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ABSTRACT In recent years, in the field of education technology, artificial intelligence tutors have come to
be expected to provide individualized educational services to help learners achieve high levels of academic
success. To this end, AI tutors need to be able to understand the current status and preferences of a learner and
then suggest appropriate learning contents accordingly. However, it is challenging to monitor learner status
and preferences continually and to recommend appropriate educational services. In this paper, we propose
an individualized AI tutor as an integrated system of three developmental learning networks (DLNs) by
extending a deep adaptive resonance theory (Deep ART) network, a neural network capable of incremental
learning. Specifically, the learner status DLN is able to easily add new input channels about learner status
without disrupting existing classifiers. The learner preference DLN is to categorize learner preferences based
on frequency as well as sequence of events. The learner experience DLN is updated to immediately reflect
alteration of the educational effectiveness in the current classification. Our AI tutor is currently embedded
in a commercialized mobile application for teaching the Korean language to children. Experimental results
show that the AI tutor application efficiently helps children learn the Korean language.

INDEX TERMS Adaptive resonance theory, artificial intelligence tutor, individualized education, machine
learning, online mobile application.

I. INTRODUCTION
Educational technology (Edutech) gives learners endless
opportunities to learn new things and allows learners to cus-
tomize their learning, taking into account their abilities and
mobility. The Edutech industry is growing at 24% annu-
ally, and the global markets will reach over $252 billion
by 2020 [1] thanks to the state-of-the-art technologies [2].
In recent years, artificial intelligence tutors are receiving
attention as virtual teachers offering a personalized approach
for each student through efficient data analysis. For example,
AI tutors can track and visualize learning outcomes to support
self-learning and can replace expensive private teachers in
certain subjects, such as language learning [3]–[5].

Identifying the learner’s present levels and status, and peri-
odically reviewing education plans is the most important to
maximize educational effectiveness [6]. Therefore, AI tutors
providing individualized educational services have to track
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the learner educational levels and status and recommend
educational goals and contents [7]. Besides this, AI tutors
need to adapt to learning progress and review learning plans;
as such, AI tutors should be able to learn through their own
experiences, incrementally.

The ART network, a neural network, is appropriate for
implementing an individualized AI tutor since it was orig-
inally developed to learn data incrementally [8]. Initially,
the ART network was only able to deal with binary input
patterns. By the work of many researchers, the ART network
has been improved so that it can handle complicated input
patterns [9]–[11]. Recently, the ART network was utilized
for classification and recommendation [12], [13], hybrid data
regression [14], topological clustering [15], implementation
of long termmemory [16]–[19], and interactive learning [20].
However, ART networks still have limitations in direct appli-
cation to AI tutors. First, ART networks cannot add new
input channels. It is difficult to predefine all input channels.
In order to implement AI tutors, therefore, ART networks
should be able to take into account new types of information
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about the learner status observed during the learning process.
Second, ART networks should be extensible to handle the
frequency of events of input channels. Although conventional
ART networks can deal with a temporal sequence of events,
learner preferences are related not only to the sequence but
also to the frequency of events. Third, the classifications
of ART networks needs to be flexible both in expanding
and contracting ways. Real-time alteration of the educational
effectiveness should be immediately reflected in the current
classification of the ART network.

In this paper, we propose an AI tutor that provides indi-
vidualized education programs to learners considering their
current status and preferences. To this end, we develop
an integrated system of three developmental learning net-
works (DLNs): learner status DLN, learner preference DLN,
and learner experience DLN based on the Deep ART net-
work [16]. Specifically, we propose a new algorithm for each
DLN; individual algorithms respectively deal with the limi-
tations as mentioned above. First, an input channel addition
algorithm is developed to adapt dynamically changing input
channels in the learner status DLN. For the learner preference
DLN, an event bundle encoding algorithm is proposed to
consider the frequency of events. Finally, an alternative tem-
plate learning algorithm is applied to reflect the educational
effectiveness of the learner experience DLN in real-time.

