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ABSTRACT Of numerous proposals for weakening the attribute independence assumption of Naive Bayes,
averaged one-dependence estimators (AODE) learns by extrapolation from marginal to full-multivariate
probability distributions, and has demonstrated reasonable improvement in terms of classification perfor-
mance. However, all the one-dependence estimators in AODE are assigned with the same weight, and their
probability estimates are combined linearly. This work presents an efficient and effective attribute value
weighting approach that assigns discriminative weights to different super-parent one-dependence estimators
for different instances by identifying the differences among these one-dependence estimators in terms of
log likelihood. The proposed approach is validated on widely used benchmark datasets from UCI machine
learning repository. Experimental results show that the proposed approach achieves bias-variance trade-off
and is a competitive alternative to state-of-the-art Bayesian and non-Bayesian learners (e.g., tree augmented
Naive Bayes and logistic regression).

INDEX TERMS Attribute value weighting, averaged one-dependence estimators, log likelihood, entropy.

I. INTRODUCTION
Bayesian network (BN) [1]–[4] provides a powerful tool for
knowledge representation and inference under conditions of
uncertainty. Since the 1990s, the study of Bayesian network
classifier (BNC) for classification has attracted tremendous
attention after the success of Naive Bayes (NB) [5]–[8].
To relax the unrealistic attribute independence assumption of
NB, researchers proposed to learn the conditional dependen-
cies among attributes. The addition of augmented edges to the
topology ofNB resulted in BNCs, such as tree-augmentedNB
(TAN) [9] and k-dependence Bayesian classifier (KDB) [10],
that achieved significant advantage over NB in terms of clas-
sification performance while retaining the simplicity and effi-
ciency. To avoid the intractable computational complexity for
learning BNC and still take the influences from all attributes
into account, Jiang et al. [11] proposed to create a hidden
parent for each attribute that combined the influences from
all the other attributes.

Attribute weighting, in which various weights are assigned
to different attributes, is another important method for
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improving NB. Jiang et al. [6] proposed to discriminatively
assign each attribute a specific weight for each class. Two
objective functions, namely, the conditional log likelihood
(CLL) and the mean squared error (MSE), are introduced to
obtain the optimized weight matrix. Yu et al. [8] assumed
that highly predictive attribute values should be strongly asso-
ciated with the class but not correlated with other attribute
values, and different weights were assigned to attribute values
by computing the difference between relevance and average
redundancy. Jiang et al. [12] assumed that highly predic-
tive attributes had similar characteristics, and the weight for
each attribute was a sigmoid transformation of the difference
between mutual relevance and average mutual redundancy.
Zhang et al. [7] proposed to exploit attribute dependencies by
considering the horizontal granularity of attribute values and
the vertical granularity of class labels. Each attribute value is
assigned a specific weight for each class discriminatively.

Ensemble learning provides a powerful machine learning
paradigm that has exhibited excellent generalization ability
by usingmultiple learners, especially ‘‘weak’’ ones [13], [14].
Averaged one-dependence estimators (AODE) [15]
is an ensemble of super-parent one-dependence estimators
(SPODEs). AODE achieves high classification accuracy
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while decreasing variance. Each SPODE can be considered a
weak learner because it selects a single attribute as the super-
parent of all the other attributes, and its implicit independence
assumption is unrealistic. AODE predicts by averaging the
predictions of all these estimators, that is, all estimators in
AODE are considered equal and are assigned with the same
weight. Numerous approaches have been proposed to refine
AODE, and they can be divided into four main categories:
•Attribute selection [16] performs attribute (parent or chil-

dren or both) eliminations in each iteration to reduce zero-one
loss.
• Attribute weighting [17] assigns discriminative weights

to super-parent nodes.
• Model selection [18] selects specific SPODEs that are

the most effective models within a model space.
• Model weighting [4], [17] computes the weight associ-

ated with each SPODE to combine their probability estimates
linearly.

Ideally, the estimate of the joint probability distribution
that corresponds to the learned BNC should approximate the
true data distribution. However, overfitting to the training data
may result in high variance, thereby harming the general-
ization performance. To accommodate the trade-off between
bias and variance for different data quantities, scalable learn-
ers are highly appealing, especially for large data learning.
We argue that overfitting to the testing instance will help
improve rather than harm the generalization performance,
and the significance of each SPODE should vary while clas-
sifying different instances, especially for highly predictive
SPODEs. Yu et al. [4] considered the specific characteristics
of each testing instance and adjusted the weights to different
SPODEs adaptively by computing the correlation between
the root attribute value and the class. However, the notion
that the weight of each SPODE is irrelevant to non-root
attribute values is not convincing. In this work, log likelihood
is introduced to measure the extent to which each SPODE
fits specific testing instance and based on this, appropriate
weights are assigned to SPODEs in AODEwhile dealing with
different testing instances.

