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ABSTRACT This paper deals with the problem for stability of neutral-type Cohen-Grossberg neural net-
works involving delay parameters. In the neutral-type neural networks, the states of the neurons involve mul-
tiple time-varying delays and time derivative of states of neurons include discrete time delays. We note that
the neutral-type neural network cannot be expressed in the vector-matrix form due to multiple time-varying
delays and discrete neutral delays, which leads to linear matrix inequality approach can not be employed
to obtain stability conditions of this type of Cohen-Grossberg neural networks. Therefore, it is difficult for
stability analysis of this type of Cohen-Grossberg neural networks to find suitable Lyapunov-Krasovskii
functional and effective method. This paper constructs an appropriate Lyapunov-Krasovskii functional and
employsM-matrix property to derive new sufficient conditions ensuring the global asymptotic stability of the
equilibrium point of the neutral-type Cohen-Grossberg neural networks with multiple time-varying delays in
the states and discrete delays in the time derivative of the states. The obtained stability conditions are easy to
validate by testing basic matrix property. A constructive example is presented to indicate applicability of the
obtained stability criteria. Compared with the existed references, the networks we studied are more general
and the derived results develop and generalize the known results.

INDEX TERMS Neutral-type Cohen-Grossberg neural networks, multiple delays, global asymptotic
stability, Lyapunov-Krasovskii functional.

I. INTRODUCTION
A class of neural network was named Cohen-Grossberg
neural network in 1983 and it can describe some models
from population biology and neurobiology, for example,
the well-known Hopfield neural networks [1]. Since then,
Cohen-Grossberg neural networks have been attracted con-
siderable attention due to their successful applications in
signal processing, pattern recognition, optimization, associa-
tive memories and finite-time consensus. These applications
are based largely on the global stability theory or finite-
time stability theory [2]–[5]. The early stability analysis of
neural network did not consider the effect of time delay on
the networks. In fact, time delays always exist in the signal
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transmission among the neurons due to the finite speeds of
transmission and/or the traffic congestion. Time delays have
many types such as constant delays, time-varying delays,
distributed delays, leakage delays, and proportional delays
so on [6]–[8]. Various delays are one of important factors that
lead to instability or oscillation of the neural network. In addi-
tion, time delay may also appear in the derivatives of states.
Neutral-type neural networks containing the information of
past state derivatives have been proved to be useful systems in
some specific application areas, for example, population ecol-
ogy, propagation and diffusion models [9]–[11]. Recently,
the stability analysis of neutral-type neural networks has
been received considerable attention [12]–[23]. It is noted
that neutral-type neural networks studied in [12]–[23] can be
written in the matrix-vector forms and the stability criteria
are presented in the linear matrix inequality forms.
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Compared with [12]–[23], the neutral-type Cohen-
Grossberg neural networks studied in this paper cannot be
expressed in the vector-matrix form due to multiple time-
varying delays and discrete neutral delays, which leads to
linear matrix inequality approach can not be employed to
obtain stability conditions of this type of Cohen-Grossberg
neural networks. Therefore, it is difficult for stability anal-
ysis of this type of Cohen-Grossberg neural networks to
find suitable Lyapunov-Krasovskii functional and effective
method. On the other hand, to our best knowledge, there are
few published results about global asymptotic stability for
neutral-type Cohen-Grossberg neural networks with multiple
time-varying delays in states and discrete neutral delays in
time derivative of states. These facts have been the main
motivations of the current paper to focus on the global asymp-
totic stability of this type Cohen-Grossberg neural networks.
This paper constructs an appropriate Lyapunov-Krasovskii
functional and employs the property of M-matrix to derive
new sufficient conditions ensuring the global asymptotic sta-
bility of the equilibrium point of this type Cohen-Grossberg
neural network. Compared with [23]–[28], the neutral-type
Cohen-Grossberg neural networks studied in this paper are
more general, the proposed Lyapunov-Krasovskii functional
is novel and the obtained results provide novel stability
conditions. In particular, the obtained results generalize the
known results in [28].