By conducting a set of extensive simulations, we show
that our proposed algorithms efficiently resolve the limita-
tions of existing ART networks. Our individualized AI tutor
implemented using the proposed DLNs is currently embed-
ded on a commercialized mobile application for teaching
the Korean language to children. In this application, the AI
tutor helps children to learn the Korean language in the
most efficient and interesting way. The application is avail-
able at https://play.google.com/store/apps/details?id=com.
h2kresearch.preciousHangul&hl=en_US

The remainder of this paper is organized as follows.
Section II introduces the preliminaries for better under-
standing. In Section III, we present the overall structure of
the proposed individualized AI tutor, along with a detailed
description of it. In Section IV, we analyze simulations and
conduct a set of comprehensive experiments, using mobile
applications to verify the performance of the proposed sys-
tem. Finally, conclusion and further work follow in Section V.

II. PRELIMINARIES
A. FUSION ART NETWORK
Fusion ART network is basically an unsupervised incremen-
tal learning model, which has multiple input channels [10].
The basic structure of the Fusion ART network is shown
in Fig. 1. The learning processes are described in the
following.

Complement Coding: Let kI = (k I1, k I2, . . . , k In) be the
input vector of the k-th channel kF1 of the input field where
k ∈ {1, 2, . . . , c} is the channel number, c is the number of
channels, and k Ii ∈ [0, 1]. Then, each input channel generates

FIGURE 1. Basic structure of fusion ART.

FIGURE 2. Rectangular area that a weight vector represents.

an activity vector kx = (kI, k Ī) that concatenates the input
vector kI and its complement vector k Ī = 1−kI. The purpose
of this process is to normalize the input vector and to prevent
weights from converging to zero.

Code Activation: The j-th node in the category field F2 is
activated from x = [1x, 2x, . . . , cx], by the following choice
function:

Tj =
c∑

k=1

kγ
|
kx ∧ kwj|

α + |kwj|
(1)

where Tj is an activation value of the j-th node, kwj is a weight
vector associated with the j-th category node, and the k-th
input channel, kγ ∈ [0, 1], is a contribution parameter that
indicates how much each input channel contributes to the
choice function, α = 0+ is a choice parameter, ∧ is the fuzzy
AND operator defined as (pi ∧ qi) ≡ min(pi, qi), and | · | is
the norm defined as |p| ≡

∑
i pi.

Theweight vector kwj = (kuj, k v̄j) represents a rectangular
area kRj bounded by kuj and kvj, which are a bottom-left
corner point (closest to the origin) and a top-right corner point
(farthest from the origin), respectively, as shown in Fig. 2.
|
kx ∧ kwj| = |

kwj| if the input kI is located in kRj, or |kx ∧
kwj| < |

kwj| if the input kI is outside of kRj.
Code Competition: The category node that has the largest

choice function value is selected and indexed as

J = argmax
j∈SF2

{Tj} (2)

where SF2 = {1, 2, . . . ,m} is the set of indexes of nodes in
the category field F2.

Template Matching: In the template matching process,
the most appropriate category for the activity vector is found
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FIGURE 3. Basic structure of Deep ART network.

to update the weight of the category. After the index J is
chosen, system checks if the match function kmJ meets the
following resonance condition:

kmJ =
|
kx ∧ kwJ |

|kx|
≥

kρ (3)

where kρ is a vigilance parameter that determines the
resonance.

For all k , if the resonance condition is satisfied, which
means that kx belongs to the J -th category, the weight vector,
kwJ , is updated. If there is a certain k that does not satisfy
the resonance condition, i.e., kmj < kρ, the current J node is
rejected, Tj is set to zero, and the same processes are repeated
from the code competition process. If no node satisfies the
resonance condition, a new category node is created, and an
associated weight vector is initialized by kx.

Template Learning: If the resonance condition is satis-
fied, the weight vector kwj is updated as follows:

kw(new)
J = (1− kβ)kw(old)

J +
kβ(kx ∧ kw(old)

J ) (4)

where kβ ∈ [0, 1] is the learning rate of the k-th channel.
By this operation, the rectangular area kRj represented by
kw(old)

J expands up to an area that includes both the previous
rectangular area and the input kI.

