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ABSTRACT New media and communication technologies like mobile devices are nowadays widely used
everywhere for providing rich functionalities and highly personalized services. However, using such a device
in a driving environment is still very inconvenient and unsafe to be controlled by the driver. The touchscreen
operations are one major obstacle since multi-touchscreen is optimized for hand-held usage scenarios.
To overcome this limitation, we propose to replace some most used touch operations with gesture controls
for mobile devices in a driving environment. Gesture control is simple, more flexible and requires less eye
focus, which makes it more suitable for in-vehicle usages. In this paper, we design Givs, a fully functional
gesture control system for mobile devices in a driving environment. Givs leverages the latest motion sensing
technology to enable ubiquitous and driving-friendly gestures. Compared to other off-the-shelf gesture
recognition solutions, Givs is optimized for in-vehicle use cases and is designed to overcome various
limitations caused by real driving conditions, including bumpy road conditions, significant noise introduced
by car vibration and technical limitations of motion sensors. Our extensive in-vehicle tests and participant
experience experiments demonstrate that Givs well assists users in accomplishing various types of tasks and
support human-machine interaction in driving environments such as personal vehicle and public transport,

with high accuracy and fast responsiveness, while promoting drivnig convenience and safety.

INDEX TERMS Human-machine interaction, smart sensing, mobile computing, driving safety.

I. INTRODUCTION

Mobile devices such as smartphones and tablets have gained
great popularity over the past few years. These devices and
lots of available applications (apps for short) offer personal-
ized services which provide great convenience to our daily
lives. Consequently, these devices now become the most
personal devices and accompany users almost everywhere.
However, using a hand-held device in a driving environ-
ment is still very inconvenient and unsafe. Existing inter-
action methods, such as touch screen, tactile buttons and
speech recognition provide limited functionalities or incur
notable driver distraction and safety hazards. Many countries
including US actively prohibit drivers from using hand-held
devices in a driving environment [5]. To enable convenient
and safe use of gestures, various humancomputer interaction
studies [8], [15], [27], [33] have been conducted to reduce
distraction and understand the effectiveness of different inter-
action methods. These studies outline that gesture interfaces
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are more intuitive to users and can effectively reduce visual
demands as compared to conventional touch and tactile based
interfaces.

A practical in-vehicle gesture system is, however, con-
strained by various safety requirements and complicated by
random road conditions and limitations of motion tracking
hardware and software (e.g. gesture recognizers). To under-
stand these challenges, we conduct series of in-vehicle
driving experiments and identify the following key design
considerations for an effective in-vehicle gesture control
system:

1) Physical Constraints: Vehicles could encounter various
lighting conditions and users have limited space to per-
form gestures. These require a gesture sensor to deliver
accurate positioning regardless of environmental light
intensity and interference of visible light.

2) Environmental Noises: Car vibration, biological hand
shaking and sensing errors could significantly degrade
the performance of gesture recognizers and these noises
must be the first-priority design consideration for
recognition software.
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3) Delay Sensitivity: Gesture recognizers as well as sens-
ing hardware impose latencies. When gestures are used
to control delay-sensitive devices, such as a mobile
device, delay and jitter must be carefully managed.

In this paper, we focus our research effort on develop-
ing and optimizing gesture control mechanisms to address
above-mentioned challenges. We propose Givs, the gesture-
in-vehicle system enable convenient and safe use of gestures
in a driving environment. The gesture control mechanisms
proposed in this paper, to our best knowledge, have not been
developed or offered by mainstream in-car phone project
solutions (i.e. CarPlay [3], Android Auto [2] and Mirror-
Link [24]). To meet physical constraints (lighting and inter-
action area), Givs leverages infrared camera based motion
sensors that could produce fine-grained hand model within
a reasonable 3D space.

Givs redesigns gesture recognizers to overcome driving
noises and to meet delay requirements. In particular, Givs
comprises a novel differential method that leverages the rel-
ative movement between different fingers to null out the
impact of environmental noises. Givs also utilizes Holt’s lin-
ear exponential smoothing techniques for forecasting future
hand position in case of delay jitters.

To enhance Givs’s usability on complicated real road con-
ditions, Givs also incorporates a bump/pothole detector to
make gesture control further safer and more adaptive. Spe-
cially, when the car experiences a complicated road condition
with lots of bumps and potholes, Givs will temporarily dis-
card gesture inputs and warn the user to keep both hands on
the control wheel if he/she is still performing gestures.With
this, Givs can promote proper and safe use of gestures while
reduce recognition errors at the same time.

Our contribution is three-fold:

1) First, we conduct a comprehensive study of motion
sensing in real driving environments. This study out-
lines key design considerations of an in-vehicle gesture
system with regards to sensing hardware, recognition
software, delay constraints and road condition impacts.

2) Second, we propose Givs that enables gesture control
of mobile devices in driving environments. We develop
effective recognition algorithms and delay control
methods to address practical challenges we identified.

3) Third, we demonstrate the usability of Givs with
extensive user experience study. This study outlines
the user’s satisfaction with a gesture control system
and provides important guidelines for effective gesture
design and use in a driving environment.

The paper continues as follows. Section 2 presents the
measurement study of motion sensing under various driv-
ing conditions. Section 3 elaborates the design of Givs,
including its gestures and associated recognition algorithms.
Section 4 evaluates Givs with extensive real driving tests.
Section 5 summarizes our related work and Section 6
concludes the paper.
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Il. MOTION SENSING UNDER REAL

DRIVING ENVIRONMENTS

In this section, we provide the essential background about
motion sensing and present a measurement methodology to
assess various design considerations for a gesture control
system in real driving environments.

A. MOTION SENSING BACKGROUND

Motion sensing aims to track the movement of physical
objects (commonly human body or parts). Movement trails
can be used further to recognize gestures and enable more
sophisticated functionalities. In driving environments, hand
gestures are the most feasible interaction method and thus are
the focus of this work.

