
SPECIAL SECTION ON SCALABLE DEEP LEARNING FOR BIG DATA

Received January 24, 2020, accepted February 1, 2020, date of publication February 5, 2020, date of current version February 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2971834

D-GENE: Deferring the GENEration of Power
Sets for Discovering Frequent Itemsets
in Sparse Big Data
MUHAMMAD YASIR 1, MUHAMMAD ASIF HABIB 1, MUHAMMAD ASHRAF 2,
SHAHZAD SARWAR 3, MUHAMMAD UMAR CHAUDHRY 4, HAMAYOUN SHAHWANI 5,
MUDASSAR AHMAD 1, AND CH. MUHAMMAD NADEEM FAISAL 1
1Department of Computer Science, National Textile University, Faisalabad 37610, Pakistan
2Department of Computer Engineering, Balochistan University of Information Technology, Engineering, and Management Sciences, Quetta 87100, Pakistan
3Punjab University College of Information Technology, University of the Punjab, Lahore 54000, Pakistan
4Department of Computer Science, National College of Business Administration and Economics, Multan 60000, Pakistan
5Department of Telecommunications, Balochistan University of Information Technology, Engineering, and Management Sciences, Quetta 87100, Pakistan

Corresponding author: Muhammad Asif Habib (drasif@ntu.edu.pk)

ABSTRACT Sparseness is the distinctive aspect of big data generated by numerous applications at
present. Furthermore, several similar records exist in real-world sparse datasets. Based on Iterative Trimmed
Transaction Lattice (ITTL), the recently proposed TRICE algorithm learns frequent itemsets efficiently from
sparse datasets. TRICE stores alike transactions once, and eliminates the infrequent part of each distinct
transaction afterward. However, removing the infrequent part of two or more distinct transactions may result
in similar trimmed transactions. TRICE repeatedly generates ITTLs of similar trimmed transactions that
induce redundant computations and eventually, affects the runtime efficiency. This paper presents D-GENE,
a technique that optimizes TRICE by introducing a deferred ITTL generationmechanism. D-GENE suspends
the process of ITTL generation till the completion of transaction pruning phase. The deferral strategy enables
D-GENE to generate ITTLs of similar trimmed transactions once. Experimental results show that by avoiding
the redundant computations, D-GENE gets better runtime efficiency. D-GENE beats TRICE, FP-growth, and
optimized versions of SaM and RElim algorithms comprehensively, especially when the difference between
distinct transactions and distinct trimmed transactions is high.

INDEX TERMS Big data applications, pattern recognition, association rules, frequent item set mining, IoT.

I. INTRODUCTION
In the realm of data science, association analysis has emerged
as an unavoidable technique that explores strong relation-
ships in voluminous databases. Association analysis does the
exploration in such a way that the transactional presence of
some items assures the presence of other items. Unprece-
dented ability to mine and furnish profound data insights has
made association analysis an inevitable tool at present. Since
its inception, association analysis is adopted by giant retail
companies to formulate ripened marketing strategies [1].
Association analysis is increasingly being deployed in numer-
ous areas such as recommendation systems [2], study of
market basket data [3], smart systems [4]–[7], IoT [8]–[10],
fog and mobile edge computing [11], mining of data streams
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and mobile data streams[12], [13], natural catastrophes fore-
casting [14], medical [15]–[19], predicting weather[20], and
securing networks [21]–[24].

Association analysis commences with identifying frequent
itemsets that are used later to infer association rules [1].
Itemsets become frequent if the frequency of their transac-
tional occurrence named as, support, is larger than the already
defined threshold of minimum support. Identification of fre-
quent itemsets entails numerous computing resources; there-
fore, it exerts a decisive burden on the efficiency of mining
techniques. However, subsequent exploration of association
rules can be done trivially without affecting the efficiency of
the underlying technique. Therefore, efficient identification
of frequent itemsets is still a vigorous research problem,
even though numerous techniques have been proposed so
far. It explores collections of items placed jointly in a trans-
actional database [1]. In a database containing transactions,
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the transactions represent baskets of various things shoppers
purchase [25]. Numerous large retail businesses such as Net-
flix, Amazon, YouTube, and e-bay identify frequent itemsets
to recommend exciting products to the users further. Besides
generating association rules, frequent itemset mining also
generates episodes, and correlations [26].

Sparseness is the distinctive aspect of large real-world data
generated by numerous sources, including pervasive comput-
ing, behavioral data, transactional data, and IoT applications,
especially fog and mobile edge computing (MEC). Mobile
big data analytics is one of the biggest scenarios benefitting
from fog and MEC. Various monitoring and surveillance
systems can use fog nodes to find the interesting frequent
patterns in the local and regional data without delays caused
by the traditional cloud computing. Moreover, big transac-
tional data is generated by the shopping made through mobile
phones. Therefore, voluminous data is transmitted to cloud
for exploring frequent items that lacks efficiency. However,
computing in proximity to IoT devices can eficiently explore
frequent items.

The applications using mobile fog nodes include
SWAMP [27], protecting the Android devices with the GPU-
aided antivirus [28], observation of traffic by drones [29],
managing power usage [30], delivery by drones [31], man-
aging congestion of traffic [32], driving autonomously [33],
cognitively assisting by wearable [34], smart street lamp [35],
and live broadcast of videos [36]. Several fog applications use
mobile fog nodes such as sensors, laptops, and drones having
limited processing capacity.

A database of transactions made by a hypermart depicts
a real-world sparse dataset. A large number of products are
available in a hypermart. However, a small subset of the
products is purchased by a shopper, shown by his pertinent
transaction. Hence, a transaction is merely a tiny subset of
N , where N corresponds to a set of all distinct products a
hypermarket contains. Sparsity is also shown by imbalanced
behavioral big data [37].