B. DEEP ART NETWORK
Deep ART network was developed to learn temporal infor-
mation for biologically inspired episodic memory [16]. This
network has one more layer than the Fusion ART network,
as depicted in Fig. 3. The bottom network is the same as
the Fusion ART network with a similar learning procedure,
but the category field F2 is re-described as an event field.
The event field represents a temporal sequence of events
with the input, buffer and output channels. The top network
categorizes the sequence as an episode, where the episodic
field takes the input from the event field using only a single
channel.

Episode Encoding: The Deep ART network subdivides
the event field into three channels. Let iy, by, and oy be vectors
of the input channel, the buffer channel, and the output chan-
nel in the event field, respectively. The input channel vector
iy represents which event node is activated by setting the
element indicating the activated node to 1 and other elements

FIGURE 4. Overall structure of individualized AI tutor.

to 0 as follows.

iyj =

{
1, if j = J .
0, otherwise.

(5)

The buffer channel vector by is assigned to buffer the output
channel vector oy, i.e. by = oω · oy(old). oω is the weight of
the output channel. The output channel vector is calculated
by combining the input channel vector and the buffer channel
vector, as follows:

oy(new) = iω · iy+ bω · by (6)

where iω and bω are the weights of the input channel and
buffer channel, respectively. As a duplicate event is not over-
written due to the additional channels, temporal sequences
of events can be stored and retrieved without the loss of
information [16].

Episode Learning: The output vector from the event field,
which is encoded as an episode, is stored in the top network.
As there is only a single input channel, the choice function Tp
for the p-th node in the episode field F3 is as follows:

Tp =
|y ∧ wp|

|wp|
(7)

wherewp is the weight vector for the p-th node in the episode
field.

III. INDIVIDUALIZED AI TUTOR
A. OVERALL STRUCTURE
The proposed individualized AI tutor is based on the inte-
gration of three DLNs, as shown in Fig. 4. By integrating
three different types of networks, the proposed system can
identify the learner status and provide individualized educa-
tional services simultaneously. Each DLN has its own role.
The two DLNs below categorize the learner status and prefer-
ences, and the above DLN recommends appropriate learning
contents. The roles and features of each DLN are described
sequentially in the following subsections.

B. LEARNER STATUS DLN
The learner status DLN is designed to categorize the cur-
rent academic status of a specific learner. Learning status
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FIGURE 5. Input channel addition algorithm: Red, green, yellow circles
represent the new inputs that come into the network after a new channel
has been added. (a) Conventional algorithm. (b) Input channel addition
algorithm.

is an academic achievement of learning objectives during
specific learning periods. The proposed network is based on
the Fusion ART network, which stores associative mappings
of input patterns acrossmultiple channels. Each input channel
in the learner status DLN represents a particular pattern space
that distinguishes the learner status. However, the conven-
tional networks are designed to handle only fixed input chan-
nels, without taking into account changes in input channels
[10]. In practical applications, it is often possible to observe
newmetrics or features. It is also hard to define all channels of
input features before the learning process. For these reasons,
we propose an input channel addition algorithm to adapt to
dynamic environments and continue developmental learning.

Input channel addition algorithm: Fig. 5 shows the dif-
ference between the input channel addition algorithm and the
existing one. When a new channel is added, the conventional
learning process raises a problem that merges even inputs of
different categories into the same category. The addition of
a new channel means that a new pattern space has appeared,
which becomes involved in associative mapping. Right after
a new channel is added, there is no information about asso-
ciative mapping between existing categories and the new
channel. Therefore, it is necessary to use input data to find
out the information about associative mapping. In Fig. 5, two
categories, which are represented by red and green rectangles,
have been created when only two channels exist. After a
new channel is added, four inputs enter one by one. Each
input consists of the three channels’ vectors. In the proposed
algorithm, yellow inputs are separated into two categories
because those inputs belong to different categories in the prior
two channels.