Motions of the hands or fingers are captured by motion
sensors, and touchscreen [15], [27], [33] may be considered
as a simple motion sensor that functions in a 2D surface
only. By using depth/infrared cameras [12], [22] or WiFi
signals [1], [20], [35] modern motion sensors are able to
track objects in a 3D space. In this paper, we focus on 3D
hand tracking as it competes conventional touchscreen in
terms of accuracy while enabling greater interaction flex-
ibility. At each moment, the motion sensor reports a rec-
ognized hand model, specifying the position of different
parts. Over time, a hand movement trail will be captured
and reported. On top of motion sensing hardware, vari-
ous gesture recognizers [30], [40] aim to recognize patterns
(gestures) from hand trails. Each of these recognizers has dis-
tinct accuracy, recognition speed and prerequisites (e.g. train-
ing). We discover that environmental noises in vehicle could
significantly degrade the performance of these existing recog-
nizers, where noise cancellation becomes a key design con-
sideration. We will elaborate these challenges in the following
parts of this section. Finally, on top of gesture recognizers,
a control module is responsible for translating gestures into
commands to control another system (e.g. car infotainment
systems, connected mobile devices, etc). At this layer, delay
becomes the major concern as some controlling commands
are delay-sensitive. Such delay may come from either sensing
hardware or recognition algorithms, and will be carefully
analyzed in this work.

B. MEASUREMENT METHODOLOGY

In this project, we consider a use case that has not yet been
systematically studied before. Users perform hand gestures
in a 3D space and a system captures hand movement with
a motion sensor, recognizes gestures and generates com-
mands to control connected mobile devices.We propose this
measurement methodology to assess various design consid-
erations of such a system, mostly focusing on how driving
environments affect different building blocks of the system.

1) PHYSICAL CONSTRAINTS AND HARDWARE SELECTION
Driving environments impose several challenges for motion
sensing hardware. Vehicle users have limited space to interact
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FIGURE 1. The in-vehicle experiment setup. A laptop is used for gesture
recognition, visualization and controlling. The Leap Motion sensor is
connected to the laptop via USB 3.0, reporting hand positions. The mobile
device (tablet) is connected to the laptop via Bluetooth and being
controlled.

with the sensor and vehicles could encounter different light-
ing conditions. These physical constraints require sensors to
work under different light intensities and accurately track
hand movement within a small area. Both 3D tracking devices
(WiFi and infrared camera) can adapt to changing lighting
conditions while camera based hardware offers higher track-
ing accuracy (within millimeter error range) and is highly
commoditized. In this study, our prototype system leverages
the Leap Motion sensor, a commodity infrared camera based
motion sensor for 3D object tracking.

2) EXPERIMENT SETUP
Figure 1 shows our in-vehicle experiment setup. We use a
Google Nexus 7 Tablet as the target mobile device to be con-
trolled. We do not enforce the position of the mobile device.
Following the current practice, the device could be mounted
with a car mount holder or screen cast to the dashboard
screen. In our experiment, we emulate the later case where
the tablet is tied in front of the car dashboard screen. The
Leap Motion sensor is mounted onto the frame below the
tablet and above the air conditioner. Currently it is steadily
mounted but in the future we could imagine it to be built
into the frame. We use a laptop computer as the data sink,
which is connected with both the sensor (via USB 3.0) and
the device (via bluetooth). In the future, the functionality we
implemented on the laptop will be part of the car system.
The Leap Motion sensor continuously reports its readings
(positions of 19 bones in a hand and matching confidence).
The coordinate system used by Leap is marked in the figure.
The matching confidence is a value in the range of 0 to 1 with
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a higher value indicating higher confidence of the hand/bone
positions. The laptop visualizes the hand, recognizes gestures
and generates corresponding commands to control the tablet.
The tablet reports its accelerometer readings back to the
laptop.

3) MEASUREMENT TARGETS

Our measurement study focuses on factors that affect the per-
formance of the gesture control system. It aims to answer the
following questions: 1) what is the effective interaction area
of sensing hardware and whether it is suitable for in-vehicle
usage; 2) what are the environmental noises that could affect
gesture recognition accuracy; 3) what are the delay composi-
tion of such a system; 4) how special road conditions impact
such a system.

C. PHYSICAL CONSTRAINTS

This experiment aims to outline if a given motion sensor
(Leap Motion in our case) can satisfy the physical constraints
to be used in vehicles. Here we show our methodology and
only present our results with the Leap Motion sensor. The
same methodology also applies to other motion sensors.

1) EFFECTIVE INTERACTION AREA

We intend to identify an area where the motion sensor can
most effectively position the hand. To achieve this, we remain
seated with safe beat tied and move hands ergonomically.
During the 30-minute experiment, we record more than
76,000 frames from Leap Motion, while each frame reports
the position of the hand and its bones with a confidence score.
For other sensors, similar scores could also serve for this
purpose. We use this score as the primary criteria and reveal
the interaction area where the sensor can report with high
confidence. We observe that the Y coordinate (palm-to-sensor
distance) is fairly constant for vehicle users so we project all
points to the X-Z plane. Figure 2 plots the heat map of the
confidence in the X-Z plane. A solid color indicates a higher
confidence and thus higher sensing accuracy. As shown, Leap
Motion naturally senses more accurately when the hand is
nearby since far-away objects look smaller to the camera.
Another observation is that the sensor is roughly equally
sensitive on the “+4X” and “—X” directions. But it can
accurately sense more “+Z” area than “—Z7” direction. This
is because the sensor needs a clear view of fingers to deliver
high matching confidence. When moving in front of the
sensor (-Z), the fingers are more far from the sensor than the
palm and thus the sensor confidence is lower.

2) TEMPERATURE AND LIGHTING IMPACTS

We alter temperature and lighting conditions within the vehi-
cle and measure their impacts. Specially, we test seven light-
ing conditions, including sunny day, cloudy day, rainy day,
totally dark, night with on-board lighting on. For temper-
atures, we adjust air conditioning for a range of 15°C to
25°C (LeapMotion claims an operating temperature from
0°C to 45°C). We redo the interaction area measurements
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FIGURE 2. The sensing confidence in the X-Z plane. Warmer color (red)
denotes higher confidence.

with different settings and manually validate if the effective
interaction area shrink or change. Our results show that the
Leap Motion sensor, by using two infrared cameras, are
unaffected by lighting and temperature conditions in normal
vehicle use cases.

