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ABSTRACT NowadaysMEMS sensors, like accelerometers, gyroscopes, and magnetometers, are spreading
in a wide range of applications, because of their small size, cheapness and increasing performance. For
instance, smartphones are currently equipped with this kind of sensors, which could be used to improve the
user experience of the phone itself or the navigation functionalities. In this work, accelerometers, gyros,
and orientation measurements are exploited to provide advanced information about the walker bringing
the phone. In particular, smartphone sensors outputs are used to recognize the identity of the walker and
the pose of the device during the walk. The aforesaid information, if known, could be used to improve
specific smartphone functionalities. For instance, the recognition of walker identity can be used for theft
protection or the device pose can be used to improve the performance of the pedestrian navigation. Machine
learning algorithms have been effectively adopted in several fields to solve problems involving classification,
time series prediction, pattern recognition, and object detection. Herein, a novel hierarchical approach
for classification is applied to data produced by smartphone sensors in order to recognize the previously
described contexts, obtaining effective results.

INDEX TERMS Navigation, activities detection, machine learning, MEMS sensors.

I. INTRODUCTION
MEMS (Micro-Electro-Mechanical Systems) are small, light
and cheap sensors, whose spread is continuously grow-
ing in several sectors [1]. Pressure and inertial sensors are
largely used in the automotive industry since the nineties,
for engine management, car dynamics control, and safety
systems. MEMS had a further proliferation in the consumer
electronics since themid-2000s, in particular for smartphones
and tablets [2]; in these devices, inertial sensors are used,
for instance, for automatic screen rotation or recognition of
gesture-based command. Currently, fitness trackers, smart-
watches and virtual reality headsets further enrich the market
of MEMS.

All smart-devices (phone, tablet, clocks) have an increas-
ing number of embedded sensors that measure motion,
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orientation and several environmental parameters. As a result,
smart-devices could be considered very powerful mobile sen-
sor platforms [3]. These sensors are enabling new applica-
tions across a wide variety of domains, such as navigation,
healthcare, IoT, safety, environmental monitoring and they
are giving rise to a new area of research called mobile phone
sensing. The outputs of smart-devices sensors are raw data
with a high rate that directly provide information on a physi-
cal quantity (physical or hardware sensors) or that compute
a quantity estimate by processing several measure sources
(virtual or synthetic or software sensors). Three broad sensor
categories could be considered: motion, environmental and
position sensors [4], [5]. The first category includes physical
sensors as accelerometers and gyroscopes, which can mea-
sure acceleration and angular velocity, while, as virtual sen-
sors, gravity, linear acceleration, step detector, and counter.
Environmental sensors (barometers, photometers, and ther-
mometers) measure various environmental parameters, such
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as ambient air temperature and pressure, illumination, and
humidity. The last category refers to sensors providing the
physical position of a device like GNSS, magnetometers and
proximity sensor; the device orientation is usually provided
by a virtual sensor, which is based on a fusion of accelerom-
eters, gyroscopes and magnetometers measurements [6].

The scope of this research is to recognize, within a
set of possible walkers, the walker that is currently bring-
ing the smartphone using the signals from sensors embed-
ded into the device (i.e., accelerometers, gyroscopes, and
magnetometers). The identification of the walker is the main
purpose of the work and, to our best knowledge, there is no
significant previous work on the topic. Its natural application
is the theft protection, i.e. a smartphone with this function-
ality would be able to detect if the person bringing it is the
owner or not. The pose of the smartphone during the walk,
i.e. how the device is carried, is recognized too. Previous
researchers [7]–[10] worked on this topic, mainly because
knowing the device pose could improve pedestrian navigation
performance.

Differently from the above approaches, in this study,
we mainly focus on the topic of walker identification and
device pose recognition. Specifically, the approach described
in this study aims at identifying the device pose and the
walker’s identity with a hierarchical ensemble of classifiers
using a set of internal base classifiers to improve the overall
performances. According to this, here we focus on comparing
the performances of a base classifier with a hierarchical one
that combines two base classifiers: a device pose classifier
and a walker identity classifier.