Once a new channel is added, the input channel addition
algorithm deals with the existing channels and the new chan-
nel separately. A few nodes in the category field have already
been active before input channels are changed. The input from

Algorithm 1 Input Channel Addition Algorithm

Input: I = [1I, 2I, ..., cI, aI]
1: Separate the existing and new channels from the input.

E = {1I, 2I, ..., cI},N = {aI}
2: For the existing channels, calculate the complement code

and the activation values Tj by using (1).
3: For the existing channels, find the nodes that satisfy the

resonance condition as in (3), in order from the highest
activation value to the lowest value.

4: if There is no node that satisfies the resonance condition.
then

5: Create the (m + 1)-th node, and initialize the weight
kwm+1 = (kI, k Ī), k ∈ {1, 2, . . . , c, a}

6: else
7: Among the nodes that satisfy the resonance condition

in Step 3, find the nodes that satisfy the resonance
condition by the new channel.

8: if There is no node that satisfies the condition. then
9: Create the (m+1)-th node, and initialize the weight

awm+1 =
ax, kwm+1 =

kwJ , k ∈ {1, 2, . . . , c}
J is the index of the most highly-activated node in
Step 3.

10: else
11: Update the weight wJ for all k ∈ {1, 2, . . . , c, a} by

using (4). J is the index of the node that satisfies the
resonance condition for all channels in Step 7.

12: end if
13: end if

the existing channels is used to check whether it belongs to
the activated nodes or not. If it doesn’t belong to any activated
node, the new node is created, which has the initial weight set
to the input from both channels. If it belongs to the activated
node, it is checked whether the input from the new channel
also satisfies the resonance condition of the activated node.
If the input from the new channel satisfies the resonance
condition, the weight of the activated node is updated by the
input. If there is no node satisfying the resonance condition,
the new node is created, which has the initial weight of the
new channel set to the input from the new channel. On the
other hand, the initial weights of the existing channels are
set to the weights of the node activated by the input from
the existing channels. Therefore, by separating channels,
the proposed algorithm maintains existing information and
simultaneously performs associative mapping to new pattern
space.

C. LEARNER PREFERENCE DLN
The learner preference DLN is developed to categorize the
learning preference of a specific learner. Learning preference
is a learning style that appears in the learning process and
includes complicated characteristics such as learning habits,
learning methods, and learning tips. The developed network
is based on the Deep ART network, which deals with the
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FIGURE 6. Structure of learner preference DLN.

FIGURE 7. Example of the event sequence encoding: There are four
events represented by the rectangle areas in the graph. As four events
occur sequentially, the output vector oy is calculated by using (6). iω, bω,
oω are set to 1, 0.5, and 1, respectively.

temporal sequence of events. An event means a situation that
the learner has met or a certain activity that the learner has
done. High incidence of an event indicates that the learner
prefers to learn the same way. However, conventional net-
works are not designed to deal with an accumulation of
events. We devise the event bundle encoding algorithm to
store the number of times events occur in an episode. Fig. 6
shows the structure of the learner preference DLN. The algo-
rithm is delineated in the following.

Event bundle encoding algorithm: Fig. 7 shows an
example of event sequence encoding in the Deep ART net-
work [16]. The events occur according to the following
sequence: 1, 4, 2, and 3. Although the event1 occurs only
once at all of the sequences, the element values associated
with event1 are all different. The event sequence encoding
process cannot describe the number of times the events occur.
To solve this issue, we propose the n-th order event bundle by
using additional buffer layers.

The event bundles are defined as small segments included
in the entire event sequence. One event bundle represents
a partial pattern of consecutive events categorized from the

bottom layer in the learner preference DLN. The 1st order
event bundle is the same as each event that constitutes
the entire sequence. The n-th order event bundle is a par-
tial sequence that consists of n events. For example, if the
sequence consists of 10 events, the 1st order event bundles
are 10, but the 5th order event bundles are just 6.

Let iy = (iy1, iy2, . . . , iym) denote the input channel vec-
tor. The 1st order event bundle e

1y is the same as the input
channel vector iy. When the J -th event occurs, elements of
the input channel vector are as follows:

iyj =

{
1, if j = J .
0, otherwise.