The contributions of this paper are presented as follows:
• We prove theoretically and experimentally in terms of

log likelihood that, the same SPODE in AODE may perform
differentially while classifying different instances, and differ-
ent SPODEs may perform differentially while classifying the
same instance.
• We take each unlabeled testing instance as a target

and propose a self-adaptive weighting approach that assigns
discriminative weights to different SPODEs. For different
instances, the weights adaptively change to enable the final
ensemble to fit the instance remarkably.
•We report the results of an empirical evaluation compar-

ing our algorithm, targeted AODE (TAODE), with state-of-
the-art machine learning algorithms on 32 publicly available
datasets. Our experiments show that TAODE displays com-
parable or better classification performance than a range of
Bayesian and non-Bayesian learners.

The remainder of this paper is organized as follows.
Section 2 provides a survey of related approaches. Section 3
describes our novel weighting approach for refining AODE.
Section 4 presents the experimental evaluation of our pro-
posed algorithm and comparisons with related approaches.
Section 5 presents the conclusions and directions for future
research.

II. BACKGROUND THEORY AND RELATED RESEARCH
Consider a finite attribute set X = {X1, · · · ,Xn} and
class variable Y , the classifier learned from training data
is required to predict the class of an unlabeled instance
x = (x1, · · · , , xn), where lower case letter xi denotes any
possible value of attribute Xi. Among numerous classifi-
cation techniques, BNCs provide compact and natural rep-
resentation, effective inference, and efficient learning [20].
BNCs minimize error by selecting argmaxy P(y|x), where
y ∈ {y1, · · · , ym} is one of the m classes. A BNC refers to
an annotated directed acyclic graph G that encodes a joint
probability distribution over {X,Y }. In the acyclic graph G,
vertices correspond to the variables {X1, · · · ,Xn,Y }, and
edges represent direct dependencies among these variables.
Let5i denote the set of parents ofXi inG, the joint probability
distribution can be factorized according to the chain rule as
follows,

P(x, y) = P(y)
n∏
i=1

P(xi|5i, y). (1)

From Eq.(1), a key issue for learning BNC is the iden-
tification of significant conditional dependencies between
attribute Xi and its parents 5i.

A. NAIVE BAYES
Among all the BNCs, as shown in Fig.1 NB has the sim-
plest topology and relatively stable classification efficiency.
NB assumes that each attribute is independent from the rest
of attributes given the class variable, and the independence
assumption can be described as

PNB(x1, · · · , xn|y) =
n∏
i=1

P(xi|y). (2)

FIGURE 1. The topology of Naive Bayes.
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Correspondingly, the joint probability distribution becomes

PNB(x, y) = P(y)
n∏
i=1

P(xi|y). (3)

From Eq.(3), to compute PNB(x, y), NB needs only one
single scan of the training data to generate two probability
tables, one for estimating the prior class probability, and
another for estimating the conditional probability for each
attribute. Given that the topology of NB is definite and insen-
sitive to the variation in training data, NB enjoys significantly
low variance when compared with other BNCs. However,
the unrealistic independence assumption is often questioned,
and researchers believe that the assumption brings certain
restrictions to the correct classification of NB. Therefore,
relaxing the independence assumption has long been an
important research direction for learning BNC.

B. AODE
Fig.2 shows that SPODE [21] is a three-dimensional prob-
ability estimator that relaxes the independence assumption
by making all other attributes independent of each other
given the class and one shared attribute Xα , the super-parent.
That is,

P(x, y) = P(y, xα)
n∏

i=1,i6=α

P(xi|y, xα). (4)

FIGURE 2. The topology of SPODE.

This weaker independence assumption is necessarily true if
NB’s is true and may also be true when NB’s is not [22].
AODE utilizes a restricted class of SPODEs and aggre-
gates the predictions of all qualified estimators. For a train-
ing dataset with n attributes, n candidate SPODEs can be
considered, each taking a different attribute as its super-
parent. Thus, AODE avoids model selection and maintains
the robustness of NB.

