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ABSTRACT The paper investigates the formation control problem for high-order linear swarm systems with
limited communications such as time-varying delays and switching interconnections. Firstly, the problem
description is given including the dynamics of high-order swarm systems, formation protocol and the
definitions of formation maintenance and tracking. Secondly, four formation conditions are derived: the
former three are related to formation function, reference trajectory, auxiliary functions and network topology;
the fourth one is equivalent to the stability of N-1 time-delay systems. In order to get lower conservative
criteria, the Free-weighting Matrices(FWM) approach is employed to analyze the stabilization problem.
Finally, the allowance upper bound of delays is calculated through solving the feasible linear matrix
inequalities (LMIs). Numerical examples and simulation results are given to demonstrate the effectiveness
and benefit on reducing conservativeness of the proposed method.

INDEX TERMS Formation tracking, formation maintenance, high-order swarm systems, time-varying
delays, switching interconnections.

I. INTRODUCTION
Formation control of swarm systems is widely applied in
surveillance and reconnaissance [1]–[3], target searching
and localization [4]–[7], telecommunication relay [8], space
exploration and source seeking [9], [10]. Main approaches
for formation problem include leader-follower [11], behav-
ior approach [12] and virtual structure [13]. However, these
methods still have some shortcomings such as lower robust-
ness, complex modeling or mass communication. Recently,
the distributed formation control strategy based on consensus
algorithm has been widely discussed [14], [15]. It is shown
that the traditional approach aforementioned can be regarded
as the special case of the consensus-based method [14].
Moreover, some drawbacks of the traditional approaches can
be overcome.

Formation maintenance is one of the interesting topics
when referring to the formation control problem. The
consensus-based strategy is adopted to investigate the for-
mation maintenance of first-order systems (e.g. wheeled

The associate editor coordinating the review of this manuscript and

approving it for publication was Francesco Tedesco .

vehicles [16], [17], MAS [18]) or second-order systems
(e.g. MAS [14], multi-UAV systems [19], [20]) in the early
studies. The high-order systems with undirected topology,
which consists by a series of second order models, is dis-
cussed [21]. However, the eigenvalues of Laplacian matrix
may be complex number when the network topology is
directed. In such a case, it is difficult to analyze the for-
mation feasibility. In [22], the formation control is investi-
gated under the directed topology using the state and output
feedback method. Fully distributed time-varying formation
control problem was discussed for high-order linear MASs
with directed network by developing an adaptive output-
feedback approach [23].

In practical applications, the network limitations are taking
into consideration like communication delays or switching
topologies. The literature points out that the delays will affect
the formation convergence time of the second-order swarm
systems [24]. The influence of delay on formation and con-
vergence speed can be improved by introducing diverse self-
delay. Similarity, the formation control with both position
delay and velocity delay is investigated [25]. The conclu-
sion can be drawn that the increase of communication delay
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does not make the performance worse definitely. Further,
the formation feasibility such as delay-independent or depen-
dent condition is derived using the Nyquist criterion [26] or
Lyapunov appraoches [27]–[31]. The latter method seems
better when dealing with the time-varying delays and
switching topologies [32]–[35]. The formation feasibility
depends on the constructed Lyapunov functional in this
cases.

Another application is the formation tracking or enclosing
the moving target. The analysis and design is investigated
with one leader [36], [37] or multiple leaders [15], [38]–[41].
These results aimed at the ideal communication condi-
tions. The formation tracking problem with time-varying
delays is presented, and the protocol is derived based on
the full state information [42]. The formation tracking with
switching topologies is discussed when solving the moving-
target-enclosing problem [43]. The formation and consensus
trackingwith switching topologies is discussed [44]. The nec-
essary and sufficient condition of the formation tracking with
switching topologies is given [45]. As far as we know, few
literature focus on the formation tracking with both delays
and switching topologies.

