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ABSTRACT Comprehensive identification and cataloging of copy number variation (CNVs) are essential to
providing a complete view of human genetic variation and to finding diseased genes. Due to the large-scale
sequencing and cost control whole-genome sequencing (WGS) data, low-coverage data is favorably disposed
towards CNV identification. However, such low-coverage data is sensitive to noise and sequencing biases,
which results in low resolution of CNV detection in past experimental designs for WGS datasets. In this
paper, we present a control-free Dirichlet process Gaussian mixture model (dpGMM) based approach,
to analyze the read depth (RD) of low-coverage WGS datasets for CNV discovery. First, noise and biases of
the RD signals are corrected through the preprocessing step of dpGMM. Then we assume that RD signals
across genomic regions follow a Gaussian mixture model (GMM) in which each Gaussian distribution
is followed by a copy number state. Without requiring the number of Gaussian distributions, dpGMM
builds a Dirichlet process (DP) GMM for RD signals and further uses a DP prior to infer the number of
Gaussianmodels. After that, we apply dpGMM to simulation datasets with different coverages and individual
datasets, and compare ours to three widely used RD-based pipelines, CNVnator, GROM-RD, and BIC-seq2.
Simulation results demonstrate that our approach, dpGMM, has a high F1 score in both low- and high-
coverage sequences. Also, the number of overlaps between CNVs detected in real data by ours and the
standard benchmark is twice as much as that detected by other tools such as CNVnator and GROM-RD.

INDEX TERMS Copy number variation, Dirichlet process, Gaussian mixture model, read depth, low
coverage.

I. INTRODUCTION
Copy number variations (CNVs), as an important form of
structural variations, have gained considerable interest in
genetic and functional analysis of human genome varia-
tion. Several large-scale studies have reported CNV partic-
ipates in phenotypic variation and adaptation by disrupting
genes and altering gene dosage [1], [2]. Some CNVs are
remained by normal individuals while others are implicated
in many diseases including Parkinson [3], diabetes melli-
tus [4], Autism [5], Alzheimer [6], and cancer [7]. Thus,
comprehensive identification and cataloging of CNVs from
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whole-genome sequencing (WGS) data contributes signifi-
cantly to research on human diversity and disease.

The rapid development of next-generation sequenc-
ing (NGS) technology has provided an unprecedented oppor-
tunity for genome-wide analysis of CNVs on the scale of
whole-genome. Due to the cost control, low-coverage data is
often favored in genome-wide variation analysis. However,
read depth (RD) signals from low-coverage data are sensitive
to systematic noises, and sequencing biases, whichmay cause
false CNV calls using RD-based methods.

Several types of biases are found in the generation and
pretreatment of NGS data. In the NGS process, the first
deviation introduced into raw reads is sequencing bias. Dur-
ing the library preparation, PCR duplicates, and sequencing,
NGS platforms generally generate short reads or read pairs
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with sequencing bias [8]. The sequencing machine makes
an erroneous call, or due to properties of the sequenced
DNA (e.g., homopolymers) [9]. Then, some raw reads from
high SNP densities are aligned to wrong locations in the
reference by current mapping algorithms, where mapping
bias arises [10]. Moreover, extreme GC composition (GC-
rich, or GC-poor) in genome regions results in uneven read
coverage or no coverage produced by NGS platform [11],
which is the so-calledGCbias. Besides, genomic regionswith
high sequence degeneracy show lower mapped read coverage
than unique regions, creating systematic bias [12]. Gaps and
Indels in genomic sequences also influence read coverage,
resulting in a low number of false-positive calls.

For the biases, numerous RD-based CNV detection meth-
ods have been proposed in recent years, with a common
assumption that the number of reads aligned to a genomic
region is proportional to the copy number of this region
[13]–[16]. Based on this assumption, these RD-based meth-
ods find different strategies for RD signals normalization
to resolve sequencing biases, uneven GC content bias, and
other noises. Although some methods perform well on CNV
detection, many studies show there are still several limitations
of discovering CNV events with specific structural charac-
teristics [17]. For example, a popular CNV tool, CNVna-
tor [18] combines the established mean-shift approach with
additional refinements (multiple-bandwidth partitioning and
GC bias correction) to discover broad CNVs from low- or
high- coverage data, which is suitable for large size of CNVs
detection. For ‘N’ bases in genome that are not sequenced
or incompletely identified, CNVnator regards them as losses,
which results in a high false positive rate and a low precision.
Another control-free RD-based method, GROM-RD [19],
analyzes multiple genomic biases in read coverage and
divides the genome into size-varying overlapping segments
to improve the breakpoint accuracy of CNVs. Although
GROM-RD consideringmultiple biases has a high specificity,
it cannot discovery some CNVs, especially at low cover-
age datasets. In addition, a common RD-based method BIC-
seq2 [20] normalizes the sequencing data by considering the
GC content, the nucleotide composition of the short reads
and the mappability. BIC-seq2 performs normalization at a
nucleotide level, resulting in its high sensitivity of detection
for small CNVs, but with a little bit low precision.