Ensemble learning helps mitigate the negative effect
caused by the possible biased independence assumption in
one SPODE. For one SPODE in AODE that takes X1 as the
super-parent, X2 and X3 are conditionally independent. For
another SPODE that takes X2 as the super-parent, X2 and X3
are conditionally dependent. SPODEs in AODE are com-
plementary in nature and can clarify the reason why AODE

often exhibits excellent classification performance. There-
fore, SPODE has the potential to be a substitute for NB while
dealing with large data.

C. APPROACHES FOR OPTIMIZING AODE
SPODEs in AODE are assigned with the same weight and
thus are treated equally. Although the topologies of these
SPODEs seem similar, the conditional independence assump-
tions implicated vary greatly and represent different sets of
conditional dependencies. If we can identify the difference
among these SPODEs and assign appropriate weights to
them, then the classification performance of AODE may be
improved. Weights can be learned by experimental study in
two ways. First is to conduct greedy search through a given
interval. Although this approach can help AODE achieve
significant advantage in classification performance, training
such model on datasets with large number of attributes will
result in great computational overhead. The reason is that the
search space of weights will grow exponentially as the num-
ber of attributes increases. Second is to use different criteria,
which can be proven relevant to classification, to weigh the
discriminative characteristics of the SPODEs. Researchers
proposed different weighting approaches, and the weights
are respectively measured by the mutual information I (Xi;Y )
between the super-parent Xi and the class variable Y [17],
classification accuracy of each SPODE [17], conditional log
likelihood [23], [24] and area under the ROC curve [25], [26].
The comparison results prove that mutual information is
effective despite its insignificant advantage [17].

The interdependence between attributes may vary greatly
for different instances, and the identification of strong inter-
dependence will help simplify the topology and enhance the
estimates of conditional probabilities. Zheng and Webb [27]
proposed Subsumption Resolution (SR) to address this issue.
Given two attribute values xi and xj, if P(xj|xi) = 1.0, then xi
can subsume xj, and the estimate of joint probability P(y, x)
can be simplified as follows,

P(y, x) = P(y, x1, · · · , xj−1, xj+1, · · · , xn).

Variants of SR, that is, Near Subsumption Resolution, Lazy
Subsumption Resolution and Eager subsumption resolution,
were also proposed to detect interdependence and eliminate
subsumed attribute-values at training time or classification
time even if the dataset is ‘‘polluted’’ by noisy or erroneous
data.

III. INFORMATION THEORY AND AODE
A. RELATIONSHIP BETWEEN ENTROPY AND BNC
TOPOLOGY
Definition 1 [28]: Entropy measures the extent of unpre-

dictability or uncertainty of a discrete random variable X and
is defined as follows :

H (X ) = −
∑
X

P(x)log2P(x). (5)
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The greater the uncertainty of variable X , the larger the
entropy H (X ), and the more information it needs to figure it
out.
Definition 2 [28]: Joint entropy H (X ,Y ) measures the

extent of uncertainty of a pair of random variables X and Y
and is defined as:

H (X ,Y ) = −
∑
X

∑
Y

P(x, y)log2P(x, y). (6)

Definition 3 [28]: Conditional entropy H (X |Y )measures
the extent of uncertainty of variable X when all possible
values of variable Y are known. It is defined as:

H (X |Y ) = −
∑
X

∑
Y

P(x, y)log2P(x|y). (7)

A BNC is a graphical representation of the joint probability
distribution P(y, x), which can be factorized and estimated
according to the topology B learned from training data D.
Given the true probability distribution P(y, x) and estimated
distribution PB(y, x), the average number of bits encoded in
B for each instance inD can be computed by entropy function
HB as follows [29],

HB = −
∑
Y ,X

P(y, x) logPB(y, x)

= −

∑
Y

P(y) logP(y)

−

n∑
i=1

∑
Y ,Xi,5i

P(y, xi,5i) logP(xi|y,5B
i )

= H (Y )+
n∑
i=1

H (Xi|Y ,5B
i ), (8)

where 5B
i denotes the set of parents of Xi in B.