Moreover, data from eighteen walkers (9 males and
9 females), with two device models (i.e. iPhone 7 and
Samsung S6) in four different poses (phoning, pocket, tex-
ting, and hand as defined in the methodology section), are
used to train the hierarchical learning classifiers; after the
training step, the resulting classifiers are tested for the iden-
tification, in real-time, of both the actual walker among the
possible ones and the device pose. The classifiers are assessed
on real data collected from walking sessions and exhibit
very effective identification performances. The percentage
of correct recognition of device pose is about 98%. The
performance in recognizing the walker’s identity, regardless
of the device model and pose, is very good but not always sat-
isfying (about 93% of correct classifications). Consequently,
a hierarchical approach, to first identify the device pose and
then the walker’s identity with two cascaded classifiers of
different kinds, is carried out. With this approach, the accu-
racy of successful identifications drastically increases to at
least 98.72%. Also, to understand the role of each consid-
ered sensor in the identification process, all the combinations
of accelerometers, gyroscopes and orientations are tested;
the analysis demonstrates that the sensormore incident for the
identification is orientation, while the less incident is the
gyroscope. Finally, the effect of timewindow size on the iden-
tification performance is analyzed too. With just less than
half a second of data, it is possible to obtain very good

identification performance (with an accuracy of 93.8% and
98.2% respectively for simple and hierarchical classifiers).
Further improvements are obtained by increasing the window
size: processing five ormore seconds ofmeasurements allows
to obtain ≈100% of correct identifications when subjects are
all known (i.e., the classifier has been trained on walking ses-
sions produced by all potential walkers). To study the behav-
ior when subjects are not known in advance, a case study
to assess the performance of the hierarchical classifier in a
real binary classification scenario (to discriminate between
the ‘‘owner’’ or a ‘‘stranger’’) is proposed. The hierarchical
classifier exhibits good generalization capabilities provid-
ing an accuracy above 92.5% with windows of two seconds
and the best accuracy of 97.5% for windows of at least
six seconds.

II. BACKGROUND ON DECISION TREE CLASSIFICATION
Classification algorithms aim to select from a set of cate-
gories, the category to which a new observation belongs.
This section presents a short description of the decision tree
classification algorithms adopted in this study.

A. MACHINE LEARNING ALGORITHMS
Machine Learning (ML) is a subset of the artificial intelli-
gence discipline aiming at realizing systems that can learn
how to behave from data [11]. ML techniques are classi-
fied into two main categories: supervised learning and unsu-
pervised learning. The difference between these categories
is how the learning process is performed and what kind
of information it needs. In particular, supervised learning
algorithms infer a function that maps a set of input data
and the desired output (it is called ‘‘training’’ dataset). The
function, after inferred, can be used to map new observations
of the phenomenon under study. Supervised learning can be
effectively adopted in classification problems to identify the
class labels for new observations. In this case, the learning
process consists of selecting, among all the possible func-
tions, the best one capable to identify correct class labels
for unseen input data (i.e., data not included in the training
set). When conducting supervised learning, a critical aspect
is model complexity. Usually, a low-complexity model is
advisable to allow the system to make correct predictions
on new samples (i.e., it is capable of ‘‘generalize’’). Usually,
high-complexity learned models are said to ‘‘over-fit’’ since
they are too much linked to the specific instances of train-
ing samples. Such models are not able to generalize, often
performing well on the training/test data but exhibiting bad
performances on new samples that are never used in the learn-
ing process. Unsupervised learning differs from supervised
learning because it does not need to be trained with true class
data (no explicitly-provided labels are used). In unsupervised
learning, the model is explicitly defined and, usually, it is
characterized by several parameters. The learning process,
in this case, consists of the estimation of the parameters based
on real data. This section explores the supervised learning
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algorithms since the proposed approach is based on this kind
of classifier.

Supervised learning approaches can be grouped in the
following broad categories:

• Decision Trees (DT): [12]–[18],
• Bayesian Networks (BN): [19]–[23],
• Multinomial Logistic Regression (MLR) and Regres-
sion based Classifiers (RC): [24],

• Rules (R): [25], [26],
• Lazy (L): [26].

Starting from the analysis of the above-mentioned
approaches, we decide to focus on decision-tree approaches.
Specifically, the proposed approach is based on the Random-
Forest as formulated in [15] for its capability to combine
concepts of bootstrapped aggregation (or bagging) with sim-
ple decision tree-based classifiers. Since the RandomForest
algorithm has been effectively used in similar classification
tasks that are focused on behavior detection and identifica-
tion providing best performances among simpler classifiers,
we selected it as our baseline approach.

B. RANDOM FORESTS
Random forest operates by constructing a multitude of deci-
sion trees at training time and gives as output the member-
ship, for each observation, to a class (for a classification
problem) or the mean prediction (for a regression problem).
In particular, the leaf nodes of the trees correspond to reached
decisions and each node of a binary decision tree corresponds
to a decision criterion (hence two branches contain an alterna-
tive set of decisions based on actual data). Looking at the clas-
sification problems, decision trees are very useful since each
considered metric can be represented as a different node and
each leaf node represent a decision about the membership of
current observation. Multiple decision trees capture different
types of classification rules and are more suitable to represent
complex domains. These types of decision trees are referred
to as a decision forest (DF) and can be considered as an
example of ensemble classifiers. For instance, in categorical
problems, each tree proceeds to vote for a different class and
the leaf nodes report, as answers, the percentages of trees
voting for each possible class. Randomness is essential for
the construction of a decision forest. In general, the random
forest approaches are characterized by a random selection
of the features metrics used to build decision trees and by
bootstrapped aggregation that repeatedly sample data with
replacement from the original training set to obtain multiple
separate training sets as described in [27]. The trees built
can be trained by using the CART methodology as shown
in [28]. It consists of a metrics selection step based on infor-
mation theory. The number of built tree and the maximum
depths of the decision tree can be monitored thought some
parameters (some of these parameters can be set by cross-
validation to maximize performances). A limitation of an
individual decision tree is that it produces predictions hav-
ing low bias but high variance. Extremely randomized trees