D. ENVIRONMENTAL NOISES

Drifting is a very common problem of motion sensing.
It denotes the phenomenon that when the user’s hand stays
still, the sensed position of a particular reference point on
the hand varies over time. We consider the drifting noise as
the accumulation of the sensor errors, biological hand shak-
ing and car vibration in a driving environment. We include
biological shaking in our drift noise because this shaking is
inevitable in almost all hand-based control systems. As previ-
ous study [12] has revealed, the sensor error is within 0.5mm
for all three dimensions. We perform two extra experiments
to characterize biological hand shaking and car vibration.

1) BIOLOGICAL HAND SHAKING

We measure the drifting noises in an office environment with
the sensor firmly tied on a table. During these experiments,
participants intentionally keep the hand still. The distance
between the hand and the sensor is 15¢cm, measured as the
distance between the wheel and the dashboard of our car,
also shown in Figure 1. The drifting noise measured in this
experiment only contains sensing errors and biological hand
shaking. From the measured positions, we find that along X
and Z axes, human hands tend to have a random drifting noise
of 2mm (including the sensor error).

2) CAR VIBRATION
We measure the drifting nosies under various driving
environments to characterize the impact of car vibration.
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FIGURE 3. Cumulative distribution function of frame delays.

Our measurement shows that the car vibration combined with
the biological shaking cause a 6mm drifting noises along both
axes.

E. DELAY CHARACTERISTICS

Motion sensors repeatedly report hand states in a frame
by frame basis. The time interval between two consecutive
frames affects the responsiveness of gesture recognizers and
in turns the controlling delay. Thus we measure and plot the
frame delays to understanding the sampling characteristics of
motion sensing. For the Leap Motion sensor, the cumulative
delay distribution is shown in Figure 3.We observe that most
frame delays (> 99%) fall between 7ms to 25ms, with some
outliers that could reach up to 80ms.

This delay variation motivates some key design consider-
ations for Givs. For any delay-sensitive control system that
takes Leap Motion as the input source, the delay characteris-
tics of the sensor impact the possible control period. Accord-
ing to Figure 3, the effective control period can be any number
that is greater than 80ms (100% delays are within 80ms).
For a control system that requires a control period lower
than 80ms, delay management will become a crucial design
requirement. For example, if the system requires a control
period to 25ms, it must tolerate 5% of delays falling between
25ms to 80ms.

F. SUMMARY

Table 1 summarizes the findings from our measurement
study, including the effective sensing area, environmental
noises and frame delay characteristics. These findings serve
as important design considerations for our gesture control
system. Though these results are specific to Leap Motion,
our measurement methodology is not limited to a specific
sensor. For any other motion sensor, the same procedures
shall be performed to test the its suitability for gesture control
systems and produce key parameters for modules of such
systems.
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TABLE 1. The summary of in-vehicle measurement study.

Parameter | Value | Description
Effective sensing area
st 200mm | The +X limit
Sz 200mm | The -X limit
5T 200mm | The +Z limit
Sz 100mm | The -Z limit
Environmental noise (in all three dimensions)
Os 0.5mm Sensor error
Op 2mm Biological shaking
Ou 6mm Car vibration
Frame delay
Trmaz 80ms The maximum frame delay
T99 25ms The 99th percentile frame delay
T 17.3ms | The average frame delay
Temperature and lighting conditions have no major impacts on sensing
performance
sensor
Car frame
accelerometer
Bump | | Gesture | _| Control
detection recognition algorithm
Device simulated touch—l
accelerometer screen events
Empirical noise
pgramelers Mobile
device

FIGURE 4. The architecture of Givs.

Ill. GIVS DESIGN

Givs is designed to retrofit the interaction methods for
mobile devices in driving environments. It addresses three
major challenges. First, proposed gestures should be eas-
ily performed by vehicle users in a driving environment,
i.e., driving-friendly gestures. Second, gesture recognition
algorithms should overcome various noises and sensing lim-
itations in driving environments and recognize gestures with
high accuracy. Third, Givs must emit timely control signals
to the mobile device since controlling such a device is com-
monly delay-sensitive.

A. SYSTEM OVERVIEW

Figure 4 depicts the architecture of Givs, which has three
major components shown in shaded boxes. The bump detec-
tion identifies bumps to detect rough and bumpy roads. The
gesture recognition algorithms receive frame updates from
the motion sensor and recognize gestures. We redesign ges-
ture recognizers to tolerate noises in driving environments.
The recognized gestures will be translated to commands
for the mobile device. Two types of gestures are supported
currently. One type is a complete sequence of hand move-
ment, denoting one action (e.g pressing the volume button)
to the mobile device. Gestures of this type could be perform
without eye focus. The other type continuously track hand
movement and acts as a virtual mouse cursor on the mobile
device screen to the user. We design a control algorithm to
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tackle delay jitters and produce smooth command flow to the
device. Overall, the control algorithm ensures that the whole
system can seamlessly transform gestures into continuously
and delay-sensitive control events.

B. GESTURE DESIGN AND RECOGNITION ALGORITHMS
Our gesture design aims to propose gestures that can aid vehi-
cle users to easily control mobile devices. At the mean time,
these gestures must be effectively recognized, regardless of
various environmental noises and interference.

1) HAND STATE TRACKING

a: ACTIVATING STATE

Since the motion sensor continuously senses vehicle user’s
hand, we need a gesture to distinguish between relaxed state
with no user input and activated state with the intent to
control the device. A cursor appearing on the device screen
indicates the hand state. Under the activated state, the device
acts as if a finger tip presses on the cursor. We define the
activated state as the situation that the user performs a flat
hand with four fingers together and palm facing the sensor,
as shown in Figure 5a. We choose this gesture for two rea-
sons. First, this gesture is natural to human beings and is a
common gestures (e.g. for diving communication [7] and in
sign languages [32]). Second, when the hand is in this state,
all bones are approximately aligned to a surface, serving as
the reference plane for other gestures. We use two param-
eters to identify such a gesture. The first parameter is the
angle between the palm normal and finger pointing direction,
denoted as grp. The other parameter is the angle between the
pointing direction of the index finger and the middle finger,
denoted as gy, which indicates whether these two fingers are
together. To obtain the thresholds that distinguish activated
gesture, we measure the two angles with our ten participants
performing relaxed hand gesture and the activating gesture.
According to our measurement, we find that the activating
gesture is formed when the user has an ¢pp > 70° and
¢ < 10°. Our recognition algorithm constantly computes
these two angles from the frame reported by the sensor and
checks this condition to detect if the hand is activating.