For any SPODE in AODE that takes Xα as the super-
parent, 5α = Y and 5i = {Xα,Y } when i 6= α. Thus the
corresponding entropy function Hα

SPODE can be computed by

Hα
SPODE = H (Y )+ H (Xα|Y )+

n∑
i=1,i6=α

H (Xi|Xα,Y )

= H (Y ,Xα)+
n∑

i=1,i6=α

H (Xi|Xα,Y ). (9)

Obviously, for different SPODEs the topologies vary greatly
and from Eq.(9), the extents to which SPODEs fit training
data D also vary.

B. TARGETED AODE
If each SPODE in AODE is robust and performs simi-
larly while dealing with different instances, then assign-
ing fixed weights to individual SPODEs is appropriate.
However, the discriminative independence assumptions can-
not hold simultaneously. When different SPODEs deal with
the same instance or the same SPODE deals with different
instances, fixed weights may result in biased estimate of joint
probability distribution P(y, x) and unreliable classification
results. For example, given dataset Car with six attributes

{X1,X2, · · · ,X6} (see detail in Table 2) and six corresponding
SPODEs, the estimates of P(y, x) for each instance are shown
in Fig.3. The estimates of P(y, x) varies greatly for different

FIGURE 3. Estimates of joint probability distribution P(y, x) for SPODEs
on instances from dataset Car . These SPODEs respectively take (a) X1,
(b) X2, (c) X3, (d) X4, (e) X5 and (f) Xd as the super-parent.
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SPODEs.Moreover, the SPODE, which takesX4 as the super-
parent, performs poorly, and corresponding independence
assumptions may not hold for datasetCar(Fig.3(d)). Even for
the best SPODE that takes X3 as the super-parent (Fig.3(c))
its fitness to different instances also varies greatly. Thus, its
independence assumption is effective in most cases but does
not always hold.

Given testing instance x = {x1, · · · , xn}, its class label
may take any one of the m possible values of variable Y .
By assuming that the probability that x is in class y is 1/m
for each y ∈ {y1, · · · , ym}, x is transformed into a pseudo
training set T as follows [30],

T =


t1 = {x1, · · · , xn, y1}

t2 = {x1, · · · , xn, y2}

· · ·

tm = {x1, · · · , xn, ym}.

(10)

Given training dataD with N instances, x never appears inD
and only appears 1/m times in T . By adding T toD, the joint
probability P(x, yi) or P(ti) can be estimated as follows

P(ti) =
1
m

N + 1
=

1
Nm+ m

(1 ≤ i ≤ m).

Given topology b that models the conditional dependencies
between attribute values in x, the log likelihood function
hb(T ) corresponds to the average number of bits encoded for
each instance in T and can be computed by

hb(T ) = −
m∑
j=1

P(tj) logPb(tj) ∝ −
m∑
j=1

logPb(tj)

= −

m∑
j=1

log{P(yj)
n∏
i=1

P(xi|yj,5b
i )}

= −

m∑
j=1

logP(yj)−
n∑
i=1

m∑
j=1

logP(xi|yj,5b
i )

= h(Y )+
n∑
i=1

h(xi|Y ,5b
i ).

For any SPODE in AODE that takes Xα as the super-parent,
hb(T ) turns to be

hαSPODE(T ) = −
m∑
j=1

logP(yj, xα)−
n∑

i=1,i6=α

m∑
j=1

logP(xi|yj, xα)

= h(Y , xα)+
n∑

i=1,i6=α

h(xi|Y , xα), (11)

where hαSPODE(T ) can be used to measure the extent to
which the given SPODE fits testing instance x. Subsequently,
we take x as the target and apply hαSPODE(T ) as the bench-
mark for assigning weights. The class label of instance x
is unknown or uncertain based on this observation and
in Eq.(11). We can infer the corresponding definitions of
entropy for classification as follows.

Definition 4: Targeted joint entropy measures the extent of
uncertainty of a pair of random variables Xi and Y in the con-
text of {X1 = x1,X2 = x2, · · · ,Xn = xn} where 1 ≤ i ≤ n,
and is defined as:

h(Y , xi) = −
∑
Y

log2P(xi, y). (12)

Definition 5: Targeted conditional entropy measures the
extent of uncertainty of random variables Xi given Y and Xj
in the context of {X1 = x1,X2 = x2, · · · ,Xn = xn} where
1 ≤ i, j ≤ n, and is defined as:

h(xi|Y , xj) = −
∑
Y

log2P(xi|y, xj). (13)