(8)

Similar to the Deep ART Network [16], the proposed
algorithm uses buffer channels to encode the n-th order event
bundles because the inputs are entered one by one. The
difference is that the incidence is encoded, not the order of
events, as follows:

oy(new) = e
ny+

oy(old) (9)

oȳ(new) =
1
N
·
oy(new) (10)

where N is the number of n-th order event bundles included
in the entire sequence. The normalized output channel vector
oȳ is calculated by dividing the vector oy by N .
The 1st order event bundle can be expandable to a

higher-order event bundle. The 2nd order event bundle e2y has
the same number of dimensions as the 1st order event bundle,
but the number of events used for the calculation is different.
Two consecutive events are used to calculate the 2nd order
event bundle, as follows:

e
2y =

iω · iy+ bω · by (11)
by = e

1y
(old)
=

iy(old) (12)

where iω, bω ∈ [0, 1], and iω+bω = 1. Each 2nd order event
bundle e

2y represents the sequence of two events. As in (10),
the final output channel vector oy encodes the incidence of the
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2nd order event bundles. As the event bundle expands from
1st order to 2nd order, two buffer channels are needed: one is
for the 2nd order event bundle, and the other is for the output
channel vector.

Identical to the expanded 2nd order event bundle, it is
possible to expand the n-th order event bundle. The n-th
order event bundle requires one buffer channel more than the
(n− 1)-th order event bundle, as follows:

e
ny =

iω · iy+ bω · by (13)
by = e

n−1y
(old) (14)

where iω, bω ∈ [0, 1], and iω + bω = 1. There are n
output channels in the event field to allow encoding of all n-th
order event bundles simultaneously. For each output channel,
one buffer channel is required to deal with sequential inputs.
On the other hand, every output channel shares the input
channel. The n-th order event bundle is calculated through
the current input and the (n − 1)-th order event bundle.
Therefore, it is necessary to connect each event bundle to
one higher-order event bundle by using an additional buffer
channel.

D. LEARNER EXPERIENCE DLN
The learner experience DLN is designed to store the learn-
ing experience of a specific learner. Learning experiences
are learning records that have been performed by learners
whose status and preferences are identified. And they are also
the learning outcomes that show the effect of recommended
contents. New learning experiences perpetuate existing mem-
ories, but also sometimes edit memories about previous expe-
riences. In education, for example, the education effect may
be different, even with the same content for the same learner.
Depending on the educational effectiveness, the network has
to decide whether to recommend the learning content or not.
To this end, the classifications of the network need to be flex-
ible both in expanding and contracting ways. For the learner
experience DLN, alternative template learning algorithm is
devised.

Alternative template learning algorithm:The alternative
template learning algorithm is different from the conventional
template learning algorithm in that there are two weights
between the one channel and one category. The learning expe-
rience updates these two weights simultaneously. Depending
on the educational effectiveness, one expands and the other
contracts the template. Expansionmeansmemorizing the new
data, while the contractionmeans discarding the existing data.

The learner experience DLN is based on the Fusion ART
network. The network has three types of input channels. Two
input channels deal with the clustering results of the learner
status DLN and learner preference DLN. The last channel
handles the learning content. In the learning content channel,
kwj is a base weight vector associated with the j-th category
node and the k-th input channel. Each base weights has
two alternative templates: kwjH and kwjL are high and low
effectiveness templates, respectively.

FIGURE 8. Simulation setup for the input channel addition algorithm:
(a) Number of data samples. (b) Synthesized input. (c) Types of mean and
variance.