II. PRELIMINARIES
Consider the following neutral-type Cohen-Grossberg neural
networks with multiple time-varying delays:

ẋi(t) = di(xi(t))
{
− ci(xi(t))+

n∑
j=1

aijfj(xj(t))

+

n∑
j=1

bijfj(xj(t − τij(t)))+ ui

}
+

n∑
j=1

eijẋj(t−ξj), (1)

where constants ui, eij, ξj, aij and bij denote external input,
coefficients of the time derivative of the delayed state, the
neutral delays and the strengths of the neuron interconnec-
tions, respectively. The time delays τij(t) satisfies

0 ≤ τij(t) ≤ τ, τ̇ij(t) ≤ τ̄ < 1, t ≥ 0.

Amplification function di(·), behaved function ci(·) and acti-
vation function fj(·) are continuous and there exist some
positive constants ci, d i, d i and li, i = 1, · · · , n, such that
for all x, y ∈ R, x 6= y,

0 < ci ≤
ci(x)− ci(y)

x − y
, 0 < di ≤ di(x) ≤ d̄i,

|fi(x)− fi(y)| ≤ li|x − y|.

The initial conditions are xi(t) = ϕi(t) and ẋi(t) =
φi(t) ∈ C([−max{τ, ξ}, 0],R), where ξ = max1≤j≤n{ξj},
C([−max{τ, ξ}, 0],R) is the set of all continuous functions
from [−max{τ, ξ}, 0] to R.

Remark 1: Compared with [24] and [27], we do not require
ci(x)−ci(y)

x−y has upper bound. It implies that our conditions are
less conservative.

By using the well-known Brouwers fixed-point theorem,
it can be proved that system (1) has at least one equilibrium
point (x∗1 , · · · , x

∗
n )
T . Let yi(t) = xi(t) − x∗i , i = 1, · · · , n,

then system (1) turns to

ẏi(t) = d̃i(yi(t))
{
− c̃i(yi(t))+

n∑
j=1

aij̃fj(yj(t))

+

n∑
j=1

bij̃fj(yj(t − τij(t)))
}
+

n∑
j=1

eijẏj(t − ξj), (2)

where for i, j = 1, · · · , n,

d̃i(yi(t)) = di(yi(t)+ x∗i ), c̃i(yi(t))

= ci(yi(t)+ x∗i )− ci(x
∗
i ),

f̃j(yj(t)) = fj(yj(t)+ x∗j )− fj(x
∗
j ),

f̃j(yj(t − τij(t))) = fj(yj(t − τij(t))+ x∗j )− fj(x
∗
j ).

It is obvious that if y(t) = 0 of system (2) is global asymptoti-
cal stability, then the equilibrium point of system (1) is global
asymptotical stability. It is easy to obtain for i = 1, 2, · · · , n,

0 < di ≤ d̃i(yi(t)) ≤ d̄i, ciy
2
i (t) ≤ c̃i(yi(t))yi(t),

|̃fi(yi(t))| ≤ li|yi(t)|. (3)

III. MAIN RESULTS
In this section, we will establish some sufficient conditions to
ensure global asymptotic stability of the origin of system (2)
by constructing a suitable Lyapunov-Krasovskii functional
and using the property of M-matrix.

Define the matrix W = (Wij)n×n with

Wii = cid i − d ili(|aii| +
|bii|
1− τ̄

),

Wij = −d jli(|aji| +
|bji|
1− τ̄

), i 6= j

and the constants

αi = picid i −
n∑
j=1

pjd jli(|aji| +
|bji|
1− τ̄

),

βi = piγ −
n∑
j=1

pj|eji|, i = 1, 2, · · · , n,

in which 0 < γ < 1. From [29], we know that if the real part
of every eigenvalue ofW is positive, thenW is a nonsingular
M-matrix and there exist positive numbers p1, p2, · · · , pn
such that αi > 0,∀i. Therefore, we may state the following
result.
Theorem 1: Suppose that W is a nonsingular M-matrix,

that is, there exist positive numbers p1, p2, · · · , pn such
that αi > 0, i = 1, 2, · · · , n. Moreover, for the same
p1, p2, · · · , pn, βi > 0, i = 1, 2, · · · , n. Then y(t) = 0 of
system (2) is globally asymptotically stable.
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Proof:Constructing the following Lyapunov-Krasovskii
functional

V (y(t)) =
n∑
i=1

pi[1− γ sgn(yi(t))sgn(ẏi(t))]sgn(yi(t))yi(t)

+
1
n

n∑
i=1

n∑
j=1

pjγ
∫ t

t−ξj
|ẏj(s)|ds

+
1

1− τ̄

n∑
i=1

n∑
j=1

pid i|bij|lj

∫ t

t−τij(t)
|yj(s)|ds

+ η

n∑
i=1

n∑
j=1

∫ t

t−τij(t)
|yj(s)|ds, (4)

in which η is positive number whose value is to be identified
later.