AODE is a linear combination of multiple SPODEs’ joint
probability estimates. To avoid overfitting and improve the
generalization ability of AODE, the contributions of strong
SPODEs to the aggregation of joint probability should be
enhanced. Thus, if the SPODE fits instance well, then we
need to increase its weight. TAODE seeks argmaxy P(y, x)
by using P(y, x) =

∑m
α=1 wαPα(y, x), where Pα(y, x) is the

joint probability for SPODE with super-parent being Xα and
the corresponding weight wα is 1/hαSPODE(T ).
To perform accurate calculations for assigning weight,

the critical issue is to opt for suitable distributions for the
probabilities. The prior joint probabilities in Eq.(11) will be
estimated as follows

P̂(yj, xα) =
1

N + 1

[
N∑
k=1

δk (yj, xα)+
1
m

]

P̂(xi, yj, xα) =
1

N + 1

[
N∑
k=1

δk (xi, yj, xα)+
1
m

]
,

(14)

where δk (·) is a binary function, which is equal to 1 if the
attribute values appear in the k-th instance and 0 if otherwise.
Then, conditional probability P̂(xi|yj, xα) can be estimated as
follows

P̂(xi|yj, xα) =
P̂(xi, yj, xα)

P̂(yj, xα)
. (15)

The learning procedure of TAODE is shown as follows:

TABLE 1. Complexity summary for different BNCs where t is the number
of training instances, n is the number of attributes, v is the maximum
number of values per attribute, and m is the number of class labels.
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Algorithm 1 TAODE
Input: Training dataset D with N instances, testing
instance x = {x1, x2, . . . xn}.
Output: Class label for x.
1. Generate a three-dimensional table of co-occurrence
counts for each pair of attribute values and each class label.
2. Transform testing instance x to pseudo training dataset
T .
3. According to the attribute values in testing instance x,
for each class label yj, compute P̂(xi|yj, xα) based on the
estimates of P̂(yj, xα) and P̂(xi, yj, xα).
4. For SPODE that takes xα as the super-parent, compute
wα = 1/hαSPODE(T ).
5. Compute Pα(y, x) and output the class label by selecting
y∗ = argmaxy

∑m
α=1 wαPα(y, x).

Table 1 summarizes the time complexity of each BNC
discussed. At training time, our implementation of TAODE
generates a three-dimensional table of co-occurrence counts
for each pair of attribute values and each class label. Then,
the table is used to estimate the conditional probabilities in
Eq.(4). The time complexity of forming the three dimensional
probability table isO(tn2). For SPODE with super-parent Xα
in TAODE, to compute the weight wα at classification time
we need to compute the targeted joint entropy in Eq.(12)
and targeted conditional entropy in Eq.(13). Thus, the time
complexity for computing weights isO(mn2). In comparison
with AODE, which has a training time complexity of O(tn2)
and classification time complexity ofO(mn2), TAODE needs
the same training time, and the additional computation of
entropy functions does not increase the classification time
complexity.

IV. EXPERIMENTS AND RESULTS
To compare the classification performance and fully clar-
ify the difference among BNCs, we perform experiments
on 32 benchmark datasets from the UCI machine learning
repository [31], which are described in Table 2. The datasets
can be divided into two groups, small datasets having less
than 2k instances and relatively large datasets having more
than 2k instances, and up to one million instances. Small
and large datasets respectively account for 50% of the total
32 datasets. All the experiments have been conducted on
a desktop computer with an Intel(R) Core(TM) i7-4710HQ
CPU @ 2.5 GHz, 64 bits and 8G of memory. BNCs will run
on the C++ software specifically designed for classification
tasks, and non-Bayesian learners will run on the Weka work-
branch (version 3.5.7). The following algorithms are com-
pared:
• NB [5], Naive Bayes.
• HNB [11], Hidden Naive Bayes.
• CFWNB [12], A Correlation-based Feature Weighting

Filter for Naive Bayes.
• TAN [9], Tree-augmented Naive Bayes.

TABLE 2. Datasets.

• AODE [15], Averaged One-dependence Estimator.
•WAODE-MI [17], AODEwhich uses mutual information

as the weight of each SPODE.
• AODE-SR [27], AODE with Subsumption Resolution.
• LR [32], Logistic Regression.
• LibSVM [33], Support Vector Machine.
• KNN [34], k-Nearest Neighbor.
• TAODE.
Some other issues related to the experiments are described

as follows,
• All the datasets are preprocessed with an unsupervised

filter to replace missing values with the modes and means
from the existing data.
• For each original dataset, numeric attributes are

discretized using minimum description length (MDL) dis-
cretization [35].
• Each algorithm is tested on each data set using 10 rounds

of 10-fold cross validation. Runs with the various algorithms
are carried out on the same training sets and evaluated on the
same test sets.
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FIGURE 4. The comparison results of the Nemenyi test in terms of (a) zero-one Loss, (b) Bias,
(c) Variance and (d) RMSE on 32 data sets. CD = 3.0646.