b: ADJUSTING STATE

We define an adjusting gesture to support volume adjustment
or zooming operations. This gesture starts from the activat-
ing state (flat hand) and requires the hand to lean forwards
or backwards. If the hand has a leaning angle beyond a
designated threshold for a short while, then Givs interprets
this gesture as an adjusting gesture. Otherwise, the adjust-
ing gesture is stopped immediately. The adjusting command
can be commonly interpret as a command that changes a
particular continuous variable of the target control system.
For example, the adjusting gesture can be used to increase
or decrease the volume for a music playback application
(emulating clicks on volume adjustment keys on the sides of
the hand-held devices). Also, the adjusting gesture can serve
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FIGURE 5. Four gestures supported in Givs. We assume all gestures are performed when the palm is facing the motion sensor.

as a zooming command for a map navigation application or
an image viewer. The prerequisite of activating state (flat
hand) greatly facilitates the detection of adjusting gestures.
When the flat hand is maintain, all bones align nearly in the
same surface and the leaning angle can be easily computed.
In practice, we require users to have a leaning angle over 30°
and keep the gesture for at least half second to indicate an
adjusting gesture. These two design parameters are subject
to user preference but our experiments indicate that these
the designated values can greatly eliminate user’s accidental
operations.

2) HAND POSITION TRACKING

Givs emulates a virtual cursor on the mobile device screen
to track the hand movement. Thus hand position tracking is
the foundation of our system. Meanwhile, drag-anddrop is a
common command for mobile devices, which is commonly
used to navigate the map area, swipe between tabs, etc. These
application scenarios require accurate and continuous hand
position tracking. Givs constantly tracks the palm center and
updates the virtual cursor position accordingly. When the
hand changes from related to activated state, Givs interprets
it as a dragging gesture. We observe the following technical
challenges for hand tracking:

1) When the car encounters bumps, the hand is in unsta-
ble states and its tracking position will observe large
unintended and unpredictable turbulence.

2) Some frames reported by the motion sensor has large
delay jitters. Thus the position update is not uniform in
the time domain.

3) We observe car and biological drifting that could lead
to a drifting cursor.

To overcome these challenges, Givs proposes to use
smoothing algorithms to process raw palm position data from
the frames reported by the motion sensor. In particular, when
abump is detected, Givs discards the raw data from the sensor
and uses the smoothing algorithm to forecast several positions
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based on previous movement trends. When Givs encounters
delay jitters, it will also forecast positions to ensure that
position updates come within a hard deadline.

a: HOLT'S LINEAR EXPONENTIAL SMOOTHING

We observe that hands have notable linear movement trends
within a small time period. To capture this trend and use it
to forecast future positions, we leverage exponential smooth-
ing that considers all previous frames and models trending
parameters.

In particular, we employ Holt’s linear trend method [34] to
effectively forecast time-series data with trends. The estimate
of h-th future frame at given time t is derived from two
variables /; (level) and b, (slope) with the following equation:

3C\t+h\t =1 + hb,, (D

In Eq 4, I; denotes an estimate of the level of the series at
time t, which is computed as:

Iy =ax; + (1 —a)(l—1 + bi—1), )

l; can be interpreted as a weighted average of the observed
data point x; and the one-step-ahead forecast for time t
(i.e., x7,—1). bt denotes an estimate of the trend of the series,
which is computed as:

by =Bl —li—1) + (1 = Bbi—1, €)

b; is essentially the weighted average of the last trend
estimate b,_1 and the difference between next and last level
(e - Li—1).

The two smoothing parameters « and 8 control whether the
forecaster relies more on historical observations or the current
observation. In Givs, we choose both « = 8 = 0.5 to value
observations equally.

b: ESTIMATION ERROR METRIC
Suppose there is a given time series data {x{, x,---} and
we use a smoothing technique to generate a k-step-ahead
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estimate of this series {X], X, - - - }. Note that the first k esti-
mates are blind estimates since the forecaster does not have
any observations yet. The (t + k)-th estimate is generated
based on the t-th observed value (i.e., x;). We use the Mean
Absolute Error (MAE) to characterize the estimation error,
which is defined as:

MAE =E([|x; — %], €]

MAE captures the absolute distance between estimated
data points and observed ones. In Givs, it indicates the
average distance between the forecasted cursor position and
actual position.

3) FINGER TAPPING DETECTION

Clicking is an essential operation for controlling mobile
devices. Givs interprets index finger tapping as a clicking
command, as shown in Figure 5. Leap Motion provides a
built-in algorithm to detect tap gestures in office environ-
ments. The built-in algorithm tracks the absolute velocity
of the index finger tip and recognizes the velocity change
pattern during tapping. Figure 6 shows the Y velocity for
the index finger tip (Vingex) While performing a perfect tap
gesture. The tap gesture starts with from zero vij,g., when
the index finger aligns with the rest fingers. Then the index
finger tip accelerates downwards and then decelerates until
it reaches the lowest point. Finally, the finger tip restores to
the original position with an opposite velocity change. To
accurately identify finger tapping based on velocity in driving
environments, we need to address the following challenges:

1) Several driving factors such as car vibration, hand shak-
ing and bumps could affect the velocity of finger tips,
which add notable noises to affect pattern recognition
accuracy.

2) Latency of tapping detection algorithm is curcial for
user experience. We require to have a detection delay
that will not be perceptible by users.

3) To reduce latency, the detection algorithm must detect
the gesture before it is completely finished. This
requires careful parameter tuning to reduce false posi-
tives.