Furthermore, the readings of mobile edge computing
devices such as sensors, are several thousand in numbers, but
the number of activity occurrences is negligible concerning
the readings. Therefore, big sparse data is being generated
today at rapid pace [38]–[49]. The computational and storage
cost for mining large and sparse datasets is very high in
edge-devices [50]. Therefore, there is an immense need to
introduce the mining techniques requiring least computing
resources for fog and mobile edge computing in IoT.

Regardless of the lack of comprehensiveness, the rarity
of information generated by sparse data makes it a valuable
asset for large businesses. This rare information is imperative
for learning the varied activities of consumers; thus, it leads
towards better predictive analytics. Empirical demonstration
reveals that predictive models based on sparse data have
massively improved the predictive performance [51].

Techniques based on Iterative Transaction Lattice (ITL)
are recently proposed to learn frequent itemsets from large
real datasets that are sparse too [52], [53]. Sparse real-world

transactional datasets contain numerous similar transactions.
Based on the Iterative Trimmed Transaction Lattice (ITTL),
the TRICE algorithm efficiently explores frequent itemsets
from sparse real datasets [53]. For large datasets, trimmed
versions of two or more distinct transactions become similar.
Due to its intrinsic feature of making ITTLs on the fly, TRICE
has to generate ITTLs of similar trimmed transactions repeat-
edly. This redundant computationmay affect the running time
of TRICE.

For instance, let transaction1 = {1, 2, 3, 4} and trans-
action2 = {1, 2, 3, 4, 5} in a dataset. TRICE stores both
transactions in a dictionary ADT named as Dict. L-set is
a set ADT containing frequent 1-itemsets. Assume that the
contents of L-set are {1, 2, 3}, because itemsets {4}, and
{5} are assumed to be infrequent, thus rejected. The Fre-
quentItems( ) procedure of TRICE will iteratively take each
key from Dict and intersect it with L-set, and then gener-
ate the ITTL of the intersection on the fly. The intersec-
tion corresponds to a trimmed transaction because infrequent
1-itemsets are rejected. Interestingly, the intersection of each
keyof Dict with L-set results in a similar trimmed transac-
tion having items,{1, 2, 3}. TRICE will generate ITTL of
{1, 2, 3} twice, because, it generates ITTL of a transaction
just after trimming it (by intersecting it with L-set).
The experimental study has revealed that numerous simi-

lar trimmed transactions exist in sparse datasets. Therefore,
TRICE has to generate ITTLs of the same trimmed trans-
action several times. Eventually, the redundant computations
of TRICE affect runtime efficiency. This work is an attempt
to get rid of the unnecessary computations by optimizing
the behavior of TRICE. A technique namely, Deferring the
GENEration of Power sets for Mining Frequent Itemsets
from Sparse Big data (D-GENE), is proposed in this paper.
D-GENE optimizes TRICE by introducing a deferred ITTL
mechanism. Instead of generating ITTLs just after making
intersections, D-GENE delays the procedure until the com-
pletion of the intersection phase.

The efficiency comparison of D-GENE is made with
TRICE, optimized SaM [54], optimized RElim [54], and
FP-growth algorithms on six sparse real datasets. D-GENE
outperforms the other techniques by showing better run time
performance and least memory usage.

The organization of this paper is as follows. A review of
related work is given in Section 2. Section 3 describes the
problem and its essential definitions. D-GENE is explained
in Section 4, followed by an example in section 5. Experi-
mental results and detailed discussion is given in Section 6.
Section 7 concludes this study and presents some potential
research issues.

II. RELATED WORK
The simple brute-force technique [55] first represents an
Itemset Lattice (IL) by generating a power set that contains
all subset combinations. Figure 1 shows the IL made by
the simple technique. All subsets in the IL are designated
as candidate subsets initially. Subsequently, the algorithm
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FIGURE 1. Itemset Lattice made by Naive Technique.

iteratively counts the transactional presence of each candidate
subset by contrasting it against every transaction. A particular
subset is kept as frequent if its presence count is not less
than the threshold value of minimum support. Subsets having
transactional presence count less than the threshold value of
minimum support are regarded infrequent, thus rejected.

Though the algorithm follows a simple principle to explore
all frequent subsets, yet it places a considerable burden on
computing resources. The exponential increase of candidate
subsets and their support counting afterward shows a phe-
nomenal rise in the runtime. Furthermore, considering a large
size of N , the algorithm has to produce 2N candidate subsets
that need gigantic memory to be stored. Both factors make the
algorithm unusable in reality. At present, big retail companies
present numerous items for sale resulting in a voluminous N .
Apriori candidate-set generation and test method exhibits a

breadth-first search strategy to explore frequent itemsets [3].
Based on the hierarchical monotonicity principle, the tech-
nique generates numerous candidates. Hierarchical mono-
tonicity states that all candidate subsets of a frequent itemset
are frequent as well. Likewise, a superset of an infrequent
candidate subset is also infrequent. Figure 2 shows a depic-
tion of the principle, where a pass over the database reveals
that the transactional occurrence of candidate {4} is less
than the minimum support threshold. Thus, the hierarchical
monotonicity principle declares the supersets of candidate
itemset {4}, infrequent. Following this way, the Apriori algo-
rithm optimizes the brute-force method by pruning the IL.
Though the candidates are lesser in numbers than the candi-
dates produced by brute-force technique, yet found abundant.
Therefore, massive memory is required to store them. More-
over, numerous passes over the large database for counting
candidates’ transactional presence give a huge rise in the
runtime. Many Apriori-based methods are proposed, but they
also have to produce abundant candidates and count their
transactional occurrences later [56]–[62].