Tables 7, 8, 9 and 10 in the Appendix respectively show the
experimental results in terms of zero-one loss, bias, variance
and RMSE. Win-draw-loss records summarizing the rela-
tive zero-one loss, bias and variance are respectively shown
in Tables 3, 4 and 5, and Cell[i; j] in each table contains the
number of datasets on which classifier on row i performs
better, equally well or worse than the classifier on column j.
Only when the outcome of a one-tailed binomial sign test is
less than 0.05, the difference between algorithms is supposed
to be significant.

A. RESULTS OF ZERO-ONE LOSS
NB performs better while dealing small datasets since
the sparsely distributed data is more likely to approxi-
mate the independence assumption. HNB and TAN need to
deeply mine the dependency relationships between predictive
attributes or that between predictive attribute and the class
variable, thus their advantage over NB will be significant
while dealing with large datasets that can provide enough

TABLE 3. Win/Draw/Loss comparison results of zero-one loss on all
datasets.

instances for estimating high-order probability distributions
and computing conditional mutual information. For CFWNB,
the attributes with maximum mutual relevance and minimum
average mutual redundancy are considered to be highly pre-
dictive, and the attributes that are independent of others will
be given priority. Thus similar to NB, CFWNB performs bet-
ter while dealing small datasets. For AODE and its variants,
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TABLE 4. Win/Draw/Loss comparison results of bias on all datasets.

TABLE 5. Win/Draw/Loss comparison results of variance on all datasets.

TABLE 6. Win/Draw/Loss comparison results of RMSE on all datasets.

the independence assumption of each SPODE ismuchweaker
and holds if that of NB holds, but not vice versa. The ensem-
ble learning strategy of AODE greatly mitigates the negative
effect caused by the independence assumption. WAODE-MI
needs to compute mutual information for assigning weights,
thus its advantage over AODE is significant while dealing
with large datasets. AODE-SR improves upon AODE’s prob-
ability estimates by detecting and deleting the generalization
relationships between attribute values that are instantiated in
the object being classified, that is, AODE-SR can adaptively
remove redundant attribute values in testing instance at clas-
sification time and make the topology of each SPODE in
AODE fit testing instance better. A user-specified minimum
frequency is used to evaluate the confidence level of the
generalization relationship. TAODE has the characteristics of
WAODE-MI (identifying the difference among SPODEs and
assigning discriminativeweights) andAODE-SR (identifying
the variation in conditional dependencies between attribute
values in different instances).

The experimental results support the above analysis. From
Table 3, HNB and TAN respectively beat NB on 20 and
23 datasets, most of them are large datasets. CFWNB beats
NB on 10 datasets, most of them are small datasets. TAN
performs better than NB, HNB and CFWNB, that shows
the negative effect caused by the unrealistic independence
assumption of NB to some extent. In contrast, AODE and

FIGURE 5. Time comparisons.

its variants (including WAODE-MI and AODE-SR) all enjoy
advantages over TAN. Although WAODE-MI performs sim-
ilarly to AODE, its advantage over TAN is much more sig-
nificant especially while dealing with large datasets. AODE
is competitive with TAN (12 wins and 10 losses), whereas
WAODE-MI beats TAN on 16 datasets and loses on 7, and
WAODE-MI never loses to TAN when the data size> 2000.
AODE-SR performs even better, it beats AODE on 6 datasets
and never loses, and it beats WAODE-MI on 7 datasets and
loses on 5. TAODE enjoys significant advantage over AODE
(14 wins and only 1 loss), and it also performs much bet-
ter than WAODE-MI (9 wins and 2 losses) and AODE-SR
(8 wins and 3 losses). When compared with non-Bayesian
learners, TAODE wins on the majority of datasets in terms of
zero-one loss. For example, TAODE beats LR on 23 datasets
and loses on 6.

