioned algorithms and computed the mean
values of the standard deviations of the intrinsic parameters
over each run. Because the performances of rf and f , u0, and
v0 are similar, we compared only the data of f , s, and u0,
as shown in Figs. 5(a)–(f). It is easy to see from Fig. 5 that the
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FIGURE 5. Sensitivity comparison of five calibration algorithms with different noise levels. The average values of f , s, and u0 are plotted
in (a), (c), and (e), respectively. The standard deviations of f , s, and u0 are plotted in (b), (d), and (f), respectively.

calibration results of the five algorithms are extremely close.
Moreover, the accuracy of the estimated intrinsic parameters
decreases as σ increases. However, at the same noise level,
ICP performs better than BTL and HCF owing to the exis-
tence of some critical cases. Therefore, the results confirm
the feasibility and effectiveness of the proposed calibration
algorithms.

We also explored the effects of the sphere radius and num-
ber of images on the calibration accuracy. Firstly, we fixed
the camera and three spheres. Then, we applied our ICP
and OVP algorithms to the three spheres with radii varying
from 5 to 30 mm. For each radius, we performed 500 inde-
pendent trials to compute the average relative error between
the recovered intrinsic parameters and true values, as shown
in Fig. 6. According to Fig. 6, the relative errors of the
intrinsic parameters decrease significantly with increasing
sphere radius. It is possible that the larger the radius of the
sphere in a fixed position, the larger is the projection; hence,
more contour points can be obtained and more accurate conic

fitting can be achieved. In addition, we generated 15 simu-
lated images of spheres with a radius of 20. Next, based on the
proposed ICP andOVP algorithms, the camera was calibrated
by using between 3 and 15 randomly chosen images. For
each number of images, we performed 500 independent trials
and then analysed the relative error of the estimated intrinsic
parameters. The experimental results (as shown in Fig. 7)
indicate that the relative error between the estimated and true
values decreases as the number of images increases. Thus, an
increase in the number of images will reduce the singularity
of the algorithm.When the image of the sphere centre is close
to the principal point, the experimental results indicate poor
performance [20]. Therefore, the calibration accuracy may
be affected by the initial location of the sphere, which is not
controllable in the case of our algorithms.

The runtime of each method was calculated using the
MATLAB R2016b platform running on a 2.1 GHz Intel Core
i3 processor. The comparison results are presented in Table 2.
From Table 2, it is evident that the runtime of SDP is
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FIGURE 6. Relative errors of recovered parameters corresponding to
different sphere radii based on (a) ICP and (b) OVP.

FIGURE 7. Relative errors of recovered parameters corresponding to
different numbers of images based on (a) ICP and (b) OVP.

approximately 13 times longer than those of ICP and OVP,
possibly because SDP is a non-linear approach used to solve
a convex optimisation problem. Further, the runtimes of BTL
and GSI are around 10 times longer than those of ICP and
CPP because BTL and GIS consider parameter optimisation.
In addition, ICP is slightly faster than CPP. Meanwhile, HCF
requires 12 spheres for camera calibration, which is tedious
and cumbersome.

TABLE 2. Runtime (in seconds) of five algorithms.

TABLE 3. Results of calibration with actual data.

FIGURE 8. Three images of (a), (b), (c) spheres on a chessboard captured
with a digital camera.

B. ACTUAL DATA
After the simulation experiment, actual images were
extracted to evaluate the proposed algorithms further.
Because GSI requires highly accurate tailor-made grid
spheres and HCG requires 12 spheres for camera calibration,
we did not use GSI and HCF in these tests. We placed three
spheres with diameters of 40, 50, and 60 mm on a chessboard
with 10×10 feature points, in which the horizontal or vertical
spacing between two adjacent feature points was 24 mm
and the target accuracy was 0.1 mm. In the experiment,
images of the scene were captured by an industrial camera
in different directions and positions, where the effective focal
length of the camera was 16 mm, the clear image range was
250–350 mm, and the image resolution was 1132×1029
pixels. During the movement, 50 images were extracted and
the three clearest images were selected as the calibration
images (see Fig. 8).

First, the Canny operator [41] is employed to detect the
edges of the three sphere images using theMATLAB toolbox,
as shown in Fig. 9. Then, a fast and effective ellipse detec-
tor [36] is used to fit the sphere images.

To obtain more stable and robust results, we used the five
algorithms to perform 30 independent experiments and took
the average as the final calibration result. Table 3 lists the
intrinsic parameters estimated using these methods. As can
be seen, the calibration results of the five algorithms are
extremely similar. Therefore, our algorithms are effective and
feasible in a certain error range.