algorithm answers to this issue and attempts to achieve this
goal by generating an ensemble of independent and uncorre-
lated decision trees.

III. RELATED WORK ON LEARNING ALGORITHMS
FOR MOBILE SENSORS DATA
Complex activity recognition is a very explored topic [29].
A huge amount of studies explore the adoption of machine
learning and pattern recognition to extract useful information
from the mobile sensor data [30].

Several approaches are based on unsupervised learning
algorithms since no prior information is required [31]–[33].
Other studies explore semi-unsupervised learning approaches
allowing to minimize the number of fully-labeled needed
data [34]. In this work, we focus on supervised learning
approaches. These approaches are largely applied to recog-
nize human activities from a set of data extracted by using
sensors [35]. In [7] decision tree algorithm is used to per-
form a classification among four smartphone poses by ana-
lyzing accelerometers and gyros signals. Similarly, authors
in [8] propose an approach useful to recognize eight common
motion states during indoor navigation by using a Least
Square-Support Vector Machines (LS-SVM) classification
algorithm. A similar approach is proposed in [36] where
the support vector machine (SVM) is used to classify data
from accelerometers and GPS sensors performing a physical
activity recognition. The evaluation of the approach in a real
context shows that the SVM algorithm gives higher accuracy
than k-nearest neighbors and nearest neighbors algorithms.
In [37]–[40] deep learning techniques are adapted to recog-
nize human activities on the base of the data extracted from
accelerometer and gyroscope sensors. In particular, authors
in [39] achieved very high classification performance on
moving activities by exploiting the inherent characteristics of
human activities and 1D time-series signals. All the above-
discussed approaches mainly aim to identify human activities
and smartphone poses [41] by using sensor data and they are
at the base of user identification. However, our proposal starts
from the above-discussed approaches and goes to identify the
walker identity and the pose of the device during the walking,
basing on data revealed by smartphone sensors. In this direc-
tion go approaches proposed in [10], [42]. However, in [42]
an SVM classifier is introduced on novel gait recognition.
This method outperformed an equal error rate of 2.45% and
an accuracy rate of 99.14% in terms of gait identification.
In [10] human step modes and device poses are identified
by processing accelerometers, gyroscopes, magnetometers
and pressure sensors signals. However, the topic of walking
identification is marginally discussed in the above studies
(they are mainly focused on walking mode identification).

This topic is instead faced in [43], [44] and [42]. In [43]
a model allowing to use of accelerometer data from smart-
phones has been proposed for user identification. The authors
propose a dataset and a feature vector. They use WEKAs
J48 and Neural Network models to perform the classifica-
tion obtaining respectively an accuracy of 0.909 with Neural
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Network and 0.84 with J48. In [44] data from both smart-
watches and smartphones are used. Here, the feature vector
is selected giving a higher focus on the integration of smart-
phone and smartwatch. Another directly related approach is
reported in [45], where authors use a random forest ensemble
classifier to recognize users using data from phones embed-
ded accelerometer sensors. This approach is evaluated on a
dataset composed of 100 samples and shows an accuracy
of 0.9679 andArea under Curve (AUC) of 0.9822. Differently
from the discussed approaches, our method introduces a deci-
sion tree-based hierarchical architecture for the walker clas-
sifier that exploits a set of internal base classifiers to improve
the overall performances reducing detection times.Moreover,
we adopted a wider range of sensors (i.e., accelerometers,
gyroscopes, and magnetometers) whereas previous studies
for walker identification rely only on accelerometers. This
architecture exhibits very good performance in walker recog-
nition: using the smallest time window size the precision is
equal to 0.98 and recall is equal to 0.99. Moreover, in this
study, we performed an analysis of the impact, on the result-
ing classification performance, of:
• the set of sensors considered as features;
• the time-window size used for classification.

This impact analysis is useful to clarify which aspects are
more critical for both the quality of classification and the time
needed to perform it. Finally, the study includes a case study
showing the application of the proposed approach in a real
binary classification scenario.

IV. METHODOLOGY
This section describes the proposed method focusing on:
i) the adopted features model and ii) the classification
approach.