This paper mainly focusses on the formation control prob-
lem of high-order swarm systems with time-varying delays
and switching topologies. Different from the existing results,
the main contributions of this paper are threefold. First,
the unified framework is presented to solve the formation
maintenance and tracking problem with limited communi-
cation conditions. Four formation conditions are derived.
Second, both time-varying delays and switching topologies
are considered. The similar limitations are considered when
the formation maintenance is discussed [32], [34]. However,
there are some challenges on auxiliary function design and
stability analysis in terms of formation tracking. The exist-
ing results only study the case with network delays [41] or
switching topologies [42]–[45]. Third, the proposed method
in this paper has lower conservativeness. The formation con-
dition is analyzed using the stability analysis of time-delay
systems [32], [34], [42]. The derived sufficient condition
has larger conservativeness due to the constructed Lyapunov
or Lyapunov-Kravoskii functional. The FWM approach is
adopted to analyze the stabilization problem in this paper,
and the LMIs criteria with lower conservativeness are given.
Furthermore, the upper bound of time-varying delays and the
formation control gains can be obtained through justifying the
feasible of LMIs.

The rest of this paper is organized as follows. In Section II,
basic concepts and useful results on graph theory are intro-
duced. In Section III, the problem descriptions are presented,
and the necessary and sufficient conditions are also given.
Further, the stability issues are discussed, and the algorithm
procedure is derived. Numerical simulations and discussions
are shown in Section IV. Finally, some concluding remarks
are stated in Section V.

Throughout this paper, for any complex vector x,
real matrix X and λ ∈ C, let x̂ = [Re(x)T , Im(x)T ]T ,

3X = diag{X ,X} and 8λ =
[
Re(λ)I −Im(λ)I
Im(λ)I Re(λ)I

]
, where

I is an identity matrix and 0 is zero matrix with appropriate
dimensions.

II. GRAPH THEORY AND RELATED LEMMAS
A. GRAPH THEORY
A graph G = (V , ε,W ) consists of vertices set V =

{v1, v2, . . . , vN }, edges set ε =
{
(vi, vj) : vi, vj ∈ V

}
and

adjacency matrix W = [wij] ∈ RN×N . eij = (vi, vj)
denotes a directed edge from vi to vj. The positive element
wij describes the weight of the edge eji, and wij > 0 means
node vi can receive information from node vj, that is eji ∈
ε. If there exists eij ∈ ε for any eji ∈ ε, the graph G
is defined as undirected graph. Otherwise, it is a digraph.
For i ∈ {1, 2, . . . ,N }, there is wii = 0. The in-degree

of the node vi is defined as degin(vi) =
N∑
j=1

wij. Let D =

diag
{
degin(v1), degin(v2), . . . , degin(vN )

}
denote the diago-

nal matrix with the in-degree of each node along the diag-
onal. The Laplacian matrix of the digraph G is defined as
L = D−W .

B. RELATED LEMMAS
Lemma 1 [46]: There exists at least one zero eigenvalue for
the Laplacianmatrix, and 1 is the associated eigenvector. That
is L1 = 0. If the digraph G has a spanning tree, then 0 is a
simple eigenvalue of L, and all the other eigenvalues have
positive real parts.
Lemma 2 (Schur Complement) [47]: For a given symmetric

matrix S = ST =
[
S11 S12
∗ S22

]
, where S11 ∈ Rr×r , the follow-

ing three conditions are equivalent: (1) S < 0; (2) S11 < 0,
S22 − ST12S

−1
11 S12 < 0; (3) S22 < 0, S11 − S12S

−1
22 S

T
12 < 0.

Lemma 3 [48]: If there exists a symmetric matrix X such

that
[
P1 + X Q1
∗ R1

]
> 0 and

[
P2 − X Q2
∗ R2

]
> 0 hold at

the same time, then it’s necessary and sufficient condition isP1 + X Q1 Q2
∗ R1 0
∗ ∗ R2

 > 0.