Computing V̇ (y(t)) along the trajectories of system (2),
we derive

V̇ (y(t))

=

n∑
i=1

pi[1− γ sgn(yi(t))sgn(ẏi(t))]sgn(yi(t))ẏi(t)

+
1
n

n∑
i=1

n∑
j=1

pjγ |ẏj(t)| −
1
n

n∑
i=1

n∑
j=1

pjγ |ẏj(t − ξj)|

+

n∑
i=1

n∑
j=1

pid i|bij|lj
1− τ̄

(|yj(t)| − (1− τ̇ij(t))|yj(t − τij(t))|)

+η

n∑
i=1

n∑
j=1

[|yj(t)| − (1− τ̇ij(t))|yj(t − τij(t))|]

≤

n∑
i=1

pi[1− γ sgn(yi(t))sgn(ẏi(t))]sgn(yi(t))ẏi(t)

+

n∑
i=1

piγ sgn(ẏi(t))ẏi(t)−
n∑
i=1

piγ |ẏi(t − ξi)|

+

n∑
i=1

n∑
j=1

pid i|bij|lj(
|yj(t)|
1− τ̄

− |yj(t − τij(t))|)]

+η

n∑
i=1

n∑
j=1

[|yj(t)| − (1− τ̄ )|yj(t − τij(t))||]. (5)

For yi(t) 6= 0, it follows from (3) that

pi[1− γ sgn(yi(t))sgn(ẏi(t))]sgn(yi(t))ẏi(t)

+ piγ sgn(ẏi(t))ẏi(t)

= pisgn(yi(t))ẏi(t)

= −pisgn(yi(t))̃di(yi(t))̃ci(yi(t))

+ pisgn(yi(t))̃di(yi(t))
n∑
j=1

aij̃fj(yj(t))

+ pisgn(yi(t))̃di(yi(t))
n∑
j=1

bij̃fj(yj(t − τij(t)))

+ pisgn(yi(t))
n∑
j=1

eijẏj(t − ξj)

≤ −pisgn(yi(t))̃di(yi(t))
c̃i(yi(t))yi(t)

yi(t)

+ pid i
n∑
j=1

|aij||̃fj(yj(t))|

+ pid i
n∑
j=1

|bij||̃fj(yj(t − τij(t)))|

+ pi
n∑
j=1

|eij||ẏj(t − ξj)|

≤ −picid i|yi(t)| + pid i
n∑
j=1

|aij|lj|yj(t)|

+ pid i
n∑
j=1

|bij|lj|yj(t − τij(t))| + pi
n∑
j=1

|eij||ẏj(t − ξj)|.

For yi(t) = 0, it follows from (3) and 0 < γ < 1 that

pi[1− γ sgn(yi(t))sgn(ẏi(t))]sgn(yi(t))ẏi(t)

+ piγ sgn(ẏi(t))ẏi(t)

= piγ sgn(ẏi(t))ẏi(t)

= −piγ sgn(ẏi(t))̃di(yi(t))̃ci(yi(t))

+piγ sgn(ẏi(t))̃di(yi(t))
n∑
j=1

aij̃fj(yj(t))

+ piγ sgn(ẏi(t))̃di(yi(t))
n∑
j=1

bij̃fj(yj(t − τij(t)))

+piγ sgn(ẏi(t))
n∑
j=1

eijẏj(t − ξj)

≤ −piγ sgn(ẏi(t))̃di(yi(t))̃ci(yi(t))

+pid i
n∑
j=1

|aij||̃fj(yj(t))|

+ pid i
n∑
j=1

|bij||̃fj(yj(t − τij(t)))|

+pi
n∑
j=1

|eij||ẏj(t − ξj)|

≤ −picid i|yi(t)| + pid i
n∑
j=1

|aij|lj|yj(t)|

+pid i
n∑
j=1

|bij|lj|yj(t − τij(t))| + pi
n∑
j=1

|eij||ẏj(t − ξj)|,

where piγ sgn(ẏi(t))̃di(yi(t))̃ci(yi(t)) = picid i|yi(t)| = 0when
yi(t) = 0.
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Therefore, for any yi(t) ∈ R, one derives

pi[1− γ sgn(yi(t))sgn(ẏi(t))]sgn(yi(t))ẏi(t)