B. RESULTS OF BIAS AND VARIANCE
Complex topology often results in higher variance and lower
bias. If non-significant conditional dependencies that carry
no useful information about the class are represented as if
they do, that may invariably bias the estimates of probability
distributions. The topologies of HNB, CFWNB and TAN can
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TABLE 7. Experimental results of 0-1 loss.

be regarded as different versions of structural augmentation
of NB. This alleviates some of NB’s independence assump-
tion and therefore reduces its bias at the expense of increasing
its variance. AODE needs no structure learning and different
SPODEs in AODE represent different independence assump-
tions, the ensemble learning strategy will help AODE achieve
the bias-variance trade-off. The variation in training data will
affect the computation of mutual information, thus WAODE-
MI will have lower variance compared to AODE. In contrast,
SR removes interdependencies between attribute values and
that will help reduce variance. Identification of significant
conditional dependencies implicated in each instance will
help achieve the bias-variance trade-off. TAODE takes each
testing instance as the target and the weight for each SPODE
is finely adjusted for different testing instances.

To evaluate the extent to which TAODE can accom-
modate the trade-off between bias and variance, we run
the bias-variance decomposition experiments [36] together
with the repeated cross-validation bias-variance estimation

method [37]. For each fold of cross validation, the bias-
variance decomposition is derived from the error on each
of the testing instances and we can obtain the mean bias
and variance after the validation process terminates. From
Table 4 we can see that, the negative effect caused by the inde-
pendence assumption and its variants makes NB, HNB and
CFWNB perform poorer than TAN in terms of bias, whereas
AODE and its variants (including TAODE) enjoy significant
advantages over these single model BNCs and non-Bayesian
learners. All the three variants of AODE achieve lower bias
more often than AODE but the advantages of WAODE-MI
and AODE-SR over AODE are not as significant as that of
TAODE over AODE. As proposed by Brain and Webb [38],
the learners with lower bias can perform better while dealing
with large data. TAODE has proved to be computationally
efficient low bias learners. This can be proved by the exper-
imental results of zero-one loss that TAODE only loses to
AODE on dataset Dermatology having only 366 instances
and when the data size> 500, TAODE never loses.
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TABLE 8. Experimental results of bias.

From Table 5 NB performs the best in terms of variance.
In contrast, the advantage of AODE over other BNCs is not
significant as supposed. WAODE-MI performs similarly to
AODE (6 wins and 6 losses), and AODE-SR even performs
better than AODE (7 wins and only 1 loss). TAODE trans-
forms each testing instance into a pseudo training set and by
assigning weights to different SPODEs, significant and non-
significant conditional dependencies implicated in testing
instance will be assigned different weights correspondingly
for probability estimates. That surely increases the risk of
overfitting. TAODE only beats TAN in terms of variance
(22 wins and 7 losses) and loses to other BNCs. Thus its
zero-one loss advantage can be attributed to the cost of vari-
ance. For non-Bayesian learners, SVM performs the best in
terms of variance due to its default parameters applied to all
datasets.

C. RESULT OF RMSE
The root-mean-square error (RMSE) is a frequently used
objective function and can measure the calibration of a

classifier’s class probability predictions. The comparison
results shown in Table 6 are consistent with that in terms
of zero-one loss. HNB and TAN enjoy significant advan-
tages over NB especially while dealing with large datasets.
CFWNB performs better than NB while dealing with small
datasets. AODE and its variants perform better than single
model BNCs mentioned above generally. TAODE performs
the best among all the BNCs. Among these three variants
of AODE, for SPODE with the same super-parents the same
1-dependence relationships are represented in the topology
and the precision of estimates of conditional probabilities is
restricted, thus the advantage of TAODE in terms of RMSE
does not seem to be significant.When compared to these non-
Bayesian learners, the advantages of AODE and its variants
are very obvious.