III. MAIN RESULTS
A. PROBLEM FORMULATION
Consider a high-order linear swarm systems

ẋi(t) = Axi(t)+ Bui(t), i = 1, 2, . . . ,N (1)

where xi(t) ∈ Rn is the state variable and ui(t) ∈ Rm is the
control protocol. Assume that B is a full column rank, and the
communication relationship between agents can be described
as a digraph G with a spanning tree structure.
The distributed control protocol with no leader is given as

follows

uFTi (t) = uFTi1 (t)+ uFTi2 (t)+ uFTi3 (t),

uFTi1 (t) = K1[xi(t)− hi(t)− r(t)],
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uFTi2 (t) = vi(t)+ si(t),

uFTi3 (t) = K2

∑
j∈N i

wij
{[
xj(t − dt )− hj(t − dt )− r(t − dt )

]
− [xi(t − dt )− hi(t − dt )− r(t − dt )]} . (2)

in which K1 and K2 are constant gain matrices with appro-
priate dimension. vi(t) ∈ Rm and si(t) ∈ Rm are the external
auxiliary functions that depends on the formation h(t) and the
reference trajectory r(t) respectively. In the following discus-
sions, we assume that h(t) and r(t) are uniform continuously
differentiable. dt denotes the time-varying delays between
agents. The neighbors set of agent i is described as Ni.
The switching topologies set is defined as {G1,G2, . . . ,Gκ} ,
κ ≥ 1. When t ∈ [−dt , 0], xi(t) = ςi(t). Here, ςi(t) is a
bounded vector-valued function.
Definition 1 (Formation Tracking): considering time-

varying delays and switching topologies, if there exist the
protocol Eq.(2) such that

lim
t→∞

(xi(t)− hi(t)− r(t)) = 0, i = 1, 2, . . . ,N (3)

then the swarm systems Eq.(1) realize the desired time-
varying formation hi(t), i = 1, 2, . . . ,N and track the ref-
erence trajectory r(t).
If the reference trajectory r(t) ≡ 0, then the formation

tracking problem is reduced to the maintenance problem. The
distributed control protocol without r(t) and si(t) is

uFi (t) = uFi1(t)+ u
F
i2(t)+ u

F
i3(t),

uFi1(t) = K1[xi(t)− hi(t)],

uFi2(t) = vi(t),

uFi3(t) = K2

∑
j∈Ni

wij
{[
xj(t − dt )− hj(t − dt )

]
− [xi(t − dt )− hi(t − dt )]} . (4)

Definition 2 (Formation Maintenance): considering time-
varying delays and switching topologies, if there exist the
protocol Eq.(4) such that

lim
t→∞

(xi(t)− hi(t)) = 0, i = 1, 2, . . . ,N (5)

then the swarm systems Eq.(1) realize the desired time-
varying formation hi(t), i = 1, 2, . . . ,N .

B. NECESSARY AND SUFFICIENT CONDITION
According to the Definition 1, Theorem 1 gives the necessary
and sufficient conditions when the swarm systems realize the
formation tracking.
Theorem 1: the swarm systems Eq.(1) applied protocol

Eq.(2) achieve the formation hi(t), i = 1, 2, . . . ,N and track
the trajectory r(t) if and only if the following four conditions
hold:
i)

lim
t→∞
{(IN ⊗ B̃2A)h(t)− (IN ⊗ B̃2)ḣ(t)

+(IN ⊗ B̃2A)r̃(t)− (IN ⊗ B̃2) ˙̃r(t)} = 0 (6)

ii)

lim
t→∞
{(IN ⊗ B̃1A)h(t)− (IN ⊗ B̃1)ḣ(t)+ (IN ⊗ I )v(t)

+(IN ⊗ I )s(t)+ (IN ⊗ B̃1A)r̃(t)− (IN ⊗ B̃1) ˙̃r(t)} = 0

(7)

iii) system (8) is asymptotically stable.

ξ̇1(t) = (A+ BK1)ξ1(t) (8)

iv) for i = 2, 3, . . . ,N , system (9) is asymptotically
stable.

ξ̇i(t) = (A+ BK1)ξi(t)− λσ (t),iBK2ξi(t − dt ) (9)

where B̃ = [B̃T1 , B̃
T
2 ]
T is a non-singular matrix satisfying

B̃1B = I and B̃2B = 0. The vector r̃(t) is defined as
[rT (t), . . . , rT (t)]T︸ ︷︷ ︸

N

, and the state variable ξ (t) is the same

dimension as x(t). λσ (t),i(i = 2, 3, ...N ) are the non-zero
eigenvalues of Laplacian matrix Lσ (t), and the piecewise con-
stant σ (t) : [0,+∞) → {1, 2, . . . , κ} denotes the switching
signal among the digraph set {G1,G2, . . . ,Gκ} , κ ≥ 1.
Proof: Substitution Eq.(2) into Eq.(1) gives the closed-loop

equation when t > 0.