A. FEATURES MODEL
The proposed approach is based on the assumption that a set
of MEMS sensors typically installed in smartphones can be
used to capture the walking behavior of the device user and
this information can be used to identify him among different
users in real-time (i.e., during walking sessions).

The sensors considered as features are the accelerometer,
the gyroscope triads (both physical sensors), and the orienta-
tion (virtual sensor, i.e. roll, pitch and yaw angles).

Based on such considerations, we considered the sets of
features described in the first column of Table 1. In addition
to the complete features model (composed by all the features
available using all the device sensors), we also test some
smaller feature sets (as reported in the table) to understand
which features are more important to identify the walker.
According to this, the last seven columns in the table reports,
for each feature, the sets (from S1 to S7) that include it.
The first three sets are used to test the classifications per-

formances of single sensors (i.e., S1 for acceleration, S2 for
gyroscope and S3 for orientation).

Sets from S4 to S6 are needed to test classification perfor-
mances considering couple of sensors (i.e., accelerometers

TABLE 1. Considered sets of features.

and gyroscope, accelerometers and orientation and gyroscope
and orientation).

Finally the set S7 contains all the sensors and represents the
complete feature set.

B. CLASSIFICATION APPROACH
This section discusses the proposed classification approach
to the walkers and their device pose identification using data
extracted from smartphone sensors. The overall classification
process is reported in Figure 1. It consists of two main sub-
processes: (a) the generation of the datasets (b) the training
and time-series classification. The two sub-processes will be
described in the remaining of this section.

1) THE DATASETS GENERATION
The datasets generation sub-process is described in
Figure 1-(a). The process starts with the cleaning and the
normalization of the data produced by the smartphones to
obtain a consistent dataset that is suitable for statistical infer-
ence. This activity consists to remove all the incomplete and
wrong data values by applying a set of techniques allowing
to i) fill missing values, ii) filter out the noise, and iii) correct
(or remove) the inconsistent values from the dataset. This
activity is very critical since real-world data tend to be rather
noisy, incomplete or even inconsistent. The adopted cleaning
and normalization activity can be splitted in the following
steps:
• fix missing values;
• remove noise;
• remove special character or values;
• verify semantic consistency;
• normalize.
The normalization is conducted by using a Min-max tech-

nique allowing to performs a linear transformation of the
original smartphone data.

IfminX andmaxX are respectively, the minimum and max-
imum values for the attribute X, the min-max normalization
maps a value vi of X to a v′i in the range {newMinX , newMaxX }
by computing:

v′i =
vi − minX

maxX − minX
(newMaxX − newMinX )+ newMinX

Finally, the cleaned and normalized dataset becomes
the input for the training and test set generation activity.
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FIGURE 1. The overall classification process.

This activity allows splitting the data into two sets. The first
is called the training set and is used to train the classifier.
The second is called the test set and it is used to assess the
performance of the classifier.

2) TRAINING AND TIME-SERIES CLASSIFICATION
Figure 1-(b) describes the training and time-series classifica-
tion sub-process. As shown in the figure, the process ismainly
divided into the following steps:
• Time Series Segmentation: it consists to analyze time
series and divide them into segments (i.e. time series
windows);

• Post-processing: for each window it generates a
representation based on values features and trends
features;

• Decision Trees Model Generation: it consists to train a
simple (or ensemble) decision trees-based classifier;

• Classification, in this step the trained classifier perfor-
mances are tested on new time-series samples.

In the time series segmentation step, a sliding window
approach is used to incrementally divide the multivariate time
series into a sequence of segments across the time series
values. In particular, we adopted a fixed sliding window
approach consisting to define several windows of increasing
range size (from 0.32 sec. to 10 sec.). In the post-processing
step, for each time series window, identified during the seg-
mentation, a set of features is evaluated. Exactly, we associate

to each window wi, the following sequence of features:

(Fv1, . . . ,Fvn,Ft1, . . . ,Ftm)

The values feature Fvj represents a discretized value of the
time series contained in the [0,1] range. The features Ftk
represent the trend of the time series local to the window and
it can correspond to shape-based metrics (i.e., standard devia-
tion, mean, average energy, entropy, skewness, and kurtosis).
According to [46], the values feature is described by a single
feature while trend features are described by two metrics:
standard deviation and skewness metrics. The decision tree
model generation step consists to perform classification by
using a decision trees-based classifier [27]. The classifiers’
inputs are all the vectors representing the window compo-
nents (i.e., data for each sensor involved in this study). The
classifier is trained using the class labels available for each set
of value-based and trend-based information of each window.
Finally, the trained classifier is used to classify new data and
its performances are evaluated on new samples. For training
the classifiers, we defined T as a set of labeled traces (M, l),
where eachM is associated to a label l ∈ {W1,. . . ,Wn} (where
Wn represents the n-th walker). For eachM we built a feature
vector F ∈ Ry, where y is the number of the features used
in training phase (y = 9 for all the sensors data taken into
account).