D. FRIEDMAN TEST AND NEMENYI TEST
The Friedman [39] and the Nemenyi [40] tests are effective
for comparing multiple classifiers across multiple data sets.
Classifier will be ranked by comparing their classification
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TABLE 9. Experimental results of variance.

performance and the Friedman statistic is defined as follows:

χ2
F =

12
Dt(t + 1)

t∑
j=1

R2j − 3D(t + 1), (16)

where R2j =
∑

i r
j
i and r

j
i is the rank of the jth of t algorithms

on the ith of D data sets. The Friedman statistic is distributed
according to χ2

F with t − 1 degrees of freedom. The critical
value of χ2

α for α = 0.05with t−1 = 10 degrees of freedom is
18.31. The Friedman statistic for zero-one loss, bias, variance
and RMSE in our experiments are 67.19, 87.54, 63.43 and
106.8, respectively, χ2

F > χ2
α always holds and hence there

exists true difference among these algorithms.
Let dij denote the difference between the average rank of

the i-th algorithm and that of the j-th algorithm. The differ-
ence between the algorithms is supposed to be significant if
dij > critical difference (CD) [41], which can be computed as
follows,

CD = qα

√
t(t + 1)
6D

(17)

where qα for α = 0.05 and t = 11 is 3.696. The experimental
study is performed on 32 datasets with 11 algorithms, CD
can be computed by Eq.(17) and is equal to 3.0646. The
comparison results of these algorithms against each other
with the Nemenyi test on zero-one loss, bias, variance and
RMSE are shown in Fig.4. The left line and the parallel
right line respectively indicate the algorithms and corre-
sponding average ranks. CD is also presented in the graphs.
The lower position of the compared algorithm indicates its
lower rank or better performance. If the difference between
algorithms is not significant, they will connected by a line.

As Fig.4(a) shows, TAODE achieves the lowest mean
zero-one loss rank (3.515), followed by WAODE-MI (4.468)
and AODE-SR (4.593). They enjoy significant zero-one
loss advantages over AODE, TAN, HNB, CFWNB, k-NN,
LR, NB and LibSVM. When bias is compared, as shown
in Fig.4(b), TAODE, WAODE-MI and AODE-SR still per-
form the best. When variance is compared, as shown
in Fig.4(c), the variance advantage of NB relative to all
remaining algorithms is very clear. TAODE achieves higher
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TABLE 10. Experimental results of RMSE.

mean variance rank (6.718) compared toAODE,WAODE-MI
and AODE-SR. KNN has the highest variance rank (9.046)
among all the algorithms. When RMSE is compared,
as shown in Fig.4(d), the Nemenyi test differentiates TAODE,
WAODE-MI and AODE-SR from the other learners. They
three deliver significantly lower mean RMSE ranks.

E. ANALYSIS OF CLASSIFICATION AND TRAINING TIME
Fig.5 displays the mean training and classification time
on 32 datasets for those algorithms. As can be seen from
Fig.5(a), NB and AODE don’t need to learn the topology
and thus their training time is the least among all the BNCs.
NB needs to store the prior probability P(y) and conditional
probability P(xi|y). AODE takes a bit more time to store high-
order conditional probability P(xi|xj, y), and AODE-SR and
TAODE perform in a similar fashion. HNB needs to compute
the conditional mutual information for each pair of attributes
and use it to compute the weights. In contrast, WAODE-MI
and TAN respectively need to compute mutual information
for assigning weights and conditional mutual information for

learning conditional dependencies between attributes, thus
they both suffer the training time disadvantages over other
BNCs. As can be seen from Fig.5(b), AODE is extremely
computationally expensive especially at classification time
compared to NB and TAN. AODE and HNB have almost
the same classification time. AODE-SR needs to identify the
generalization relationship and eliminates generalizations at
classification time. TAODE needs to compute hαSPODE(T ) to
assign weight to each SPODE. Thus they both suffer the
classification time disadvantages over other BNCs. There is
no doubt that LR, SVM and KNN use more training and clas-
sification time than BNCs, actually they are more complex
and programs written with Java run slowly.

V. CONCLUSION
AODE retains the simplicity and direct theoretical foundation
of NB without incurring computational overhead. By iden-
tifying the difference among the SPODEs in terms of log
likelihood, this paper presents an efficient and effective
attribute value weighting approach, which is well balanced
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between the expressivity caused by ensemble learning strat-
egy and the reliable probability estimation caused by inde-
pendence assumptions. For different instances, discriminative
weights are assigned to different SPODEs by computing the
micro entropy function hαSPODE(T ). The experimental results
on widely used benchmark datasets from UCI machine learn-
ing repository show that this approach achieves bias-variance
trade-off and is a competitive alternative to state-of-the-
art Bayesian and non-Bayesian learners. Model weighting
is only one of the four research directions for refining
AODE. The exploration of using weights for attribute selec-
tion or model selection will be an interesting topic in our
future work.

APPENDIX
DETAILED EXPERIMENTAL RESULTS
See Tables 7–10
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