ẋ(t)= [IN ⊗ (A+BK1)]x(t)−(Lσ (t)⊗BK2)x(t−dt )+1(t),

1(t) = (IN ⊗ B)v(t)+ (IN ⊗ B)s(t)− (IN ⊗ BK1)h(t)

−(IN ⊗ BK1)r̃(t)+ (Lσ (t) ⊗ BK2)h(t − dt ), (10)

where x(t) = ς (t) when t ∈ [−dt , 0]. x(t), v(t), s(t) and ς (t)
are vectors defined as follows

x(t) = [xT1 (t), x
T
2 (t), . . . , x

T
N (t)]

T ,

v(t) = [vT1 (t), v
T
2 (t), . . . , v

T
N (t)]

T ,

s(t) = [sT1 (t), s
T
2 (t), . . . , s

T
N (t)]

T ,

ς (t) = [ςT1 (t), ς
T
2 (t), · · · , ς

T
N (t)]

T .

Let

x̃i(t) = xi(t)− hi(t)− r(t), i = 1, 2, . . . ,N ,

then

x̃(t) = [x̃T1 (t), x̃
T
2 (t), · · · , x̃

T
N (t)]

T

Rewriting Eq.(10) as

˙̃x(t)= [IN⊗(A+BK1)]x̃(t)−(Lσ (t)⊗BK2)x̃(t−dt )+1̃(t),

1̃(t) = (IN ⊗ A)h(t)+ (IN ⊗ A)r̃(t)+ (IN ⊗ B)v(t)

+(IN ⊗ B)s(t)− (IN ⊗ In)ḣ(t)− (IN ⊗ In) ˙̃r(t).

(11)

Here, x̃(t) = ς (t)− h(t)− r(t) when t ∈ [−dt , 0].
According to the Definition 1, the swarm systems Eq.(1)

achieve the formation h(t) and track the trajectory r(t) when
two conditions are satisfied:

lim
t→∞

1̃(t) = 0 (12)
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and the close-loop system

˙̃x(t)= [IN ⊗ (A+BK1)]x̃(t)−(Lσ (t)⊗BK2)x̃(t − dt ) (13)

is asymptotically stable for all σ (t).
Multiplied by I ⊗ B̃ at both sides of Eq.(12), it turns out

that Eq.(12) is equivalent to Eq.(6) and Eq.(7).
For another, there exists a nonsingular matrix Eσ (t) satis-

fying E−1σ (t)Lσ (t)Eσ (t) = Jσ (t) according to Laplacian matrix
property. That means Jσ (t) is the Jordan expression of Lσ (t).
Define

ξ = (E−1σ (t) ⊗ I )x̃(t),

then Eq.(13) can be rewritten as

ξ̇ (t) = [IN ⊗ (A+ BK1)]ξ (t)− (Jσ (t) ⊗ BK2)ξ (t − dt )

(14)

Obviously, closed-loop system Eq.(14) is stable if and only
if the systems Eq.(8) and Eq.(9) are stable simultaneously by
Lemma 1. Since the above process are equivalent transfor-
mations, four conditions described by Eq.(6), Eq.(7), Eq.(8)
and Eq.(9) are necessary and sufficient conditions of the
formation tracking problem. �

Similarly, the necessary and sufficient conditions for for-
mation maintenance problem can be derived as follows.
Corollary 1: the swarm systems Eq.(1) applied protocol

Eq.(4) achieve the formation hi(t), i = 1, 2, . . . ,N if and only
if the following four conditions hold:

i)

lim
t→∞

(IN ⊗ B̃2A)h(t)− (IN ⊗ B̃2)ḣ(t) = 0 (15)

ii)

lim
t→∞
{(IN ⊗ B̃1A)h(t)− (IN⊗B̃1)ḣ(t)+(IN ⊗ I )v(t)} = 0

(16)

iii) and iv) are same as the ones in Theorem 1.
Remark 1: Based on the above discussions, the condition

i and ii in Theorem 1 or Corollary 1 can be satisfied through
selecting suitable h(t), r(t), v(t) and s(t). If A + BK1 is Hur-
witz matrix, then system Eq.(8) is stable. This condition can
be satisfied through eigenvalues configuration. That means
suitable K1 can be determined easily. In the following, the
asymptotical stability of time-delay systems Eq.(9) will be
discussed for i = 2, 3, ...N . Moreover, the allowance upper
bound of delay can be calculated by numerical tools.