In the learning phase, the dataset assessment is performed
by using a K-Fold Cross-Validation approach [47] consisting
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FIGURE 2. The two layers architecture of the hierarchical classifier C3.

to split the data into k equally sized subsets using random
sampling. A subset is retained as a validation dataset to assess
the trained model whereas the remaining k − 1 subsets are
exploited to perform training. Such a process is repeated
k = 10 times: during the ten iterations, each of the k subsets
has been used once as the validation dataset. To obtain a single
reliable estimate, the final results are evaluated by computing
the average of the results obtained during the ten iterations.
The process starts by partitioning the dataset in k slices. Then,
for each iteration i, we train and evaluate the effectiveness of
the trained classifier following the steps reported below:

1) the training set Ti ⊂D is generated by selecting an
unique set of k-1 slices from the dataset D;

2) the test set T ′i = D − Ti is generated selecting the
remaining k th slice (it can be evaluated as the comple-
ment of Ti to D)

3) a classifier is trained on set Ti;
4) the trained classifier is applied to T ′i to evaluate

accuracy.
Since k = 10, each iteration i is performed using the 90% of
the dataset D as the training set (Ti) and the remaining 10%
as test set (T ′i ). Moreover, great representativeness of each
subset is ensured by stratifying the data before being split
into subsets. This model selection method, according to [48]
provides less biased estimation of accuracy.

C. THE ADOPTED CLASSIFIERS
Different classifiers are implemented in this study:
• a generic walker classifier (C1) able to distinguish the
identity of the walkers; it can be trained, based on the
needs, in two ways:
– using walking sessions in which device is in any

pose;
– using walking sessions in which device pose is

fixed;

• a device pose classifier (shortly called C2) able to dis-
tinguish the pose of the phone (i.e., texting, pocket,
phoning, swinging);

• a hierarchical classifier (C3), obtained as the combina-
tion of one C2 classifier to detect the pose and four
C1 classifiers (each trained using walking sessions of a
fixed device pose).

The main architecture of the hierarchical classifier is reported
in Figure 2. The classifier C3 consists of two layers: in the
first layer, the smartphone pose identification is performed
through the C2 classifier. In the second layer, on the base
of the identified smartphone pose, the C1 classifier for the
identified device pose is used to perform the actual walker
identification. As shown in Figure 2, each C1 classifier in
the C3 is associated with a specific device pose: texting
walker classifier, pocket walker classifier, phoning walker
classifier, swinging walker classifier. The texting walker clas-
sifier allows identifying the walker when he is texting on
the smartphone. Similarly, the pocket walker classifier allows
identifying the walker when the device is in the pocket. The
phoning walker classifier allows identifying the walker if he
is using its device to make a phone call. Finally, the swinging
walker classifier allows identifying the walker if he is freely
swinging during the walk with the device in his hand. The
main idea is that different walkers have different behavior
for the above activities and these differences can be captured
and used to improve walker identification. All the considered
classifiers are preliminary tested on a partition of the data
used cross-validation and, successively, on an external dataset
of real walking sessions (to assess robustness).

V. EVALUATION
In this section, we describe the experiments we performed
(i.e., the classification goals of each trained classifiers) and
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TABLE 2. Random Forest selected parameters.

the related evaluation settings (i.e., the context of such exper-
iments and the metrics used for validation).

A. DESCRIPTION OF THE EXPERIMENTS
Themain topic of the experimentation is to evaluate the effec-
tiveness of the proposed classifiers (C1, C2, C3) to recognize
the identity of a walker bringing a typical smartphone along
with the device pose. Each evaluation consists to perform
the classification process (as described in Section IV-B.2)
on the studied classifier. The evaluation is performed by
considering different features models (Table 1 describes the
feature models S1, S2, S3, S4, S5, S6, S7) and different time
window size (as described in Section IV-B.2 we adopted
a fixed sliding window approach for the training and time
series classification). This allows investigating the optimal
time window and the best features model. According to the
described goals, the following experiments are performed:

• the classifiers C1 with the feature set S7 is used to
perform walker identification regardless of the device
pose and using increasing time window sizes (ranging
from 0.32 to 10 seconds);

• the classifier C1 with different feature set (S1, S2, S3,
S4, S5, S6, S7) is used to perform walker identification
regardless of device pose and using the shortest time
window size (0.32 seconds);

• the classifierC2 with the feature set S7 is used to perform
a fixed device pose identification using the shortest time
window size (0.32 seconds);

• the classifiers C3 with the feature set S7 is used to
perform walker identification regardless of the pose
and using increasing time window sizes (ranging from
0.32 to 10 seconds).