The approach described by Zhang [42] is extensively
adopted owing to its high accuracy and robustness.
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FIGURE 9. (a)-(b) Edge detection of sphere images using Canny operator.

FIGURE 10. Multi-camera calibration network.

Therefore, taking the results obtained by Zhang as the true
values, the calibration errors of the five algorithms were
analysed with respect to the method proposed by Zhang.
As noted earlier, our algorithms can estimate the intrinsic
and extrinsic parameters of multiple cameras simultaneously.
We used five industrial cameras and three spheres with radii
of 50 mm to establish a multi-camera system. The chessboard
was placed in front of these cameras for comparison with the
method established by Zhang, as shown in Fig. 10.

For further comparison, we firstly obtained the intrin-
sic parameters of the five cameras using the five algo-
rithms. In addition, the sphere centre reconstructed using our
approach was used to estimate the direction and position of
each camera relative to the first camera [33]. Thus, the cali-
bration errors of the five methods were analysed with respect
to the method proposed by Zhang. We let the rotation matrix
estimated using method of Zhang be R0 and those estimated
by the five algorithms be Rm (m = 1, 2, 3, 4, 5). The angular
distance ςm = d 6 (R0,Rm) between two rotations was
used to evaluate the relative rotation compared to the ground
truth. φ0 and φm were assumed to be quaternion represen-
tations for rotations R0 and Rm. Then, the angular distance
ςm = 2 arccos

(∣∣∣φ−10 φm

∣∣∣) could easily be computed. The
results are shown in Fig. 11(a). For the difference between
positions t0 and tm, we used the Euler distance ‖t0 − tm‖2
between two translation vectors, as shown in Fig. 11(b),
where ‖·‖2 indicates the 2-norm. These images demonstrate
that, the angular errors of ICP and CPP are more concentrated
within 1.8◦, while the Euler distance for the translations is
within the range of 0–2.3 mm. OVP and SDP have slightly
lower accuracy, with angular errors of 2.0◦ and 2.8◦ and
Euler distances of 3.1 mm and 4.0 mm, respectively. As BTL
considers the distortion coefficient, it is more accurate and
stable. The angular error of BTL is 1.2◦, and its Euler distance
is 1.6 mm.

FIGURE 11. Multi-camera calibration from actual images. (a) Angular
distance of rotations based on five algorithms compared to the ground
truth. (b) Euler distances of locations based on five algorithms compared
to the ground truth.

V. CONCLUSION
We studied projective invariants of sphere images in a pin-
hole camera and performed camera calibration. A right
circular cone is formed by the projection centre and a
sphere. By analysing the properties of the right circular cone,
we discovered the algebraic relationship between two sphere
images. Specifically, the cone pair encodes an infinity point.
Subsequently, the vanishing points were determined using the
generalised eigenvalue and eigenvector of the corresponding
conic pair. These discoveries can be considered as extensions
from the conic in the 2D plane to the cone in 3D space.
However, proving the feasibility of these extensions is
not trivial; it requires rigorous proofs rather than intu-
itive guesswork. The imaged circular points or orthogonal
vanishing points on the image plane can be estimated by
obtaining the vanishing points. Consequently, the camera
calibration can be completed using at least three sphere
images. In general, cameras exhibit significant lens distor-
tion. Accordingly, we explored a method of determining
the distortion parameters based on the properties of the
right circular cone. In addition, by studying the singularities
of sphere images, the proposed approach has wider appli-
cability than the other referenced paper using two sphere
contour.

However, the calibration process will fail in some critical
cases. First, when the world plane containing the contour
circle of the sphere is parallel to the image plane, because the
vanishing point estimated from two sphere images is close to
the infinity point on the image plane, the calibration results
show poor performance. Second, when two vanishing points
estimated by any three sphere images coincide, then the three
sphere images can provide only two constraints; hence, cam-
era calibration cannot be completed. However, in practice,
precise calibration results can easily be achieved, especially
when there are at least three sphere images. Another advan-
tage of our approach with the sphere as the calibration object
is that the camera can be located at various angles, unlike
in methods based on the chessboard, such as the method of
Zhang.
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In general, our algorithms require only three sphere images
to calibrate the camera linearly without the initial values of
the intrinsic parameters. The proposed calibration methods
were implemented in both simulations and actual experi-
ments. The results confirmed that the proposed calibration
algorithms are feasible and effective. In this study, the pri-
mary purpose was to compose a multi-camera network.
Because the calibration for each camera is independent,
numerous parameters must be estimated. Therefore, the itera-
tivemethods are very sensitive to noise and are often unstable.
In the future, we will explore methods of overcoming these
difficulties.
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