+ piγ sgn(ẏi(t))ẏi(t)

≤ −picid i|yi(t)| + pid i
n∑
j=1

|aij|lj|yj(t)|

+ pid i
n∑
j=1

|bij|lj|yj(t − τij(t))|

+pi
n∑
j=1

|eij||ẏj(t − ξj)|. (6)

From (5) and (6), it follows

V̇ (y(t)) ≤ −
n∑
i=1

picid i|yi(t)|

+

n∑
i=1

n∑
j=1

pid i|aij|lj|yj(t)|

+

n∑
i=1

n∑
j=1

pi|eij||ẏj(t − ξj)|

−

n∑
i=1

piγ |ẏi(t − ξi)|

+

n∑
i=1

n∑
j=1

pid i|bij|lj
|yj(t)|
1− τ̄

+ η

n∑
i=1

n∑
j=1

[|yj(t)| − (1− τ̄ )|yj(t − τij(t))|]

≤ −

n∑
i=1

[αi − nη]|yi(t)| −
n∑
i=1

βi|ẏi(t − ξi)|

− η(1− τ̄ )
n∑
i=1

n∑
j=1

|yj(t − τij(t))|. (7)

From (7), we obtain

V̇ (y(t)) ≤ −
n∑
i=1

[αi − nη]|yi(t)|

≤ −[ min
1≤i≤n
{αi} − nη]

n∑
i=1

|yi(t)|.

Therefore, we can choose η <
min1≤i≤n{αi}

n such that
V̇ (y(t)) < 0 for y(t) 6= 0. If y(t) = 0 and (ẏ1(t − ξ1), · · · ,
ẏn(t − ξn))T 6= 0, then it follows from (7) that

V̇ (y(t)) ≤ − min
1≤i≤n
{βi}

n∑
i=1

|ẏi(t − ξi)| < 0.

If y(t) = (ẏ1(t − ξ1), · · · , ẏn(t − ξn))T = 0 and (yj(t −
τij))n×n 6= 0, then it follows from (7) that

V̇ (y(t)) ≤ −η(1− τ̄ )
n∑
i=1

n∑
j=1

|yj(t − τij(t))| < 0.

If y(t) = (ẏ1(t − ξ1), · · · , ẏn(t − ξn))T = 0 and
(yj(t − τij))n×n = 0, then V̇ (y(t)) = 0. Thus, V̇ (y(t)) < 0
except for the origin, which shows y(t) = 0 is asymptotic
stability.

In addition, it follows from (4) that

V (y(t)) ≥
n∑
i=1

pi[1− γ sgn(yi(t))sgn(ẏi(t))]|yi(t)|

≥ min
1≤i≤n
{pi}(1− γ )

n∑
i=1

|yi(t)|

= min
1≤i≤n
{pi}(1− γ )‖y(t)‖1,

which implies that V (y(t)) → ∞ as ‖y(t)‖ → ∞, that
is, V (y(t)) is radially unbounded. Thus, y(t) = 0 is global
asymptotic stability.
Remark 2: We note that Theorem 1 generalizes the result

in [28]. That is, Theorem 1 in [28] can be taken as a corollary
of our result. If τ̄ = 0, then the stability conditions of
Theorem 1 are delay-independent.

In order to use Theorem 1 conveniently, we usually choose
that p1 = · · · = pn = 1.
Corollary 1: Let γ be a positive constant such that

0 < γ < 1 and

β̃i := γ −

n∑
j=1

|eji| > 0, ∀i.

Suppose that

α̃i := cid i −
n∑
j=1

d jli(|aji| +
|bji|
1− τ̄

) > 0, ∀i.

Then y(t) = 0 of system (2) is global asymptotical
stability.