C. STABILITY OF TIME-DELAY SYSTEMS
Assume that time-varying delay 0 ≤ d(t) ≤ dup and its
derivative ḋ(t) ≤ dvar , 0 < dvar < 1.
Theorem 2: ∀i = 2, 3, . . . ,N , if there exist the real matri-

ces P = PT > 0, Q = QT > 0, R = RT > 0, V ,
constant number a and non-zero constant number b such that

the following inequality holds:
ω11 ω12 ω13 0 P
∗ ω22 ω23 dupR 0
∗ ∗ −dupR 0 0
∗ ∗ ∗ −dupR 0
∗ ∗ ∗ ∗ −31

 < 0 (17)

where

ω11 = 32P+ P3T
2 + ab

−18λσ (t),i3334

+ab−13T
43

T
38

T
λσ (t),i
− a2b−2(1− dvar )31,

ω12 = −b−18λσ (t),i3334+P+ab−131+ab−2(1−dvar )31,

ω13 = dup
(
P3T

2 + ab
−13T

43
T
38

T
λσ (t),i

)
,

ω22 = −2b−131 − b−2(1− dvar )31,

ω23 = −dupb−13T
43

T
38

T
λσ (t),i

,

31 = diag{Q,Q},
32 = diag{A+ BK1,A+ BK1},

33 = diag{B,B},
34 = diag{V,V}.
then systemEq.(9) is asymptotically stable with the controller
gain K2 = VQ−1.
Proof: For the directed switching topologies, the eigenval-

ues of the Laplacian matrices have both real part and imagi-
nary part. For i = 2, 3, . . . ,N , system Eq.(9) is equivalent to
the following system.

ξ̇i(t) = 32ξi(t)−8λσ (t),i3335ξi(t − dt ) (18)

where 35 = diag{K2,K2} and the matrix is defined as
follows

8λσ (t),i =

[
Re(λσ (t),i)I −Im(λσ (t),i)I
Im(λσ (t),i)I Re(λσ (t),i)I

]
.

By Newton Leibniz formula, we have

ξi(t)(t)− ξi(t − dt )−
∫ t

t−dt
ξ̇i(s) = 0 (19)

For any free-weighting matricesM1 andM2, the following
equation holds.

2[ξTi (t)M
T
1 + ξ

T
i (t − dt )M

T
2 ]

×[ξi(t)− ξi(t − dt )−
∫ t

t−dt
ξ̇i(s)ds] = 0 (20)

Similarly, for any matrices Xmknk (mk = 1, 2;mk ≤ nk ≤ 2)
with proper dimension, one has[

ξi(t)
ξi(t − dt )

]T [
212 212
∗ 222

] [
ξi(t)

ξi(t − dt )

]
= 0 (21)

where 2mknk = dup(Xmknk − Xmknk ),mk = 1, 2,
mk ≤ nk ≤ 2.
Choose a common Lyapunov-Krasovskii functional as

follows

V (t, ξi) = ξTi (t)Pξi(t)+
∫ t

t−dt
ξTi (s)Qξi(s)ds

+

∫ 0

−dup

∫ t

t+θ
ξ̇Ti (s)Rξ̇i(s)dsdθ (22)
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Here, P = PT > 0, Q = QT > 0, R = RT > 0 are the real
matrices with proper dimensions.