When a high-effectiveness content kxH comes in, if the
content belongs to the J -th category the alternative template
learning algorithm is as follows:

kw(new)
JH = (1− βI )kw

(old)
JH + βI (

kxH ∧ kw(old)
JH ) (15)

kw(new)
JL = (1+ βO)kw

(old)
JL − βO(

kxH ∧ kw(old)
JL ) (16)

where βI and βO are the learning rates for the inter-
nal division and outer division, respectively. According
to (15), the high effectiveness template kwJH expands to the
high-effectiveness content kxH . On the other hand, the area
of the low effectiveness template kwJL is reduced by (16).
When a low-effectiveness content kxL comes in, if the

content belongs to the J -th category the alternative template
learning algorithm is as follows:

kw(new)
JH = (1+ βO)kw

(old)
JH − βO(

kxL ∧ kw(old)
JH ) (17)

kw(new)
JL = (1− βI )kw

(old)
JL + βI (

kxL ∧ kw(old)
JL ) (18)

where βI and βO are the learning rates for the internal divi-
sion and outer division, respectively. The area of the high
effectiveness template kwJH is reduced by (17). On the other
hand, according to (18), the low effectiveness template kwJL
expands to the low-effectiveness content kxL .

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. INPUT CHANNEL ADDITION ALGORITHM
The simulation analysis was conducted to verify the proposed
input channel addition algorithm. Fig. 8 shows the experi-
mental setup of the synthesized inputs and groups. The inputs
were generated in 50 groups according to a combination
of mean and variance values. Each group was composed
of 200 input data. The inputs entered separately in two phases
because an input channel was added to the network in the
middle of the process.

Fig. 9 shows the index of the activated category cor-
responding to the input. After a new channel was added,
the number of activated categories were increased rapidly.
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FIGURE 9. Index of activated categories.

FIGURE 10. Clustering results: (a) Conventional algorithm without an
additional channel. (b) Conventional algorithm with an additional
channel. (c) Proposed algorithm with an additional channel.

The graph was blue until the 100th data sample. After that,
it became red. There were only four categories before the
input channel addition.

Fig. 10 shows that the proposed algorithm maintained the
prior information. All graphs shows the categories generated
according to the same inputs. Fig. 10(a) is the result without
the input channel addition. Fig. 10(b) and (c) include the
results after adding the new channel. In Fig. 10(a), there
are only four categories; however, in other figures, there are
more categories. This means that the different types of inputs
entered are due to the new channel. However, inputs separated
at first merged into the same new category when the proposed
algorithm was not used, as shown in Fig. 10(b). Besides,
some templates were shrunken compared with the original
templates. On the other hand, the proposed algorithm still
distinguished the inputs that had been categorized separately
before. It seems to divide the original category into several
sub-categories.

Fig. 11 shows the accuracy of the proposed algorithm.
The accuracy was computed by comparing the category acti-
vated after input channel addition with that assigned before.
Fig. 11(a) and (b) show the results when the variances
were 0.05 and 0.1, respectively. The higher the variance is,
the harder it is to cluster data. Moreover, the data had a higher
density due to the position of means as x increased. In the
graphs, the blue and red indicate the conventional method
and the proposed algorithm, respectively.Most red had higher
accuracy than blue. Although it was harder to cluster data
in Fig. 11(b), red still had better performance.

B. EVENT BUNDLE ENCODING ALGORITHM
As shown in Fig. 12, the following inputs were synthesized to
compare with the time sequence encoding. The synthesized

FIGURE 11. Accuracy results: Proposed algorithm and the conventional
algorithm are red and blue, respectively. (a) υ = 0.05. (b) υ = 0.1.

FIGURE 12. Synthesized event sequence: (a) Example of a sequence for
encoding the 1st order event bundle. (b) Example of a sequence for
encoding the 2nd order event bundle.

event sequence was composed of 20 events regarded as hav-
ing virtually occurred. Each event might be one of the ten
types of events. We defined ten experimental conditions for
simulation analysis. The first five conditions were designed
for the 1st order event bundle; others were for the 2nd order.
Of the 20 events, the determination of the including rate of
the target event was different in each condition.