Algorithm 1 illustrates our tap detection algorithm, which
updates its gesture recognition result once it receives a frame.
It takes the vjnq4or and the velocity of the middle finger tip
Vmiddle as inputs and reports true if a tap gesture is detected.
To address the above-mentioned challenges, we propose the
following techniques.

a: DIFFERENTIAL METHOD FOR MITIGATING NOISES

Our recognition algorithms relies on velocity tracking to
recognize gestures. This requires accurate measurement of
the velocity. However, in a driving environment, the index
finger tip velocity is affected by many factors, including
the car vibration (A,), biological shaking of fingers (Ay)
and occasional cases of encountering bumps. Thus the raw
tip velocity is fairly noisy and sensitive to road conditions.
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Algorithm 1 The Index Finger Tapping Recognition
Algorithm
Input:
Vindex: the y-direction velocity of the index finger
Vmiddle: the y-direction velocity of the middle finger
W: the length of the sliding window (constant)
function INIT
skipcounter < 0
q < newQueue(W)
end function
function ONFRAME(Vindex» Viniddie)

¥V <= Vindex — Vmiddle

q.add(rv)

if skipcounter > 0 then
skipcounter < skipcounter-1
return false

end if

if not |viqaie] < V then
return false

end if

A < min(q)

if Vi, < < Vand /v > V then
skipcounter <— W
return True

else
return True

end if

end function

We observe that these environmental noises affect not only
the index finger but also all other finger tips. Thus, we pro-
pose to use the differential method to effectively null out
these noises. More specifically, instead of using the absolute
velocity of the index finger, we use the relative velocity of
the index finger tip with respect to middle finger tip as our
decision variable, denoted as Viugex|middie OF 1. By doing so,
common mode that appears on both index and middle finger
(correlated noises) can be eliminated. Tracking window and
thresholds tuning. When the index finger is at the lowest
point, we define the distance between the index and middle
finger tips as the tapping distance, denoted as d.We also
define ttap as the time to complete the tap gesture, i.e., tap-
ping time. Before discussing our various thresholds, we first
quantitatively define a tap gesture as follows:

1) The tapping distance must be larger than a constant D.
In practice, we choose D = 3cm.

2) The index finger then restores to almost the original
position.

3) The entire gesture is completed within two time
bounds, i.e. Tiin < tigp < Tinax- In practice, we choose
Tin = 100ms; Ty,.c = 300ms based extensive user
habit study.
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FIGURE 6. The velocity change pattern for a tap gesture.

In Figure 6, we observe that the finger tip has a notable
maximum velocity along -Y axis, denoted as (Vjqy). Our
algorithm detects this maximum velocity along with a
decreasing trend to identify the tapping pattern.

With a known tapping distance d and tapping time #,
we have the following relations:

3 Tap
—d = rvdt
0

%Tmp . 2T
= — Vinax SN( t)dt
0 T,

tap
_ |Vmaxn" Ttap| . )
Thus the velocity has a bound given by
| = wd - D ’ ©)
Tiap = Tinax

With the constant settings above, we derive the threshold
for v,y at approximately 190mm/s, denoted as V.

With this given threshold, the tapping detection algorithm
keeps tracking r, in last W frames (in a sliding window
manner) to find one that exceeds the threshold. Once such
a data point is found, the algorithm waits until the velocity
returns above that threshold (velocity decreasing trend). Then
this velocity change pattern is identified as finger tapping.
The sliding window length W should be large enough to cover
half of the pattern length, i.e.,

W > max%Tm,, = % ap = 0.255 ~ 15frames, (7)
b: RESPONSIVENESS TO RECURRING TAPPING

For each tap, the detection algorithm should report exactly
once. Thus, after our algorithm detects one tap gesture,
it waits for a full length of W frames before reporting new
taps. At the end of W frames, the index finger should restore
to the original position. Note that if a tap is detected, it’s
reported to Givs instantly without waiting. As a result, a tap
gesture may be detected before the user finishes tapping, and
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latency is reduced significantly. Touchscreen based systems
cannot achieve the same since tap and drag share the same
staring point - finger down. While in Givs, tap and drag are
interpreted from completely different gestures, and instant
decision becomes possible.

c: MINOR ANOMALY ELIMINATION

In addition to the abovementioned mechanisms, two more
approaches are used to filter out anomalies that could hap-
pen in real driving environments. First, we require that the
middle finger does not move much when the index finger
is tapping, and we add a filtering condition to bound viggie
between £V . Second, we observe that sometimes the velocity
might encounter a glitch (a sudden change that is not possible
with human speed). To address this problem, we further
require 7, to be smaller than V;,,, which is the fastest possible
movement speed of finger tips. This value is measured with
real experiments at approximately 1000mm/s.

C. DELAY-SENSITIVE CONTROL ALGORITHM

The gesture recognition module of Givs works in an event-
driven manner. When the recognition module receives a
frame from the motion sensor, it updates the recognition
results accordingly. The control algorithm is responsible for
translating gestures to touchscreen commands and issuing
these commands in the same sampling rate of a real touch-
screen. In most cases, the gesture recognition output rate
is slower than the touchscreen sampling rate. This could
result in lags (e.g. the trail dragging an icon becomes laggy
instead of being smooth) and sometime strange activities
(e.g. the navigation app suddens jump to the other side of the
earth). Givs addresses these critical and practical issues with
a careful delay deadline.

1) A VIRTUAL TOUCH SCREEN

Android devices leverage standard Linux evdev input sys-
tem [17] to process input events. The mutli-touch screen
hardware reports its states by injecting evdev commands into
the system’s input event stream. A real touchscreen event
stream comprises 2D coordinates of the touched point, touch-
ing pressure and timestamps for each dots. Givs maps palm
center position (three coordinates in Leap Motion’s metric
coordinate system) to a 2D plane (touch screen 2D space
in pixels, eliminating Leap Motion’s Y axis). For pressing
pressure, Givs always keeps a fixed value.

2) DELAY MANAGEMENT

Proper timing is the most important factor for Givs to
work seamlessly exactly like a real touchscreen. The actual
multi-touchscreen component emits input events in a fixed
rate (with fixed delay). We define this as the control period
Ty for an Android device. We obtain this value by capturing
the evdev trace when the user is performing touchscreen
operations. According to our measurements, Ty = 20ms.
Thus Givs control algorithm must generate one control signal
during each 20ms interval. However, as we have seen in
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Section 2.5, only 64% of the frames arrive within the 20ms
deadline. To overcome this, our control algorithm performs
interpolation (based on forecasting) to overcome delay jitters.
More specifically, for the activating and adjusting gesture,
we simply use the last observed data points to forecast the
next one since both gestures reflect a particular hand state
that will not change in a short time. The Holt’s method
introduced above is used to forecast the missing values for
moving gestures. Interpolation is not required by tap gesture
since the tap recognition itself is resilient to delay jitters and
will properly report a tapping once it happens.