Finally, further analysis has been carried out, collect-
ing additional data from one person, included among the
18 walkers, after he was involved in an injury that caused
a distorted gait (for this person we collect data of several
walking sessions when he had both a limpid gait and, later
on, a distorted one). The purpose of this last analysis is to
understand if the classifier, trained on data related to the
normal behavior of a person, can identify the subject when
he walks with a distorted gait.

The classification analysis is performed by using Weka,1

a well-known framework written in Java to solve machine
learning tasks.

1http://www.cs.waikato.ac.nz/ml/weka/

TABLE 3. Walkers profiles (9 men and 9 females).

B. EVALUATION SETTING
The training data consists of raw measurements collected
from 18 different persons (9 males and 9 females). Each per-
son walked indoor with the smartphones in 4 different poses
(texting pose, phoning pose, pocket pose, swinging pose) for
about 40 meters. As already pointed out, in this study we
considered, as discriminating features, the accelerometer and
gyroscope triads (both physical sensors), and the orientation
(virtual sensor), i.e. roll, pitch and yaw angles. A data rate
of 100Hz is adopted. Two smartphones, from different brands
and of different grades are used: the medium grade S6 from
Samsung and the high-grade iPhone7plus from Apple. The
considered data are logged using the ‘‘Matlab mobile’’ appli-
cation from Mathworks, which allows a simple acquisition
from the sensors into the smartphones and the storage into
cloud memory.

For what concerns the Random Forest settings, we refer to
the following parameters:
• Bootstrap: it is a technique allowing to improve the
stability and accuracy of machine learning algorithms.
It also reduces variance and helps to avoid overfitting;

• Max Depth: maximum number of the network layers;
• Max Features: is the size of the random subsets of
features to consider when splitting a node. If ‘‘Max
Features’’ is equal to ‘‘Auto’’, all the features are consid-
ered. Differently, Max Features can be equal to ‘‘SQRT’’
(meaning that ‘‘Max Features’’ is calculated as the
square root of the total number of the features) or equal
to ‘‘Log2’’ (meaning that ‘‘Max Features’’ is calculated
as the logarithm to the base 2 of the total number of the
features;

• Min Samples Leaf: minimum number of nodes that
have no children;

• Max Samples Split: the minimum number of samples
required to split an internal node;

• Number of Estimators: Random forest, as a meta
estimator, fits several decision-trees classifiers on the
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TABLE 4. Confusion matrix of classifier C1: all walkers with any phone in any pose.

sub-samples of the dataset and exploits averaging to
improve accuracy and to reduce overfitting. The num-
ber of estimators is the number of such trees in the
forest.

The experiment was conducted with the best parameters
reported in Table 2 found using a Sequential BayesianModel-
based Optimization (SBMO) approach implemented using
the Tree Parzen Estimator (TPE) algorithm as defined in [49].

Five known metrics have been used to evaluate the classi-
fication results: Precision, Recall, ROC AUC, Accuracy, and
F1-score.

Precision (P) has been evaluated as the proportion of the
examples that truly belong to the class of a specific walker
among all those who were assigned to the class.

The recall (R) has been evaluated as the proportion of
examples assigned to the class of a specific walker among
all the examples that truly belong to that class.

ROCAUC represents the degree of separability. It tells how
much model is capable of distinguishing between classes.

The accuracy has been evaluated as a description of sys-
tematic errors. It is computed as the ratio of the sum of true
positive and true negative to the total number of records.

Finally, the F1-score is a measure that combines precision
and recall in the harmonic mean.

VI. RESULTS AND DISCUSSION
The main metrics adopted to assess the performance of the
classifiers are the accuracy, precision, recall, and ROC AUC;
to deepen the results, the confusion matrix is considered
too. The walkers are indicated by the letter ‘‘w’’, followed
by an identification number and by the letter ‘‘m’’ or ‘‘f’’,
depending on whether the walker is a male or a female; for
instance, w03m indicates a male walker identified by the
number 03. The selected walkers’ profiles involved in the
study are listed in Table 3.

Considering all the walkers bringing any phone in any
pose, among the considered ones, the classifier C1 provides,
for the smallest window size, a percentage of correctly clas-
sified instances of 93.89; precision and recall metrics are

respectively 0.98 and 0.91 whereas ROC AUC is 0.91. The
considered metrics demonstrate the good performance of C1
in recognizing the walker’s identity.

The confusion matrix of C1 as shown in Table 4 reports
quite good classification results. In particular, it is interest-
ing to observe that both male and female walkers are well
identified. Only one case of identification failures is greater
than 3%.