Later, Apriori-based hashing and pruning techniques
are proposed that improve the generation of candidate
2-itemsets. Adoption of database pruning and better hash-
ing give efficient candidate contrasting and identification

FIGURE 2. Hierarchical monotonicity in Apriori.

of frequent itemsets [63], [64]. Apriori-based clustering
methods make multiple clusters according to the length
of transactions [65], [66]. Afterward, the transactions are
stored in pertinent clusters. Though candidates are gener-
ated in Apriori-like fashion, yet clustering methods con-
trast each candidate in its relevant cluster rather than the
whole database. Therefore, clustering methods are more effi-
cient than Apriori. Vertical representation- based recursive
schemes show each itemset in a vertical diff-set or Tid-set
manner [67]-[70]. The intersection of sets is used to count
the support of itemsets. These techniques explore frequent
itemsets by using the depth-first search strategy. Avoiding
the repetitive passes over the database, efficient counting of
support is done by Tid-set. However, large cardinality of
Tid-set or a larger dataset slows down the algorithmic effi-
ciency. Memory consumption becomes large when Tid-sets
are longer, and abundant candidates are generated.

Sampling [71] and the dynamic count of itemsets
(DIC) [72] perform more efficiently because they soften the
stringent division between the support check and candidate
generation. DIC initiates the production of additional candi-
date itemsets, whenever the support of a candidate and thresh-
old of minimum support equalize. A prefix tree is utilized to
explore frequent itemsets efficiently,

RElim (Recursive Elimination) and SaM (Split andMerge)
algorithms are horizontal representation-based recursive
algorithms [73], [74]. RElim recursively eliminates items.
It commences by opting for the transactions that have a
frequent item in the smallest amount. Later, the item is elim-
inated; thus, the resulting dataset is smaller. RElim recur-
sively processes the enduring itemsets in the dataset. It retains
information of the explored items during recursion and finds
frequent itemsets pertinent to the eliminated item that is the
cause of invoking the recursion. RElim performs this after
identifying all itemsets in the reduced dataset.

The procedure is repeated by choosing the subsequent
least frequent itemset and so forth. SaM algorithm simpli-
fies RElim and works in two steps. In split-step, a copy
of every array that commences with the first item of the
foremost transaction is made. The copy is placed in a new
array, and that opening item is eliminated. The procedure
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is repeatedly performed recursively to explore each frequent
itemset. Subsequently, a merging step is initiated along with
the pruned dataset to gain the conditional pattern base. Later
on, optimizations have been done that enabled both RElim
and SaM to efficiently process sparse datasets.

In pattern growth-based methods, the FP-Growth algo-
rithm is the maiden one [75]. It introduces an extended struc-
ture of prefix-tree. The database is kept in a trie data structure,
and a linked list is held by every itemset that passes over all
transactions that have the itemset. FP-tree (Frequent Pattern
tree) is a condensed tree that holds this structure.The nodes
keep a counter for tracking the number of transactions sharing
the branches entirely through them. A pointer is used that
points the subsequent occurrence of an itemset in the tree.
Eventually, every presence of the itemset is connected and
represented by the FP-tree. It maintains a table containing
headers is maintained that stores each discrete itemset with
its support accompanied by a pointer for showing its earliest
occurrence. A compact representation enables FP-growth to
use lesser memory as compared to Apriori.The algorithm
becomes less efficient when patterns become longer or the
threshold of minimum support is lower because conditional
trees are produced in large quantities [76].

Consequently, the PPC tree (Pre-order Post-order Code
tree) is introduced to hold the information of frequent item-
sets [77]. It is more efficient than FP-tree because one tree
pass is required for the detection of an N-list containing
frequent 1-itemsets. Conversely, FP-tree based methods are
needed repeated tree traversals. Based on PPC-tree, PrePost
algorithm commences by constructing a PPC-tree [78]. It uti-
lizes an algorithm to generate the tree. Subsequently, it creates
N-lists to represent 1-itemsets. N-list depicts a compressed
transaction ID list (TID list) to represent the attributes of
an itemset. Later, a divide-and-conquer method is utilized to
explore frequent itemsets. It is not obligatory to make added
trees in the succeeding iterations, hence its efficiency is better
than that of FP-Tree. The limitation of PrePost is its use of the
Apriori-like technique to explore frequent itemsets; however,
it uses N-list single-path property for reducing the search
space.

An itemset is represented by PPC tree-based Nodeset.
Post-order or preorder code is used to encode a node within
Nodeset. Based on Nodeset, the FIN algorithm is proposed
whose performance is comparable with that of PrePost; how-
ever, FIN requires less memory [79]. PrePost+ brings an
optimization to PrePost by utilizing N-list to explore fre-
quent itemsets [80]. Children-Parent Equivalence pruning is
utilized to lessen the search space and to elude monotonous
search.

Furthermore, the subsume index is introduced for added
improvement inefficiency [81]. A subsume index is accom-
panied by a frequent 1-itemset that depicts a list of frequent
1-itemsets discovered alongside it. NSFI algorithm is intro-
duced on the basis of subsume index [82] that performs its
mingling with N-List for efficient working and least con-
sumption ofmemory. Hash tables are used to construct N-lists

that make NSFI efficient. N-list intersection method is also
got better.