Taking the derivative of V (t, ξi) gives

V̇ (t, ξi) = 2ξTi (t)Pξ̇i(t)+ ξ
T
i (t)Qξi(t)

−(1− ḋ(t))ξTi (t − dt )Qξi(t − dt )

+dupξ̇Ti (t)Rξ̇i(t)−
∫ t

t−dup
ξ̇Ti (s)Rξ̇i(s)ds (23)

From Eq.(20), Eq.(21) and Eq.(23), one can obtain

V̇ (t, ξi) ≤ 2ξTi (t)Pξ̇i(t)+ dupξ̇
T
i (t)Rξ̇i(t)+ ξ

T
i (t)Qξi(t)

−(1− dvar )ξTi (t − dt )Qξi(t − dt )

−

∫ t

t−dt
ξ̇Ti (s)Rξ̇i(s)ds

+2[ξTi (t)M
T
1 + ξ

T
i (t − dt )M

T
2 ]

×[ξi(t)− ξi(t − dt )−
∫ t

t−dt
ξ̇i(s)ds]

+

[
ξi(t)

ξi(t − dt )

]T [
212 212
∗ 222

] [
ξi(t)

ξi(t − dt )

]
= ηTi1(t)(Hi + dup0

T
i R0i)ηi1(t)

−

∫ t

t−dt
ηTi2(t, s)9ηi2(t, s)ds (24)

in which

0i =
[
32 −8λσ (t),i3335

]
, Hi =

[
H11 H i

12
∗ H22

]
,

H11 = P32 +3
T
2 P+ Q+M

T
1 +M1 + dupX11,

H i
12 = −P8λσ (t),i3335 −MT

1 +M2 + dupX12,
H22 = −(1− dvar )Q−MT

2 −M2 + dupX22,
ηi1(t) = [ ξTi (t) ξ

T
i (t − dt ) ]

T ,

ηi2(t, s) = [ ξTi (t) ξTi (t − dt ) ξ̇Ti (s) ]
T ,

9 =

X11 X12 MT
1

∗ X22 MT
2

∗ ∗ R

 .
The conclusion can be drawn that systemEq.(18) is asymp-

totically stable if V̇ (t, ξi) < 0, which is equivalent to

Hi + dup0Ti R0i < 0, 9 ≥ 0 (25)

By Lemma 2, one can obtain

Hi + dup0Ti R0i < 0

⇔

[
Hi dup0Ti
∗ −dupR−1

]
< 0

⇔

[
−Hi − dupX −dup0Ti

∗ dupR−1

]
> 0 (26)

where

X =
[
X11 X12
∗ X22

]
, Hi =

[
H11 Hi

12
∗ H22

]
,

H11 = P32 +3
T
2 P+ Q+M

T
1 +M1,

H22 = −(1− dvar )Q−MT
2 −M2,

Hi
12 = −P8λσ (t),i3335 −MT

1 +M2.

On the other hand,

9 > 0⇔

 dupX11 dupX12 dupMT
1

∗ dupX22 dupMT
2

∗ ∗ dupR

 > 0.

Obviously, Eq.(25) is equivalent to the following two inequal-
ities hold simultaneously.[

−Hi − dupX −dup0Ti
∗ dupR−1

]
> 0 dupX11 dupX12 dupMT
1

∗ dupX22 dupMT
2

∗ ∗ dupR

 > 0 (27)

It can be rearranged by Lemma 3,

4 =


H11 Hi

12 dup32 dupMT
1

∗ H22 −dup8λσ (t),i3335 dupMT
2

∗ ∗ −dupR−1 0
∗ ∗ ∗ −dupR

 < 0

(28)

Define

W =
[
P 0
M1 M2

]
, Ai =

[
32 −8λσ (t),i3335
I −I

]
,

and M1 = aP, M2 = bQ, in which b 6= 0. The reversible
matrix of W is

W−1 =
[

P−1 0
−ab−1Q−1 b−1Q−1

]
(29)

Moreover, let

� =

W−1 0 0
0 I 0
0 0 R−1

 .
Taking the congruent transformation �T4� yieldsHi

11 dupW−T0Ti dupϒT

∗ −dupR−1 0
∗ ∗ −dupR−1

 < 0 (30)

whereHi
11 = AiW−1+W−TAT

i +W
−T diag{Q,−(1−dvar )