We have also investigated the accuracy of smartphone
detection finding that the accuracy of Samsung S6 correctly
classified instances is 99.1%. For the iPhone7plus results are
similar (97.9%).

TABLE 5. Impact of each sensor on the classifier performance.

To analyze the impact of each sensor on the classifier
performance, all possible combinations of sensors are con-
sidered; the comparison among the obtained results is shown
in Table 5. As predictable, the best performances are obtained
with the configuration including all the considered sensors;
the configuration including both accelerometers and gyros
provides significantly worse results with respect to orienta-
tion coupled with accelerometers or gyros. The main con-
tribution to the walker recognition seems to come from the
orientation sensor, with 91.3% of successful identifications,
while only accelerometers or gyros allow respectively only
58.1% and 32.4% of correct classifications.

The classifier C2 objective is to distinguish the pose of the
phone among four possible ones: texting, pocket, phoning and
swinging. The correct classified instance percentage is about
98.2% and the related metrics are shown in Table 6.
The confusion matrix, in this case, is shown in Table 7.

All the poses are quite easy to detect. For the swinging and
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FIGURE 3. Accuracy and error of C1 classifier, for all device poses, with respect to window size.

TABLE 6. Performance metrics of classifier C2, to identify phone pose.

TABLE 7. Confusion matrix of classifier C2, for all walkers with any
phone.

the phoning poses, we obtain 98.4% of correct classifica-
tions. On the other hand, for the texting and pocket pose,
we obtain 98.5%. In the worst-case 1.3% of texting poses are
confused with pocket ones and 1.3% of swinging pose are
confused with phoning pose.

To further test the robustness of classifier C1, it has been
applied on data collected from four walkers, w05m, w06m,
w12f, and w18f, in a real-world context: an outdoor walk-
ing session on a pedestrian street on a typical working day.
The percentage of correct identification drastically decreased
to 91.2. From the confusion matrix, in Table 8, it is evident
that all the walkers are still correctly identified. Respectively,
we obtain 91.9%, 89.7%, 92.02 and 91.12 for w05m, w06m,
w12f, and w18f.

All the results shown so far are obtained processing
the samples included in a very short time window of
0.32 seconds, to allow a real-time application of the method.
Increasing the time window, and consequently, the number
of samples used for the recognition could improve the perfor-
mance of C1 classifier. To demonstrate that, a sliding window
approach has been adopted with fixed windows of increasing

sizes up to 10 seconds. The obtained results, in terms of
accuracy and error, are shown in Figure 3. It is evident that the
accuracy increases with the window size and consequently
the error decreases with it; starting from a window size
of 4.5 seconds, the accuracy becomes ≈100%. The choice
of the time window size is related to the application; if a real-
time response is required, a short window is necessary (allow-
ing more errors), otherwise, a larger one can be considered.

To increase the robustness of walker recognition,
we adopted a different approach based on identifying the
walker once the phone pose is known. This hierarchical
classifier, name C3, is described in Section IV-C. The results
obtained for C3 are resumed in Table 9 and show a signifi-
cantly improvement in performances with respect to classi-
fier C1. With the smartphone in the pocket pose, the accuracy
of walker identification reaches its highest level (99.16%),
obtaining the lowest in the swinging pose (with still a very
good accuracy of ≈96.92%).

The time window size impact is analyzed also for C1
classifiers with fixed device poses (since these are the base
classifiers used in C3) and the accuracy/error behaviors are
shown in Figure 4. From those, it is evident that the accuracy
increases more rapidly with window size with respect to the
C1 classifier trained on the device in all poses; a window
of 2sec provides an accuracy very near to 100% for texting,
pocket and phoning posed, whereas a window of 2.5sec is
necessary for swinging.

To further assess the robustness of the classifier C3,
an additional test is carried out, classifying measurements
from the walker w04m that suffered a minor accident causing
a slight lameness. The goal of the test is to verify if C3
can recognize w04m, despite his altered gait. The results,
as shown in Figure 5, demonstrate that the injured walker is
not anymore distinctly identifiable by C1 classifier in these
conditions: a very low accuracy of ≈65% is obtained with
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TABLE 8. Confusion matrix of classifier C1, applied to walkers w05m, w06m, w12f and w18f with any phone.

FIGURE 4. Accuracy (red line) and error (blue line) behavior of C1
classifiers.

the smallest window size. The study of the performances of
this case using both the plain classifier (C1) and the hierar-
chical one (C3) reveals that the window size has a bigger
impact (with improvement ofmore than 20%) on the resulting
accuracy with respect to the classifier’s architecture (with the
improvement in accuracy slightly below 5% with respect to
the plain one). It’s worth observing that using the best classi-
fier (the C3 with a window size of 8.5sec) the injured walker

FIGURE 5. Accuracy and error behavior of plain (C1) and hierarchical (C3)
classifiers with respect to window size (sec) for the injured walker.