HARPP algorithm iteratively generatesthe power set of
each transaction and represents it by a Transaction Lat-
tice (TL) [52]. It takes every transaction as a set ADT, makes
its TL, and checks the existence of every subset in F , a set that
is used to store frequent itemsets. The existence of a subset
in F manifests that it is frequent previously. For that reason,
the subset is regarded as frequent and removed immediately.
Otherwise, the subset with a count of its support is placed
into a dictionary as a key and value pair. Soon after plac-
ing in a dictionary, the support of the subset and minimum
support threshold are compared. An equalizer makes the
subset frequent, discards it from dictionary, and stores in F .
HARPP does not keep the dataset in memory and explores the
frequent items in a single dataset scan. ThoughHARPPworks
efficiently, yet its efficiency deteriorates when the datasets
have longer transactions.

TRICE algorithm optimizes HARPP by generating iter-
ative TLs too; however, TRICE prunes the database first
by discarding the infrequent itemsets from every distinct
transaction [53]. Therefore, it represents Iterative Trimmed
Transaction Lattices (ITTLs) by generating power sets of
pruned transactions, where each ITTL is a tiny subset of IL.
TRICE is found to be extremely efficient on sparse datasets.
The probability of the existence of similar transactions is high
in sparse real datasets. TRICE conserves memory by keeping
similar transactions once.

TRICE immediately makes ITTL of a trimmed version
of a transaction for further processing. For sparse datasets,
trimmed versions of two or more dissimilar transactions
become similar often. Since TRICE makes ITTL of each
trimmed transaction on the fly, it generates ITTL of similar
trimmed transactions repeatedly. This redundant computation
may affect the run time efficiency of TRICE.

To get rid of the redundant computations of TRICE,
another ITTL-based technique named as, D-GENE is pro-
posed in this paper that introduces a deferred ITTL genera-
tion strategy. Deferring the step of ITTL generation enables
D-GENE to make power set of identical trimmed transactions
only once that further improves the running time.

III. BASIC CONCEPTS
This section initiates by presenting the concepts perti-
nent to D-GENE. Notations and descriptions are given
in Table 1.

Table 2 presents a database, DB, to be used for illustrating
purpose.Support of an I-set denoted by Sup(I-set), is the total
transactions in numbers containing the I-set. An I-set is made
frequent if Sup(I-set) ≥ (minsup X |DB|). A frequent I-set
that has k items is denoted as a frequent k-I-set. Frequent
itemset mining explores all I-sets whose support ≥ (minsup
X |DB|). An ITTL is represented by making a power set of a
trimmed T .
A power set contains all subsets of a set excluding the

empty subset.
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TABLE 1. Notations and descriptions.

IV. D-GENE: THE PROPOSED METHOD
N corresponds to a large itemset having all items, and each
transaction is composed of some items of N. Thus, a trans-
action represents a subset of N . Consequently, an ITTL is a
tiny subset of IL. D-GENE iteratively generates ITTL of each
distinct trimmed transaction once to explore frequent I-set.

The pseudocode of D-GENE is shown in Figure 3.
D-GENE is composed of two procedures. It commences

by invoking FindFrequent1( ), which makes a pass over the
database and performs the following actions.
1. The following actions are performed in an iterativemanner

for all transactions.
1.1. FindFrequent1 ( ) reads a T in Step (1)-(6), makes

T and its support, a key, and value respectively.
Afterward, the key and value are stored inDict1. The
value is set to 1 if T occurs for the first time in the
database; otherwise, the value is incremented on each
subsequent arrival of the same T . Higher value for a
key shows the multiple occurrences of a transaction
in a database. However, similar transactions are kept
once in Dict1.

2.2. Each I-set of T is obtained in Step (7)-(14), placed in
Dict2 as a key, and its value is set to 1. The repeated
occurrence of the same I-set causes an increment in
its value.

2. After making a pass over the entire database, in Step
(15), all keys whose supports are not less than minsup are
obtained and placed in Dict3. Hence, Dict3 contains keys
and values to represent frequent 1-I-sets and their supports
respectively.

3. Keys from Dict3 are obtained and kept in L-set in
Step (17). As a result, all frequent 1-I-sets are contained in
L-set.

The output of the procedure consists of Dict1 that contains
all distinct T with their supports and L-set.

The flowchart of FindFrequent1( ) is shown in Figure 4.
Subsequently,FindFrequentAll( ) is called and provided

with L-set, Dict1, |DB|, and minsup. Then for every key, K1
pointing to T in Dict1, the next two actions are done.

1. K1 is obtained in Step (1) - (2) and intersected with
L-set. The intersection discarded the infrequent items of
K1 and kept in Z . Thus, Z represents a pruned version
of the presently obtained transaction.

2. In Step (3) - (4), the existence of Z is checked in Dict4.
If Z is there previously, the value of Z in Dict4 is
increased by the amount equal to that of K1. Otherwise,
Z is stored in Dict4 as a new key and assigned the value
of K1.

After these two steps, Dict4 contains all distinct trimmed
transactions stored as keys with corresponding values.
In Dict4, identical transactions are stored only once. The
subsequent tasks are done for every Key,K2 (trimmed T ) kept
in Dict4.

3. A K2 is read in Step (9) - (10), and a power set P-
set is generated that represents ITTL of K2. In Step
(11), for each subset, S of P-set, the next sub-tasks are
executed.
4.1. In Step (12), an S is read, and its containment is ver-

ified in F-set. If S is present there previously, it is
considered frequent, so rejected and the procedure
reads next S. Or else, S is kept in Dict5 as a key in
Step (13) - (14) whose value is equivalent to that of
K2 inDict4 if S arrives for the first time. If S is there
already, then the previous value of S is increased
by the amount of K2 in Dict4 in Step (15) - (16).
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FIGURE 3. Pseudocode of D-GENE.