We conducted the 1st order event bundle encoding and the
time sequence encoding according to the first five conditions.
In each condition, 1, 2, 4, 8, or 16 event1s were included.
According to these conditions, 100 event sequences were
randomly generated to verify that the event bundles stored the
frequency of a single event. Fig. 13 shows a comparison result
between the event bundle encoding and the time sequence
encoding. In the figure, the red point represents the values of
the first element of the event bundle encoding; the blue is the
value of the first element of the time sequence encoding. The
first element of each encoding is related to the event1. In the
case of the event bundle encoding, the value increased in pro-
portion to the number of event1s included in each sequence.
However, the time sequence encoding did not represent the
number of event1s included at all. As a result, only the event
bundle encoding algorithm stored the frequency of a single
event.
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FIGURE 13. Comparison result between the 1st order event bundle
encoding and the time sequence encoding: From the first to the 100th
sequence sample, samples were generated according to the first
condition. The samples included only one event1. From the 101st to
200th, just two event1s were included in the entire sequence. Every
following 100 samples, samples were generated according to the
different conditions, in the serial order mentioned below.

FIGURE 14. Comparison result between the 2nd order event bundle
encoding and the time sequence encoding: Red points are associated
with the 2nd order event bundle encoding. Blue points are associated
with the time sequence encoding. (a) Value of the first element of the
encoding vector. (b) Value of the second element of the encoding vector.

We also conducted the 2nd order event bundle encoding
according to the last five conditions. In each condition, 1, 2,
4, 6, or 8 sequences composed of event1 and event2 were
included, respectively. For each encoding result, Fig. 14(a)
shows the value of the first element, and Fig. 14(b) shows
the value of the second element. Similar to the results of
the 1st order event bundle encoding, the values increased in
proportion to the number of sequences composed of event1

FIGURE 15. Mobile application teaching the Korean language for
children.

FIGURE 16. Snapshots of educational games: Eight activities were used
for the experiments. (a) Hearing. (b) Seeking. (c) Doing a puzzle.
(d) Blowing up a balloon. (e) Playing with dinosaur. (f) Playing with
slingshot. (g) Baking a cake. (h) Doing the laundry.

and event2. However, the time sequence encoding did not
represent the number of the sequences at all. Therefore,
the figure shows that the event bundle encoding algorithm can
also store the frequency of a consecutive event.

C. MOBILE APPLICATION PLATFORM
Overview: We developed a mobile application to teach the
Korean language to children (as shown in Fig. 15). The
application has been offered in the Apple App Store and
Google Play Store since October 2018 and currently consists
of more than 30 educational games, as shown in Fig. 16.
It was featured in the Apple App Store inMarch 2019 and has
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FIGURE 17. Comparison of the number of contents suggested between
curriculum and AI tutor: Red bar represents the number of contents that
the proposed AI tutor recommended. Blue bar represents the number of
contents that are included in the curriculum at that period.

been top-ranked in the iPad Kids application category since
then. The number of total users is over 30,000 and, 500 users
are playing it daily. The total number of user learning data
collected is more than 5,000,000.

In this experiment, only 800,000 learning data obtained
from 1,000 users with high utilization were used to train our
individualized AI tutor. The reason was that, to develop indi-
vidualized AI tutors, it was appropriate to leverage data only
from users with at least 30 days of usage. Learning database
consists of five columns, e.g., User ID, Period, Objectives,
Activities, and Achievement Degree, each of which corre-
sponds to a user identifier, a learning date, a learning objective
(five learning objectives categories in total), an educational
game to teach the learning objective (eight educational game
categories in total), and accumulated average achievement
score vectors of learning objectives. For the learner status
DLN, we used 800,000 training data of both the Period
and Achievement Degree. For the learner preference DLN,
800,000 training data with the Activity were used. Here,
to provide the activity frequency information to the network,
the Activities input was a vector that consists of a maximum
of 100 previous activities. For the learner experience DLN,
however, only 230,000 training data with negative achieve-
ment were used to design our AI tutor, which recommends
contents based on the learner weaknesses.

To determine how diversely the AI tutor recommended
contents and how appropriate those contents were, we com-
pared the performance of the AI tutor with a standard edu-
cational curriculum. The curriculum was developed by an
expert with 15 years of experience in the Korean language
education field and then reviewed by three experts with more
than 10 years of experience in the field.