D. BUMP DETECTION

When the car drives through bumpy or rough roads, users
should focus on roads instead of using gestures. At the mean
time, these special road conditions could easily distort hand
gesture, which suggest gestures are not proper at that time.
Givs advocates users to keep hands on the wheel for such
circumstances and only use wheel buttons for limited but
safer interactions (e.g. turn on light, mute the audio sys-
tem, etc). For this purpose, Givs leverages prevailing bump
and pothole detection techniques to detect such conditions,
disable gesture recognition and warn the user if he/she is
still performing gestures. Givs detects bumps and potholes
based on z-peak bump detectors [9], [25] that detect spikes
in z acceleration to identify bumps. According to previous
measurements [25], with a threshold of 1:45g, z-peak is
sensitive to road turbulence. If the turbulence reaches a given
threshold, Givs will not feed sensor inputs to recognizers but
instead warn the user if hand is still present in the sensor’s
view.

IV. EVALUATION

Our evaluation includes the benchmarks for individual ges-
ture recognition algorithms and case studies to control real
Android applications in various driving environments.The
video demos could be accessed from Youtube [19].

A. METHODOLOGY

Our evaluation involves 8 male and 2 female participants,
with each experiment lasting for 40 minutes on average. The
leap motion sensor provides a set of built-in gesture recog-
nizers, with the capability to track hand position and detect
finger taps, but mainly targeted office environments. We com-
pare our enhanced algorithms with these two builtin cases to
demonstrate how driving environments affect gesture recog-
nition as well as our advantages under such environments.

1) DEVICE SETUP

For the motion sensor, we use the Leap Motion sensor
along with its latest SDK and recognition algorithms version
2.1.5+22699. For the accelerometer, we use the on-board
InvenSense MPU-6050 accelerometer of two Google Nexus
7 Tablets (2013 version). These accelerometers have a 50mg
error along X and Y axis and a 80mg error along Z axis
(“mg” is milli-g, with “g” denotes gravity). The device

VOLUME 8, 2020

oo

=l X direction
=k 7 direction

~J

Mean Absolute Error (mm)
F

o 1 2 3 4 5 6 7 8 9
K for k-step-ahead forecast

FIGURE 7. The MAE of k-step-ahead forecast for both X and Z positions.

being controlled is a Samsung Galaxy Nexus S with a screen
resolution of 1280 x 720 pixels.

2) DRIVING SETUP

Our testing platform (vehicle) is an Audi Q5 SUV. Our road
condition is an urban road with a length of 6km and a speed
limit of 55km/h. Our driving scenarios include: 1) Fully stop
with engine off, which simulates a vibration-free environment
similar to the office. 2) Fully stop with engine on, which
simulates a parking state. 3) Driving with even speed, which
simulates a nor mal driving condition.

B. HAND POSITION TRACKING

Since Givs simulates a virtual cursor on device screen to track
hands, the position tracking algorithm must accurately and
constantly report the position updates. To meet this criteria,
we use Holt’s linear model to forecast hand positions when
the motion sensor readings are not reliable (due to bumps)
or delay jitters are encountered. In this part, we evaluate our
position tracking algorithm from two perspectives. The first
experiment aims to understand the estimation errors, which
validates the accuracy of the forecast method. The second
experiment illustrates how the forecast method helps to amor-
tize delay jitters and the impact of bumps in real driving
conditions.

1) FORECAST STEPS AND ERRORS

According to Table 1, the maximum frame delay could be as
high as 80ms. If we would like to have a gesture control reac-
tion latency less than 20ms, the Holt method needs to forecast
at least 3 values to bridge this gap. Also when the car expe-
riences bumps, Givs reverts to the Holt method to produce
several estimates. We would like to quantitatively measure
the errors for k- step-ahead forecasts. To obtain ground truth,
we collect the raw hand position trace from the motion sensor
in an office environment (with no vibration and bumps). Then
we use the Holt method to perform k-step-ahead forecasts
based on this time series data and compare the estimates with
the raw readings (ground truth). Figure 7 presents the Mean
Absolute Errors for k-step-ahead estimates. As expected,
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FIGURE 8. The one-step-ahead forecast of X-direction palm position.
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the error increases when we try to forecast more future
frames. This error increase trend is nearly linear. In practice,
the Holt method can generate up to 8 acceptable accurate
estimates, with an MAE bounded within 8mm.

2) FORECASTING USEFULNESS

Figure 8 shows the X positions when a participant is moving
hand along the X axis. We perform one-step-ahead forecast
and the green line plots the estimates generated by our Holt
forecaster. As shown in the graph, since hand movement
speed is subject to human limits, the hand positions change
smoothly with notable trends. Thus, our Holt forecaster can
effectively capture this trend and accurately approximate the
observed values. As shown in the graph, we observe two delay
jitters at frame 3250 and 3350 respectively. By using the
Holt estimates, we can effectively remove these two jitters.
In addition, when bumps are detected (normally last for less
than 5 frames), we can also use the Holt method to provide
reliable forecasts.

C. TAP GESTURE DETECTION

We evaluate our tapping detection algorithm from two
perspectives. On one hand, we characterize its detection
accuracy (false positives and negatives) with different driving
conditions. On the other hand, we characterize its responsive-
ness of the algorithm by measuring the time elapsed since
the user performs the gesture until it is detected. We compare
our algorithm with the Leap Motion built-in tapping detection
algorithm.

1) TAPPING ACCURACY

Table 2 summarizes the performance of both algorithms
across all participants. As shown, our algorithm outperforms
the built-in algorithm with an average true positive rate
of 90%. malel performs tap gestures with an almost fist hand
state, which makes it hard for the sensor to see the fingers and
thus affect the performance of both recognition algorithms.
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TABLE 2. Tap detection performance.