FIGURE 6. Accuracy of C3 classifier for different walker heights.

is identified with an accuracy of 95.89% exhibiting a very
high tolerance to data alteration. Another interesting com-
parison among C1 and C3 concerns the window size needed
to reach a ‘‘good’’ accuracy (i.e. at least 90%): in this case,
the plain classifier C1 requires a window size of ≈5.5 sec
whereas the classifier C3 requires a window size of ≈3.1 sec
(almost half of the size) to reach the same performances:
this means that the C3 classifier, even if more difficult to
train and complex to set up, is a good fit for applications
that require both robust and quick identification. Finally,
we study the impact of the walker height on the accuracy of
classifier C3. Figure 6 reports the accuracy for three groups
of walkers: short (<165 cm), regular (included in the range
[165 cm-176 cm]) and tall (>176cm). The figure highlights
that there is no significant difference between the obtained
accuracy values.

VII. BINARY CLASSIFICATION CASE STUDY
In this section, we discuss the results of applying the C3 hier-
archical classifier in a real binary classification scenario
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FIGURE 7. Performances of C3 binary classifier.

TABLE 9. Performances of base classifiers for walkers with fixed device
modes and the walker classifier C3.

where people, except the device ‘‘owner’’, could be not
known in advance. For this use case, it is only important to
know if the device is carried by its legitimate owner or not.
This could be very useful for security reasons: if the device
detects that the user is a stranger, it could be configured
to lock, to enable microphone and camera sending captured
data and its GPS position to the owner account (or even to
wipe its content, giving the chance to insert the pin to avoid
wiping). Specifically, we performed the training for each
user considering the remaining subjects as potential thieves.
In Table 10 are reported the optimized hyper-parameters and
their ranges.

TABLE 10. Hyper-parameters optimization and selected ranges.

Table 11 shows the results for the three best sets of
parameters. The first column of the table reports the valida-
tion metrics (i.e., training time, classifier accuracy, F1 score,
and ROC AUC) evaluated at the smallest window size. The
next two columns (i.e., U and K) are related to test sets
adopted for validation. The column labeled with ‘U’ (that
stands for ‘‘Unknown’’) provides validation metrics for a test
set produced with subjects that, except for the owner, were
never seen by the trained network. The column labeled with
‘K’ (that stands for ‘‘Known’’) provides validation metrics
for a test set produced with subjects that also produced data

TABLE 11. Accuracy of C3 classifier for binary ‘‘owner or thief’’ use case.

to train the network. As we can see from the results, even
at the smallest window, for known subjects, accuracy and
F1 are never below 0.9 and making the classifier very robust.
The best result of 0.99 is achieved with 1650 estimators and
trees of max depth equals to 110. It is interesting to note that
increasing estimators did not produce any further improve-
ment in final validation (but with much worse training times).
In the context of unknown subjects, results are, as expected,
not as good as for the K test set. In this case, the best
accuracy at the smallest window size is 0.92 (obtained, for the
same parameter permutations) whereas theworst one dropped
to 0.88. We studied also the accuracy and mean absolute
error (MAE) of the best classifiers for increasing window
sizes. The results are reported in Figure 7. As we can see from
the trends, for the known group after six seconds we obtain
nearly perfect classification results whereas for the unknown
group the best result is slightly better than 0.975 of accuracy
with an MAE of 0.015 (as shown by the Accuracy and Mean
Absolute Errors curves). These results show how the best
classifier is effective and has good generalization capabilities
also in real-world scenarios where peoples involved are not
all known in advance.

VIII. CONCLUSION
In this research, machine learning techniques are applied
to measurements from smartphone sensors, specifically
accelerometers, gyroscopes, and orientation, to retrieve
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information about the walker bringing the device. The infor-
mation of interest is the identity of the walker and the pose of
the device. The most relevant sensor for identity recognition
is the orientation, the less one is the gyroscope; using all three
sensors is anyway the best choice. The walker identification
is performedwith several timewindows of measurements and
it has been demonstrated that increasing the window size pro-
duces significant improvements of the results; specifically,
with time windows over 4.5 seconds, the percentage of cor-
rect identification is≈100. The recognition of the device pose
is obtained with satisfying results and the pose classifier is
also considered as a part of a hierarchical one that can identify
both walker identity and device pose. The performance of the
hierarchical classifier in identity recognition overcome the
ones of the simple classifier in terms of correct identification
percentage; moreover, the accuracy increases rapidly with
window size, obtaining≈100%with a window of 2.5 seconds
for the multi-class scenario when the classifier is trained
on all involved subjects. In the binary case, when involved
subjects could be not known in advance performances are still
good with the best accuracy of≈97.5% using a window of at
least six seconds.
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