This happens as the support possessed by S is equal
to the support owned by T , where Z represents the
intersection of T and L-set.

4.2. When S is placed in Dict4, its value and minsup
are contrasted in Step (18). If both equalize,S is
considered frequent.

4.3. Then I-set is taken out from Dict4 and stored in
F-set shown by Step (19).

5. F-set is printed in Step (24).

The flow chart of FindFrequentAll( ) is shown in
Figure 5.

V. D-GENE EXAMPLE
D-GENE example is given based on the database given
in Table 2. In this example,minsup is set to 66%,whichmeans
that to be frequent, an I-set must occur in more than three
transactions. D-GENE commences by invoking the FindFre-
quent1( ) procedure. FindFrequent1( ) obtains the first T
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FIGURE 4. Flowchart of FindFrequent1( ) Procedure.

in Figure 6 and places it in Dict1 by making it a key. The
value assigned to the key is one, due to the initial appearance
of the key. Shortly, FindFrequent1( ) obtains each I-set of T
and places into Dict2 by making it a key. The value assigned
to each key is one because this is the first-ever arrival of all
four keys to Dict2.

Figure 7 shows the arrival of the 2nd transaction that is
placed inDict1 as a new key. The value of the key is set to one
due to its maiden arrival. Subsequently, all I-sets are obtained
and placed as keys in Dict2. I-sets {A}, {B}, and {C} are
previously present; thus, their values are incremented.

In Figure 8, 3rd transaction is obtained and kept as a new
key with value one in Dict1, due to its earliest arrival. I-sets
{A}, {B}, and {D} are already present; thus, their values are
incremented.

TABLE 2. A transactional dataset, DB.

The arrival of the 4th transaction is shown in Figure 9.
The arrival of the 5th transaction is shown in Figure 10.

The last transaction shown in Figure 11 is similar to the 1st

transaction; thus, it is not placed inDict1. However, the value
of the rejected transaction is incremented inDict1. Moreover,
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FIGURE 5. Flowchart of FindFrequentAll( ) Procedure.

the values of its I-sets are also incremented in Dict2. I-
sets{D} and {E} have values less thanminsup; therefore, both
are eliminated.
I-sets {A}, {B}, and {C} are frequent 1-itemsets, obtained

and kept in Dict3 as keys with relevant supports. Finally, the
keys are placed in L-set.
FindFrequentAll( ) procedure is invoked afterward. K1

holds the 1st key in Figure 12.

K1 is intersected with L-set, and the result is placed in Z . Z
holds a pruned transaction. Z is stored in Dict4 as key and its
value is two that is the value of K1. In Figure 13, K1 points
to the 2nd key.

Z again keeps the intersection that is already present
in Dict4, showing similar pruned transaction. Therefore,
the value of Z is increased by 1, which is the value of K1 at
present. In Figure 14,K1 refers to the 3rd key. The intersection

27382 VOLUME 8, 2020



M. Yasir et al.: D-GENE: Deferring the GENEration of Power Sets for Discovering Frequent Itemsets

FIGURE 6. Placement of 1st T .

FIGURE 7. Placement of 2ndT .

FIGURE 8. Placement of 3rdT .

results in a pruned transaction that is not already present in
Dict4. Therefore, Z is kept inDict4 as a new key, and its value
is 1, which is the value of K1 at present.

In Figure 15, K1 refers to the 4th key in Dict1. The inter-
section is already present in Dict4, showing similar trimmed
transaction. Therefore, the value of Z is increased by 1 in
Dict4, which is the value of the current K1.

FIGURE 9. Placement of 4thT .

FIGURE 10. Placement of 5thT .

FIGURE 11. Placement of 6thT .

In Figure 16, K1 refers to the 5th key.The intersection is
new for Dict4; thus, it is placed as a new key in Dict4, and its
value is set to1, that is the value of K1 presently.

The transaction pruning phase is completed after read-
ing the last record from Dict1. The state of Dict4 depicts
that similar trimmed transactions are stored only once.
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FIGURE 12. Z and Dict4 after reading 1st key.

FIGURE 13. Z and Dict4 after reading2nd key.

Consequently, D-GENE generates ITTL of similar trimmed
transactions once regardless of their transactional occurrence
in Dict4. Eventually, it helps in getting performance gain.

Figures 17 - 19 show the ITTL phase, in which D-GENE
constructs a power set of each distinct trimmed transaction
present inDict4. In Figure 17,K2 refers to the 1st key inDict4.
F-set is empty at this stage. D-GENE generates ITTL of K2
and stores each subset, S, into P-set. Iteratively, the presence
of each S is verified in F-set first, which is empty at this stage.
S is infrequent here; thus, it is put intoDict5 as a new key with
the value 3, which is the value of currentK2. Just after storing
in Dict5, the value of S is compared with minsup. The value
of each S is less than minsup; thus, no S is taken out from
Dict5. Subsequently, F-set remains empty in this iteration.
Figure 18 shows the next iteration in which K2 points

to the next record {A, B} in Dict4 and the P-set of K2 is
generated afterward. Because F-set is still empty, each S is
stored into Dict5 with the values of current K2. All of the
subsets are already present in Dict5; therefore, no new key is
generated. The value of {A} is increased to 5 which is higher
thanminsup. Eventually, {A} becomes a frequent I-set, taken
out fromDict5, and stored into F-set. Subsequently, {B}, and
{A, B} also become frequent, picked from Dict5, and stored
into F-set, respectively.