Q}W−1 and Y =
[
0 R−1

]
. Let P = P−1, R = R−1, 31 =

Q−1 and V = K2Q, one can obtain
ω11+P3−1Q P ω12 ω13 0

∗ ω22 ω23 dupR
∗ ∗ −dupR 0
∗ ∗ ∗ −dupR

 < 0 (31)

where ω11, ω12, ω13, ω22 and ω23 are defined in Eq.(17).
By Lemma 3, Eq.(31) is equivalent to Eq.(17). In a con-
clusion, if there exist the real matrices P = PT > 0,
Q = QT > 0, R = RT > 0, V , constant number a and
non-zero constant number b such that Eq.(17) holds, then
the derivative of Lyapunov-Krasovskii functional V (t, ξi)
is negative definite. This implies that system Eq.(9) (i =
2, 3, . . . ,N ) is asymptotically stable with the controller gain
K2 = VQ−1. �
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Remark 2: With the allowance delay upper bound dup,
the controller gain K2 can be calculated through solving the
LMIs feasibility described by Eq.(17). In fact, for the matrix
8λσ (t),i , i = 2, 3, . . . ,N in Theorem 2, there is no need to
calculate all eigenvalues. In terms of the digraphs, only four
cases λ̃1 = max(λiRe) + jmax(λiIm), λ̃2 = max(λiRe) −
jmax(λiIm), λ̃3 = min(λiRe)+jmax(λiIm) and λ̃4 = min(λiRe)−
jmax(λiIm) are discussed. Here, λiRe and λiIm are the real
and imaginary part of λσ (t),i, i = 2, 3, . . . ,N respectively.
This approach reduces the amount of calculation, especially
when the number of the agents in the swarm systems is
large [49].

D. SOLVING ALGORITHM OF FORMATION PROTOCOL
The algorithm procedure of formation protocol is given in the
followings.

Algorithm 1:
1) Given the specified formation hi(t), i = 1, 2, . . . ,N

and reference trajectory r(t) of the swarm systems. hi(t), i =
1, 2, . . . ,N , r(t), A and B should satisfy the constraint condi-
tion Eq.(6) when r(t) 6= 0 or Eq.(15) when r(t) = 0.

2) Find the gain K1 by the eigenvalues configuration of
A+ BK1, which assure that Eq.(8) is stable.
3) If r(t) 6= 0, compute the auxiliary function v(t) and

s(t) by Eq.(7). If r(t) = 0, the function v(t) is derived
by Eq.(16).

4) The allowable upper bound dup of delays can be obtained
by Theorem 2 through solving feasible LMIs. Meanwhile,
the controller gain K2 can be computed when the specified
delay and its upper bound are given.

5) Obtain the formation protocol uFTi (t) described by
Eq.(2) or uFi (t) described by Eq.(4).

IV. NUMERICAL SIMULATIONS AND DISCUSSIONS
The proposed formation control methods will be evaluated
by applying it to a high-order swarm system with delays and
switching topologies. The effectiveness and advantages in
conservativeness are shown by means of numerical simula-
tions.

Consider a three-order swarm systems with eight agents,

which are described by Eq.(1) with A =

−2 0 1
0 0 1
−2 4 5

 and

B =

 1 0 0
0 1 0
0 0 1

. Each agent follows the time-varying

formation

hi(t) = [hi1(t), hi2(t), hi3(t)]T ,

hi1(t) = 4 cos (t + (i− 1)π/4) ,

hi2(t) = 2 sin (t + (i− 1)π/4) ,

hi3(t) = 2 sin (t + (i− 1)π/4) , i = 1, 2, . . . , 8.

Time-varying switching communication topologies with
0.3s intervals are shown in Fig.1.

FIGURE 1. Switching interactions for high-order swarm systems.

A. TIME-VARYING FORMATION TRACKING
The eight agents are required to preserve the time-varying
circle formation and keep rotating around the formation
center

hi(t) = [5sinβ, 5 cosβ, 5 sinβ]T , i = 1, 2, . . . , 8,

where β = 0.25t+0.25(i−1)π . The formation center follows
the predefined reference trajectory r(t), which is described by
the following piecewise expressions.

r(t) =



[t, t, 0.5t]T , 0 ≤ t < 20

[t, t, 10]T , 20 ≤ t < 40

[2t − 40,−1.5t + 100, 10]T , 40 ≤ t < 50

[2t − 40,−1.5t + 100,−0.25t + 22.5]T ,
50 ≤ t < 70.