Comparison between Curriculum and AI Tutor: First,
for each period, we compared the number of contents rec-
ommended by our AI tutor to the number of contents of
the curriculum. As presented in Fig. 17, the recommended

FIGURE 18. A matrix to check the learning objectives recommendation
performance of the proposed AI tutor.

contents by our AI tutor included all the contents of the
curriculum at each period. These results show that theAI tutor
is capable of recommending the same contents as the cur-
riculum suggests to an individual learner. In addition, the AI
tutor can also suggest the other contents that the curriculum
does not cover. This implies that the proposed AI tutor can
consider more various types of learner status and preferences
in comparison to the curriculum.

A learning content consists of a learning objective and a
learning activity. There are five types of learning objectives
in the Korean language education: vowel, consonant, double
consonant, double vowel and final consonant. We checked
whether the learning objectives of contents that the pro-
posed AI tutor recommended were appropriate. Fig. 18 shows
how learning objectives are recommended according to the
achievement degree. In the figure, each column represents
recommendation rankings from 1 to 5, where objective with
ranking 1 is the most likely to be recommended to a learner
whose weakness corresponds to the column’s representative
objective. For example, column O1 lists 1, 3, 2, 5, and 4 from
the first row. Therefore, learners with weakness O1 were
often recommended to learn the objective O1 of the first row
whose recommendation rank is 1. Overall, we can see that
our AI tutor takes into account the weaknesses of learners,
and then recommends an appropriate objective to address that
weakness.

In this experiment, we tested whether the proposed AI tutor
appropriately reflects a learner’s preferences when recom-
mending activities. There are eight types of learning activities
in all learning contents: such as hearing, seeking, doing a puz-
zle, blowing up a balloon, playing with dinosaur, playing with
slingshot, baking a cake, doing the laundry. In Fig. 19, each
column represents recommendation rankings from 1 to 8,
where activity with ranking 1 is the most likely to be rec-
ommended to a learner whose preference corresponds to
the column’s representative preference. For example, column
A2 has values of 5, 1, 2, 7, 3, 4, 8, and 6 listed in the first row.
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FIGURE 19. Matrix to check the learning activities recommendation
performance of the proposed AI tutor.

FIGURE 20. Alteration over time of the recommended learning objectives:
Blue bar represents the achievement degree of each objective in the early
stages of learning. On the other hand, red bar represents the achievement
degree of each objective in the later stages of learning.

Therefore, learners with preference A2 are recommended to
follow activity A2 of the second row, whose recommendation
rank is 1. Overall, we can see that our AI tutor takes into
account the preferences of the learner, and then recommends
an appropriate activity reflecting such those preferences.

Fig. 20 shows the change over time of the recommended
learning objectives. The higher the achievement degree was,
the more frequently the objective is recommended. As can be
seen in the blue bar, the AI tutor suggested primary learning
contents (i.e., Objectives 1, 2, and 3) more in the early stages
of learning. On the other hand, it suggested difficult learning
contents (i.e., Objectives 4 and 5) more in the later stages of
learning, as shown in the red bar. This result shows that the
AI tutor recommended appropriate learning goals based on
learner achievement.

V. CONCLUSION AND FURTHER WORK
This paper proposed a novel individualized AI tutor to help a
learner achieve a high level of academic success. To consider

the current learner status and preferences, we developed the
AI tutor as a system integrating three DLNs by extending the
Deep ART network. The proposed AI tutor was trained with
800,000 training sets collected from a commercializedmobile
application teaching the Korean language. Our experimental
results show that the proposed AI tutor can suggest to learner
suitable learning contents that correspond to what the stan-
dard education curriculum presents. Besides this, we showed
that our AI tutor can recommend appropriate learning con-
tents even for learners to whom the standard curriculum
cannot make suggestions. As further work, we will collect
the individual learning data from the interaction between the
proposed AI tutor and a learner through the mobile appli-
cation platform to measure the effectiveness of a long-term
education.
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