Clearly, system (1) includes the following neutral-type
Cohen-Grossberg neural networks studied in [24], [26]

ẋi(t)−
n∑
j=1

eijẋj(t − ξj)

= di(xi(t))
{
− ci(xi(t))+

n∑
j=1

aijfj(xj(t))

+

n∑
j=1

bijfj(xj(t − τj))+ ui

}
, (8)

the following neutral-type Hopfield neural networks consid-
ered in [23], [25]

ẋi(t)−
n∑
j=1

eijẋj(t − ξj)

=−cixi(t)+
n∑
j=1

aijfj(xj(t))+
n∑
j=1

bijfj(xj(t−τj))+ui (9)
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and investigated in [28]

ẋi(t)−
n∑
j=1

eijẋj(t − ξj) = −cixi(t)+
n∑
j=1

aijfj(xj(t))

+

n∑
j=1

bijfj(xj(t − τij))+ ui. (10)

Corollary 2: Under the conditions of Theorem 1, the equi-
librium point of system (8) is globally asymptotically stable.
Corollary 3: Suppose that there exist positive numbers

p1, p2, · · · , pn, γ such that 0 < γ < 1,

αi = pici −
n∑
j=1

pjli(|aji| + |bji|) > 0,

βi = piγ −
n∑
j=1

pj|eji| > 0, i = 1, 2, · · · , n.

Then the equilibrium point of system (9) and (10) is globally
asymptotically stable.

Example 1: Consider system (1) with the following system
matrices and the network functions:

A =


1 −1 1 −1
−1 1 1 −1
1 1 1 1
1 −1 −1 −1

 ,

B =


0.5 0.5 −0.5 0.5
−0.5 −0.5 0.5 −0.5
0.5 0.5 0.5 0.5
−0.5 −0.5 −0.5 0.5

 ,
d1(x) = 1.5 + 0.5sinx, d2(x) = 1.5 − 0.5cosx,
d3(x) = 1.5 − 0.5sinx, d4(x) = 1.5 + 0.5cosx,
ci(x) = 9x, fi(x) = 0.5 tanh(x), τij(t) = 0.5sint,
i = j; τij(t) = 0.5cost, i 6= j; i, j = 1, 2, 3, 4.
Therefore, we calculate that li = τ̄ = 0.5, d i = 1,

d i = 2, ci = 9, i = 1, 2, 3, 4, and

W =


7 −2 −2 −2
−2 7 −2 −2
−2 −2 7 −2
−2 −2 −2 7

 .
It is obvious thatW is a nonsingular M-matrix and we can

choose pi = 1 such that α̃i > 0, i = 1, · · · , 4.Therefore, ifW
in this example is a nonsingular M-matrix and ‖E‖1 < γ,

then the stability conditions of Corollary 1 hold.
Now, we choose c1(x) = c2(x) = 9x, c3(x) = c4(x) = 8x,

then we calculate

W =


7 −2 −2 −2
−2 7 −2 −2
−2 −2 6 −2
−2 −2 −2 6

 .
From [28] and [29], we know that all eigenvalues of the
matrix W are positive and W is a nonsingular M-matrix.
Therefore, from Example 1 in [28], we know that there exist

positive numbers p1, p2, p3 and p4 such that all αi and βi
in Theorem 1 are positive. Thus, the stability conditions of
Theorem 1 hold if W in this case is a nonsingular M-matrix
and ||E||1 < 1.

IV. CONCLUSION
This paper has discussed global asymptotic stability of the
equilibrium point of neutral-type Cohen-Grossberg neural
networks involving delay parameters. Since the neural net-
works contain multiple time-varying delays in the states and
discrete delays in the time derivative of the states, the neural
networks cannot be expressed in the vector-matrix forms,
which leads to leads to linear matrix inequality approach
can not be employed to obtain stability conditions of this
type of Cohen-Grossberg neural networks. Therefore, for
stability analysis of this type of neural system, it is dif-
ficult to find suitable Lyapunov-Krasovskii functional and
effective method. By constructing an appropriate Lyapunov-
Krasovskii functional and using the property of M-matrix,
new sufficient conditions have been derived to guarantee the
global asymptotic stability of the equilibrium point of neutral-
type Cohen-Grossberg neural networks with multiple time-
varying delays and with multiple time-varying delays and
discrete neutral delays. The obtained stability conditions are
easy to validate by testing basic matrix property. Compared
with the existed references, the networks we studied are more
general and the derived results develop and generalize the
known results. In the future work, we will study exponential
stability for neutral-type Cohen-Grossberg neural networks
with multiple time-varying delays (or other delays) and
investigate stability problem of neutral-type complex-valued
Cohen-Grossberg neural networks.
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