Givs Built-in

Participant | %FP | %FN Delay | %FP %FN | Delay
malel 0% 24% 1243 | 0% 92% 199.5
male2 0% 0% 1329 | 0% 88% 161.7
male3 0% 2% 178.5 | 2% 66% | 215.1
male4 0% 2% 156.3 | 4% 38% | 209

male5 0% 2% 1454 | 0% 34% 186.5
male6 0% 2% 1363 | 12% 24% 169

male7 0% 0% 132.1 | 2% 12% 182.5
male8 0% 0% 1362 | 0% 8% 194.7
femalel 0% 4% 132.7 | 0% 48% | 204.7
female2 0% 0% 109 2% 10% 160.5
Average 0% 3.60% | 138.4 | 220% | 42% 191.1

Figure 9a presents a scenario when a user is tapping while
the vehicle drives through a bumpy road. The first graph
shows the absolute Y-direction velocity of the index finger
tip. We observe that the first tapping (from frame 0 to 100)
is performed when the car meets a bump, which is largely
affected by the bump. The following taps also observe lots
of noises (due to Ap and A,). The second graph shows the
relative velocity of the index finger tip. As we have men-
tioned, correlated noises such as A, and bump influence are
effectively eliminated by this differential method. As a result,
we observe much clear tapping patterns from the relative
velocity. Finally, the third graph shows the detection results
of both algorithms. Givs uses relative velocity as its decision
variable and successfully identifies all the 8 taps. On the
contrary, the built-in algorithm only detects four taps and
four false positives (note there are two between frame 700 to
800). These false positives all happen immediately after the
detecting one tap. Givs overcomes this problem by disabling
itself for a whole tracking window after detecting a tap.

2) EFFECTIVENESS OF THE DIFFERENTIAL METHOD
The differential method can not only eliminate correlated
noises but also avoid confusing other gestures with tapping.
For example, the adjusting gesture requires the flat hand to
lean forwards. Thus the absolute velocity of index finger
when performing this gesture is very similar to tapping,
as shown in Figure 9b. By using the relative velocity, Givs
notices that both index and fingers are moving together and
there is no relative velocity. Consequently, with the differen-
tial method, Givs will not detect any taps for this scenario.
Tapping detection delay. Table 2 also presents the delay
for detecting a tapping action. In general, Givs relies on
the relative velocity of the index finger tips which has less
noises and more obvious trends when the user performs a
tap. Thus, our algorithm effectively reports tapping earlier
than the built-in algorithm that is based on the absolute
index finger tip velocity. As shown in Table 2, our algorithm
recognizes a tap gesture by 27.5% faster than the built-in
algorithm on average. According to previous user experience
study [23], the delay between performing a tap gesture and
the visual feedback should be no more than 0.1 to 0.2 seconds.
Also our detection delays are bounded within 160ms across
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FIGURE 9. Tap detection for two scenarios while driving through bumpy roads. v;,4e, stands for the absolute Y-direction velocity of the
index finger. r;,4ex denotes the index finger velocity relative to middle finger. In “detection occurrence”, a dot represents a true positive

while a cross stands for a false positive.

all participants except one while the delays of the built-in
algorithm are all beyond 160ms. The out-liner user performs
gestures much slower than others and thus both algorithms
observe a higher detection delay. We will show that during
the user study, our participants can sense the delay difference
between our algorithm and the built-in in general.

D. DISTRACTION EXPERIMENTS

We invite our participants to several in-vehicle user studies
by using gestures to control common driving-related applica-
tions. We design three applications: 1) a dialpad application
where the cursor track user’s hand and taps are used for input-
ing number; 2) a music playback interface similar to [15]; 3) a
drag-and-drop interface where the user can drag random icons
to delete them. The experiment setup is shown in Figure 1.

1) DIALPAD APPLICATION

For this application, users report false positives and negatives
for Givs as compared to Leap Motion’s built-in tap recog-
nizer. The result is in accordance with our evaluation results
shown in Table 2, where the built-in algorithm produces 2x
to 10x more false negatives across our users. This shows
that existing gesture recognizers intended for indoor usage
do not perform good because of various noises in a driving
environment.

2) MUSIC PLAYBACK
For the music playback application, we measure the time
that a participant turns away from the front road, denoted as
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FIGURE 10. Eye glance time for gesture and touchscreen interactions.

the eye glance time. This index quantifies the distraction
caused by the interaction method. We test five tasks com-
monly performed for a music playback application while
driving [15]. We compare Givs with traditional touch screen
interactions. The mobile device is placed at the car dashboard
as in in Figure 1.

Figure 10 shows the results. We have the following

findings:

1) Traditional touch screen requires full visual interac-
tions for any task while gesture control does not impose
this requirement (only one for this particular applica-
tion). As a result, gesture control allows the vehicle
users to keep eye on the front road and reduces the user
distraction.
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FIGURE 11. In-vehicle user experience study scenarios.

2) For tasks that must have visual interaction, gesture
control shortens the movement distance of the hand.
This helps vehicle users to hold the steering wheel
stably, and thus reduces user distraction.

3) While driving, tapping a small area on a touchscreen
requires more attention than performing a gesture
anywhere in the 3D space, incurring more cognitive
distraction.

3) DRAG-AND-DROP

This test stresses the hand tracking and state tracking accu-
racy of Givs. We require participants to score the user experi-
ence (score 10) and provide suggestive feedbacks. The results
show that over 60% of the participants are satisfied with
the drag-and-drop experience and report a score over 8. The
remaining 30% report that the above drop area is too small to
be used in a driving environment. This observation opens an
suggestion for apps to use larger UI elements and bigger fonts
in a driving environment. For example, the Android system
provides system-wise adjustment of font and UI element
sizes, which could be very useful in driving environments.

E. USER EXPERIENCE EXPERIMENTS

We invite our experiment participants to perform three com-
mon mobile usage scenarios for our user experience exper-
iment. We intend to use these case studies to demonstrate
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(c) Scroll to browse contact list.

the user experience of using Givs gestures, by using different
scenarios to stress test different parts of our system.

1) CASE STUDY 1

Dialpad and tapping. The first use case involves a typical
phone call dialpad, as shown in Figure 11. Givs displays a
virtual cursor that tracks participant’s hand. Participants will
perform tap gestures to input his/her 10- digit phone number
for four times (two with Givs and two with the built-in
algorithm). We randomly generate the sequence for Givs and
the built-in to avoid the bias that participants know which
algorithm he/she is testing with. This test stresses the tapping
and hand tracking capability of Givs.

During this test, our participants report subjective feed-
backs along with three objective metrics for tapping recog-
nition: 1) number of retries (false negatives): the algorithm
does not recognize a tap performed by the user; 2) unintended
inputs (false positives): the system inputs a digit but the user
does not tap or the system inputs a digit multiple times when
the user only taps once 3) wrong taps: the system inputs a
wrong digit when the user taps. We also require participants
to note down whether he/she can feel a lag when the system
responds to the tap gesture.