FIGURE 14. Z and Dict4 after reading 3rd key.

FIGURE 15. Z and Dict4 after reading 4th key.

Dict5 now contains {C}, {A, C}, {B, C}, and {A, B, C}.
Figure 19 shows the next iteration in which K2 points to the
last record in Dict4.

The value of {C} and {B, C} becomes 4, which is greater
than minsup. Therefore, they become frequent I-set, picked
from Dict5, and stored into F-set. D-GENE terminates after
this step. From Figures 17- 19, it is evident that redundant
processing is avoided by storing identical trimmed transac-
tions in Dict4 before generating ITTLs once.

VI. EXPERIMENTAL EVALUATION OF D-GENE
Performance evaluation relevant to runtime and memory uti-
lization isreported here. Each algorithm explores similar fre-
quent itemsets; thus, the results are verified.

A. EMPIRICAL SETTINGS
The comparison of D-GENE is made with TRICE, optimized
SaM, optimized RElim, and FP-growth on six sparse real
datasets. Dataset properties are given in Table 3. Online
Retail, Kddcup99, PowerC, Food Mart, and Record Link
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FIGURE 16. Z and Dict4 after reading 5th key.

FIGURE 17. P-set showing ITTL, Dict5, and F-set when 1stK2 is read.

are attained from [83]. The Extended Bakery dataset is
got from [84]. The reason why FP-Growth is chosen is
its comparable performance with the successors for sparse
datasets [78], [80], [82]. Optimized RElim and SaM also
perform well on sparse datasets [54]. D-Gene is implemented
in Python and the implementation of TRICE is taken from the
authors’ previous work [53]. RElim, SaM, and FP-Growth are
obtained from [85]. A computer conducts experiments with
Core i7-3667U Intel, 8G memory, 2.0 GHz processor, and
Windows 8 Pro 64 Edition. It is worth-mentioning that the
runtime of D-GENE is not directly comapred with those in
published reports. Instead, implementations of all the algo-
rithms are executed on the same machine and compared in
the same running environment.

FIGURE 18. P-set showing ITTL, Dict5, and F-set when 2ndK2 is read.

TABLE 3. Dataset features.

B. D-GENE RUNTIME EVALUATION
For Kddcup99, at 70% minsup, D-GENE is a bit faster than
TRICE in Figure 20. Moreover, both D-GENE and TRICE
are quicker than RElim, SaM, and FP-Growth by above 3,
3, and above 4 times. SaM performs better than RElim
though RElim is reported as more efficient on sparse datasets
formerly [54]. As minsup gets lower, the performance of
D-GENE starts improving further. It outperforms others com-
prehensively. At lower minsup, such as 30%, D-GENE is
quicker than FP-Growth approximately by a factor of 4 and
both RElim and SaM by a factor of 2.5. Moreover, D-GENE
is quicker than TRICE by a factor of 1.5.

Runtime analysis for the PowerC dataset is given
in Figure 21. The performance of D-GENE is better than
all others. It beats FP-Growth and RElim nearly by a factor
of 4 and SaM by a factor of 3 on each minsup value. Both
D-GENE and TRICE have shown comparable performance

VOLUME 8, 2020 27385



M. Yasir et al.: D-GENE: Deferring the GENEration of Power Sets for Discovering Frequent Itemsets

FIGURE 19. P-set, Dict5, and F-set when 3rdK2 is read.

FIGURE 20. Runtime Analysis for Kddcup99 Dataset.

at a 40% value of minsup. D-GENE is slightly faster than
TRICE.However, asminsup tends to become lower, D-GENE
starts performing better. Atminsup 0.001%, D-GENEwidens
the performance gap. It beats RElim, FP-Growth, and SaM
almost by the factors of 4, 6, and 3 respectively. Moreover,
D-GENE is faster than TRICE by the factor of 1.16.

Figure 22 depicts the comparison for the Online Retail
dataset logarithmically. D-GENE beats all four algorithms,
especially on lower minimum support thresholds. At min-
sup 3%, D-GENE is faster than RElim and FP-growth by a
factor of 4, and beats SaM by a factor of 5. When minsup
is 0.01%, D-GENE becomes faster than RElim and SaM by
a factor of 5 and beats FP-Growth by more than two orders
of magnitude. D-GENE and TRICE perform equally well

FIGURE 21. Runtime Analysis for PowerC Dataset.

FIGURE 22. Runtime Analysis for Online Retail Dataset.

FIGURE 23. Runtime Analysis for Record Link dataset.

on higher minsup values. However, D-GENE performs better
than TRICE when minsup tends to decrease.

Figure 23 shows the analysis for the Record Link dataset.
SaM outperforms RElim; however, D-GENE again performs
well. When minsup is 70%, D-GENE beats RElim, SaM,
and FP-growth by a factor of 3.5, 3, and 4 respectively. This
significance continues throughout allminsup values. The per-
formance gap of TRICE and D-GENE is almost negligible;
however, D-GENE is slightly faster than TRICE on allminsup
values.

Figure 24 presents the performance comparison for the
Extended Bakery dataset. The FP-Growth is outperformed
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FIGURE 24. Runtime Analysis for Extended Bakery dataset.

FIGURE 25. Runtime Analysis for Food Mart dataset.

by D-GENE approximately by a factor of 1.5. D-GENE
beats RElim and SaM by more than a factor of 2. D-GENE
performs consistently and outperforms RElim and SaM by a
factor of 3 and FP-Growth by a factor of 5 at minsup0.01%.
TRICE and D-GENE perform consistently well.