It is noted that hi(t), i = 1, 2, . . . , 8 and r(t) should satisfy
the condition described by Eq.(6).

By applying Algorithm 1 and Theorem 2, K1, v(t), s(t)
and K2 can be well designed respectively. Choose K1 = 1.5 0 0.5

0 −0.5 −2.5
0.5 −2.5 −5.5

 by assigning the eigenvalues of A+BK1

at −0.5+ 2.1213i, −0.5+ 2.1213i and −0.5.
By Eq.(7), one can obtain the auxiliary functions

vi(t)=

 1.25cosβ+5sinβ
−1.25sinβ−5sinβ

1.25cosβ−15sinβ − 5 cosβ

 , i = 1, 2, . . . , 8,
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and

s(t)=



[1,−2t+1,−12t + 2]T , 0 ≤ t < 20

[2t − 39,−39,−2t − 200]T , 20 ≤ t < 40

[4t − 118,−41.5, 10t − 680]T , 40 ≤ t < 50

[5.5t − 193, 1.5t − 116, 17.5t − 1056.5]T ,
50 ≤ t < 70.

By Theorem 2, the upper bound of the delays is
0.65 through justifying the feasible of LMI, and the corre-
sponding controller gain is

K2 =

 0.0838 −0.0004 0.0218
−0.0004 0.0838 −0.0218
−0.0218 0.0218 0.0842

 .

FIGURE 2. The three-dimension state evolution snapshots of the swarm
systems under delays d(t) = 0.33 + 0.32sin(t) and switching topologies
G1, G2, G3 with 0.3s interval time.

Fig.2 shows the position evolutions of the eight agents
in three-dimensional space, which are marked by different
icons. After a period of time, the eight agents moved to the
circumference of a circle uniformly and kept rotating around
the center. Meanwhile, the formation center followed the

FIGURE 3. The errors evolution of the swarm systems under delays d(t) =

0.33 + 0.32sin(t) and the switching topologies G1, G2, G3 with 0.3s
interval time.

time-varying reference r(t). The consensus errors between
state variable x(t), formation h(t) and reference r(t) are given
in Fig.3.

From the curves, the errors trend to zero when the swarm
systems realize formation tracking under the maximum
delay dup = 0.65 and switching topologies G1, G2, G3
with 0.3s interval time. Further, the convergence time of
three-dimensional variables are almost the same with differ-
ent initial values from several simulation experiments. The
conclusion can be made that the swarm systems achieve
formation tracking under specified communication delay and
switching topologies.

B. CONSERVATIVENESS COMPARISONS
To compare the conservativeness, the results when solving
the formation maintenance problem will be investigated.
The upper bounds of communication delays are calcu-
lated for fixed and switching topologies using Matlab LMI
toolbox.

TABLE 1. The upper bounds comparisons with different methods.

As shown in Table 1, the allowance upper bounds are
bigger than the existing results [27], [49], [50]. The FWMand
the optimized parameter a and b improve the conservative-
ness. On the other side, the proposed method of this paper is
not related to the dimension of the swarm systems. Only four
eigenvalues are needed to calculate instead of all topologies.
Therefore, the calculations is smaller. From this point of view,
the proposed method has better adaptability when the agent
number is huge.
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V. CONCLUSION
A novel formation control method for high-order linear
swarm systems with time-varying delays and switching
topologies was discussed. Mainly, the following contribu-
tions were concluded in this paper:

1) The necessary and sufficient conditions of the formation
tracking and maintenance problem were derived with same
solution framework.

2) Both time-varying delays and switching topologies were
taking into consideration. Proper formation protocol can
be synthesized through eigenvalues configuration, selecting
suitable auxiliary functionals and solving the feasible solu-
tion of LMIs.

3) Free-weight matrices method was employed to justify
the negative definite of the Lyapunov-Krasovskii functional
derivative. This assured lower conservativeness and smaller
calculations.
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