The false positive/negative statistics for Givs and the
built-in algorithm is in accordance with our evaluation
results shown in Table 2. The built-in algorithm produces
2x to 10x more false negatives across our users. This is

VOLUME 8, 2020



L. Jiang et al.: Givs: Fine-Grained Gesture Control for Mobile Devices in Driving Environments

IEEE Access

because the noises and bumps in driving environment largely
affects the index finger velocity and damages the perfor-
mance of the built-in algorithm dependent on it. One user fails
to finish this test with the built-in algorithm due to too many
false negatives. From participants’ feedbacks, we learn that
users treat false positive and negative cases as the problem
with the system while treating wrong taps sometimes as their
own faults. We conclude from our survey that by minimizing
false positives and negatives, Givs can greatly improve the
user experience for inputing.

As for the delay awareness, around 50% of our participants
report noticing the lags when using the built-in algorithm.
No users report lag problems with Givs.

2) CASE STUDY 2

Drag and drop. The second use case involves a home screen
with randomly placed icons, as shown in Figure 11b. Partici-
pants use the moving gesture to drag and drop all the icons to
the top of the screen so as to remove them. This test stresses
the hand tracking and state tracking functionality of Givs.
We require participants to score the user experience (score 10)
and provide suggestive feedbacks. The results show that over
60% of the participants are satisfied with the drag-and-drop
experience and report a score over 8. The remaining 30%
report that the above drop area is too small to be used in a
driving environment. This observation opens an suggestion
for apps to use larger Ul elements and bigger fonts in a
driving environment. For example, the Android system pro-
vides system-wise adjustment of font and UI element sizes,
which could be very useful in driving environments. This case
study shows that simplifying UI design would also help user
experience when new interaction methods such as gesture
control are introduced.

3) CASE STUDY 3

Scrolling. The third use case presents user’s contact list.
Participants use the adjusting gesture to scroll and browse
the list, as shown in Figure 11c. This test mainly address the
adjusting state tracking of Givs. We require all participants to
perform several gestures to get familiar with the leaning angle
of the system. Then all participants will perform scrolling
in the vehicle environments and score their user experience
(score 10). We observe that all users except one are satisfied
with the default parameters. Only one user reports that the
angle limit is too small and sometimes scrolling is activated
when not intended. We double the angle limit and redo the
same procedure for this user again. With the new angle limit,
the previous concern of the user is eliminated. We conclude
from this test that the angle limit is a subjective parameter
to different users. In real deployment, we will provide the
default limit while allow allow users to change this limit
based on their preferences.

V. RELATED WORK
Both the industry and research community have been actively
developing safe and convenient interaction methods for
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complicated real driving environments. Existing approaches
include tactile interactions, touchscreen, voice, touch-based
gestures and touch-less gestures. The tactile interaction was
the most popular technique where the user interacts with the
car system based on a set of physical buttons embedded in
the wheel or dashboard. According to the study [15], this
technique requires considerable eye focuses and is largely
replaced by newer technologies.

A. VOICE CONTROL

Voice control is also a popular and widely adopted technol-
ogy. Users issue voice commands, which are recognized by
the system to perform a fixed set of operations. Voice control
has been proven useful to input texts or perform defined
operations such as answering a phone call [13], [14]. For
instance, systems like Siri [4], Google Assistant [10] and
Mancuso [21] largely relies on voice recognition to input
texts and search destinations in map navigation. Though voice
control is useful in the abovementioned cases, it still fails to
cover all the important use cases in a vehicle. For example,
users cannot use voice to smoothly move the map area of a
navigation application.

B. TOUCH-BASED GESTURE CONTROL

Gestures provide a natural and safe way for human-computer
interaction. Existing gesture control approaches can be clas-
sified based on its underlying technology. Touch-based
approaches normally embed a touch screen for user to per-
form gestures with touching [8], [29]. These approaches
are largely constrained by the size and location of touch-
screen. The steering wheel can only equip a small screen,
but anywhere else pose a significant inconvenience for
touching.

C. TOUCH-FREE GESTURE CONTROL

To avoid being tied with a particular physical device,
touch-free gestures are becoming increasingly popular. The
most well developed approachs are based on computer
vision [6], [27] that capture hand images and recognizes
hand gestures. However, previous vision-based techniques
are easily constrained by lighting conditions and fail to be
used in vehicle. Though depth cameras and short-range radars
can be deployed in the vehicle to against variable lighting
conditions [26], [28], their computational costs are consid-
erable and on-road noise issues in real driving environments
are still not well addressed.

In this paper, Givs elects to leverage Leap Motion for
the same purpose of providing fine-grained tracking in cars.
Leap Motion serves as the last iteration of innovation in
this area which leverages innovative sensing techniques to
provide 3D tracking of hands. Leap Motion sensor intends to
capture fine-grained hand gestures such as finger movements.
Thus, it is widely adopted for fine-grained control such as
digital musical instruments control [31], handwriting recog-
nition [36] as well as stroke rehabilitation [18].
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D. WiFi-BASED GESTURE CONTROL

In addition to computer vision based approaches, WiFi distor-
tion [16], [37], [38] based approaches are gaining popularity
in research community for gesture recognition and driving
safety. However the state-of-the-art solutions using this tech-
nique can only provide coarse-grained tracking (treat a hand
as a whole object) or have to redesign the baseband silicon
for real-time signal processing.

E. WEARABLE HARDWARE BASED GESTURE CONTROL
We are also aware of techniques that use hand wear-
able devices for gesture recognition. However, existing
approaches [11], [39] suffer from low accuracy and coarse
granularity, which is not mature enough for vehicle
environments.

VI. CONCLUSION

Hand-held devices have witnessed great success in the past
few years but can hardly be used while driving due to safety
and convenience limitations. In this paper, we systematically
study these limitations and quantify the factors. To enable this
important, we design and implement Givs. Various building
blocks of Givs are redesigned and optimized for the noises,
delays and special road conditions in driving environment.
Our evaluation results show gestures can bring safety and
convenience for various applications used in a car.We con-
clude that gestures serve as a promising replacement for
existing in-vehicle interaction methods.
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