Figure 25 reports the analysis for the Food Mart dataset.
When minsup is 0.5%, D-GENE is faster than FP-Growth,
RElim, and TRICE by the factors of 8, 4, and 1.5, respec-
tively. Moreover, it is faster than SaM by more than two
orders of magnitude. As minsup is decreased, the perfor-
mance gap widens. At minsup 0.04%, D-GENE outperforms
RElim, SaM, and FP-growth by the factors of 8, 10, and
45 respectively. However, D-GENE beats TRICE by a tiny
margin.

The analysis of runtime shows that D-GENE always per-
forms better due to the following reasons.
1) The performance of FP-Growth deteriorates when

datasets are sparse; thus, long repetitive patterns do
not occur. FP-tree turns bigger; therefore, larger time
is taken by the algorithm while making and traversing
the conditional trees. In contrast, following its prede-
cessor [53], D-GENE does not construct conditional
trees and pattern bases; thus, performing better. The
process of merging in the SaM algorithm limits its per-
formance for sparse datasets [74]. It is expected that
the two lists of transactions differ in length consider-
ably, resulting in quadratic runtime of the merge sort.

FIGURE 26. Memory Usage Analysis for Kddcup99 dataset.

Hence, an optimized SaM with an improved merging
strategy is used in this paper [54]. In the same way, opti-
mized RElim eradicates duplicates present in the trans-
action lists and used a heuristically sorts the lists 54].
Despite all this, D-GENE outperforms the optimized
versions of both algorithms comprehensively.

2) FindFrequent1( ) procedure of D-GENE stores similar
transactions once in Dict1, thereby compressing the
dataset. The value of a key tells its transactional occur-
rence in a dataset. The subsequent arrival of the same
transaction causes its rejection, but an increment is done
in its previous value in Dict1. Hence, regardless of the
multiple occurrences, a transaction is intersected with
L-set once. The efficiency is greatly improved.

3) The intersection shows a pruned transaction containing
only frequent 1-I-sets. Therefore, ITTL is generated in
less time, in contrast to other power set-based meth-
ods [52].

4) The ITTL of similar trimmed transactions is generated
once in D-GENE as opposed to TRICE that makes the
ITTL every time a similar trimmed transaction comes as
a result of intersection. Thus, D-GENE gets efficiency
by avoiding redundant computations.

C. D-GENE MEMORY USE COMPARISON
D-GENE consumes the lowest amount of memory for the
Kddcup99 dataset in Figure 26. D-GENE consumes a little
less memory than TRICE on all minsup costs as well. RElim
consumes the most prodigious memory on all minsup costs.
The memory consumed by RElim, SaM, and FP-growth are
higher than consumed by D-GENE by a factor of 40 when
minsup is 70%. The factor becomes more significant than
70 when minsup is 30%.

Memory usage analysis for the PowerC dataset is given
in Figure 27. RElim takes massive memory. There is no con-
siderable difference in the memory consumption of D-GENE
and TRICE. Both algorithms take 42 times lower memory
when minsup is 40% and 37 times lower memory when
minsup is 1% than that of others.

Figure 28 depicts the comparison for the Online Retail
dataset. RElim again requires the most massive memory.

VOLUME 8, 2020 27387



M. Yasir et al.: D-GENE: Deferring the GENEration of Power Sets for Discovering Frequent Itemsets

FIGURE 27. Memory Usage Analysis for PowerC dataset.

FIGURE 28. Memory Usage Analysis for Online Retail dataset.

FIGURE 29. Memory Usage Analysis for Record Link dataset.

D-GENE is as efficient as TRICE. SaM, FP-growth and
RElim use 15, 15, and 16 times larger memory than D-GENE
when minsup is 3%. The same trend endures for each minsup
value.

Figure 29 shows the comparison for the Record Link
dataset.

FP-Growth consumes the most extensive memory. No sig-
nificant performance gap exists between D-GENE and
TRICE. D-Gene memory consumption isapproximately
33 times lower than RElim, SaM, and FP-growth when min-
sup is 70%, and this margin slightly reduces to 27 times when
minsup is 0.1 %.

FIGURE 30. Memory Usage Analysis for Extended Bakery dataset.

FIGURE 31. Memory Usage Analysis for Food Mart dataset.

Figure 30 gives the analysis for the Extended Bak-
ery dataset, where FP-Growth needs the biggest memory.
D-GENE consumes slightly more memory than TRICE on
all minsup values. TRICE consumption is the lowest when
minsup is 2%. RElim and SaM take the least memory but the
distinction is marginal.

Figure 31 shows the usage analysis for the Food Mart
dataset, where FP-growth requires the largest memory.

When minsup is high, D-GENE uses the least memory,
whereas TRICE consumes a bit larger. At lowerminsup, SaM
needs the most moderate amount of memory. D-GENE and
TRICE show comparable performance whenminsup is lower.

The memory requirement of D-GENE is least at higher
values of minsup and gradually raised as the value of
minsup goes down. Less number of frequent 1-I-sets exist at
higher minsup. Accordingly, the trimmed versions of trans-
actions are shorter in length; thus, the resultant ITTLs are
also smaller. But the number of frequent I-sets increases
at lower values of minsup, causing larger intersections and
corresponding ITTLs. The reasons why D-GENE consumes
minimal memory are explained below.

1) Memory is conserved as repeated transactions are stored
once.

2) Memory requirement increases if ITTL of the entire
transaction is to be stored because several infrequent
1-itemsets are also present in it. The intersection
performed by D-GENE results in smaller trimmed
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TABLE 4. Attractive characteristic of datasets depicting superiority of D-GENE.

transactions. Eventually, the size of the corresponding
ITTLs is also reduced.

3) FP-growth has to build several conditional trees. Addi-
tionally, a few numbers of commonly shared prefixes
occur in sparse datasets that result in larger conditional
trees. Eventually, more significant memory is required.

4) Splitting and merging of RElim and SaM require recur-
sive processing that uses massive memory. When the
dataset is large, the stack and the data structure turn
bigger.

The successors of FP-growth require even higher memory,
due to the keeping of PPC-tree and representation of 2-itemset
consisting of nodes of PPC-tree [80]. PPC-tree is bigger than
related FP-tree.

D. INSIGHTFUL ANALYSIS OF RESULTS
As minsup tends to decrease, D-GENE starts outperform-
ing TRICE on large datasets. The distinction between their
running times becomes significant due to the deferral of
ITTL generation in D-GENE. Table 4 shows an exciting
dataset characteristic that plays a pivotal role in deciding
when D-GENE defeats TRICE.

The number of distinct transactions in the Record Link
dataset is 259.Dict1 contains 259 key-value pairs only, which
means that a vast amount of similar transactions exist in the
dataset. Moreover, the number of distinct trimmed transac-
tions is 255, which is slightly less than the number of dis-
tinct transactions. Therefore TRICE and D-GENE generate
257 and 255 ITTLs, respectively; though, D-GENE takes
some time to put the trimmed transactions in Dict4.

However, this time is short because insertion, deletion,
and presence check in a dictionary ADT takes constant time.
Nevertheless, no significant distinction exists in the running
times of both algorithms because they have to generate an
almost equal number of power sets corresponding to ITTLs.

In contrast, for the OnlineRetail dataset in Figure 22,
D-GENE significantly outperforms TRICE at lower minsup
values, such as 0.007% and 0.003%. Though D-GENE beats
TRICE by only 0.4 sec., yet it is significant because D-GENE
and TRICE complete the task in 2.2 and 2.6 seconds, respec-
tively. The decisive factor is the difference between the num-
ber of distinct transactions and distinct trimmed transactions.
Now the difference is 219 that manifests that TRICE has to

generate 219 more power sets as compared to D-GENE. This
additional timewill be higher than the time taken byD-GENE
to defer the power set generation.

Similarly, the difference between distinct transactions kept
in Dict1 and distinct trimmed transactions kept in Dict4
is 1121 for the Kddcup99 dataset, which is quite huge.
Therefore, TRICE has to generate 1121 more power sets as
compared to D-GENE. The mechanism of deferring ITTL
generation works excellently in favor of D-GENE, enabling
it to discover frequent itemsets 5 seconds before. For PowerC
dataset, the difference is 1 second, because the difference
between distinct transactions and distinct trimmed transac-
tions is just 31.

The above results are evidence that the deferred ITTL
generation works well for D-GENE because it gets rid of
doing redundant computations done by TRICE. Moreover,
D-GENE needs the least memory because it stores similar
transactions and similar trimmed transactions once and also
prunes every distinctive transaction by eliminating its infre-
quent part. Consequently, the resulting ITTLs are not bigger.
D-GENE shows well all-around runtime performance.

VII. D-GENE DEPLOYMENT ENVISAGE
D-GENE has shown premium run time efficiency and least
memory consumption for real sparse datasets. In fog and
mobile edge computing, where the computation is done in
proximity to end-devices, frequent items can be explored effi-
ciently. Frequent items can be explored at local IoT devices as
well as at mobile fog nodes [86]. Regardless of the approach
suggested in [86], IoT devices as well as numerous mobile
fog nodes are found to be resource-poor.

Moreover, large and sparse datasets increase computing
and storage cost in edge-devices. Therefore, D-GENE with
its distinguising feature of least memory consumption and
superior running time for sparse big data, is envisioned as a
promising candidate for implementation in fog and mobile
edge computing. D-GENE can trivially be implemented on
an analytical engine within a fog node or an edge server to
reveal the interesting frequent patterns, useful in smart home
and numerous other IoT applications.

VIII. CONCLUSION
Predictive performance can be made better by insights taken
from sparse real data. Thus, the sparse data is believed to
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be a valuable asset for companies. In data science, exploring
frequent itemsets is the identification of items jointly present
in a database. This paper presents D-GENE, a novel technique
to explore frequent itemsets from sparse real datasets.

Like the TRICE algorithm, D-GENE is also based on
Iterative Trimmed Transaction Lattice (ITTL) to learn fre-
quent itemsets. However, it further optimizes TRICE by
introducing a deferred ITTL generation mechanism. TRICE
makes the ITTL just after trimming each distinct transac-
tion. In large sparse datasets, trimmed versions of two or
more distinct transactions often become similar. Therefore,
it has to generate power sets of similar trimmed transactions
repeatedly. Redundant computations affect the performance
of TRICE. To get rid of the redundant work done by TRICE,
D-GENE first completes the transaction trimming phase and
stores alike trimmed transactions once. Afterward, it gen-
erates ITTLs to explore frequent itemsets. This deferring
mechanism helps D-GENE to gain even better runtimes.

D-Gene is validated on six sparse real datasets and con-
trasted with TRICE, FP-Growth, and optimized versions of
RElim, and SaM algorithms. D-GENE has performed better
than the other algorithms on all minimum support thresholds.
Furthermore, it consumes minimal memory on all datasets,
that makes D-GENE a perfect choice for big IOT data analyt-
ics. D-GENE can further be modified to solve added mining
tasks such as exploring high utility itemsets, maximal fre-
quent itemsets, weighted frequent itemsets, closed frequent
itemsets, top-rank-k itemsets, and data streams.
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