With careful consideration of the issues above, we develop
dpGMM, a control-free low-coverage sequences RD-based
method with the Dirichlet process (DP) Gaussian mixture
model (GMM) algorithm for CNV detection. In this study,
we first filter out the reads with sequencing bias and mapping
bias and use nonoverlapping sliding windows to divide the
genomic sequences into segments. Since CNV is a form
of structural variations, we count the RD signal of a seg-
ment (window) not the reads of a genomic locus. Ideally,
the genomic loci among a window share the same copy
number, except for the breakpoint of a CNV. If the breakpoint
of a CNV locates in the window, the genomic loci among
the window do not share the same copy number. Then, the

average number of reads of each segment is calculated as the
RD value of that segment based on several studies [21], [22].
GC-correction and smoothing RD signals of all segments
are implemented for further removing biases. There is an
assumption that the observed sequencing RD signals of all
segments follow a GMM where a Gaussian model represents
a copy number state and the number of Gaussian compo-
nents is unknown. Without requiring the number of Gaussian
distributions, dpGMM takes the DP as the prior distribution
to establish a DP GMM for RD signals based on Jordan’s
study [23]. In this way, we discriminate the state of copy
number distinctly with high sensitivity and specificity, as evi-
denced by comparisons of dpGMM to three most commonly
used control-free RD tools, GROM-RD, CNVnator, and BIC-
seq2. dpGMM shows improved predictive abilities for CNVs
and excellent scalability for different simulated and real NGS
datasets.

II. METHODOLOGY
The pipeline of dpGMM consists of three parts: (1) Biases
correction and Segmentation; (2) Integrated dpGMM; (3)
Estimation of copy numbers. We now detail the three parts.

A. BIAS CORRECTION AND SEGMENTATION
To remove the sequencing bias andmapping bias, wemap raw
reads to a reference genome and discard raw reads with qual-
ity scores <Q20 by Burrow-Wheeler Aligner (BWA) [24].
Then we divide the entire genome into nonoverlapping seg-
ments by sliding windows of equal size, which is a bin-
ning process, not a segmentation that combines adjacent
RDs (bins) that share the same copy number. A segment is
the result of a sliding window. We use the average of read
counts in the segment as its raw RD signal on the basis of
other studies [21], [22]. For GC-content bias, we employ the
median algorithm similar to another study [18] to correct this
bias:

R′i =
Rmeanall

Rmeangc
× Ri (1)

where R
′

i is the corrected RD signal of the i-th segment, Ri is
the raw RD signal of the i-th segment, Rmeanall is average RD
signal over all segments, and Rmeangc is the average RD signal
over all segments with the same GC content as the segment.

For furthermore rectifying the systematic bias, all
GC-corrected RD signals (R

′

i) are smoothed using cghFLasso
implemented in the R package [25]. The cghFLasso uses a
fused lasso regression, which seeks coefficients minimizing
a loss function consisting of three terms: the sum of square
error, the sum of absolute value of regression coefficients (the
lasso penalty), and the sum of the absolute difference between
contiguous coefficients (the fused penalty) [26], [27]. The
fused lasso is developed for situations when predictors in
the regression model have some kinds of natural ordering.
The lasso penalty controls the total number of nonzero coef-
ficients in the model [27]. Fig. 1 displays the RD signals
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FIGURE 1. cghFLasso is applied to some RD signals data in a simulated
sample. The grey points present the GC-corrected RD signals, and the
solid blue line shows the smoothed RD signals using cghFLasso.

before and after the smoothing process. By using the cgh-
FLasso algorithm, the locally adjacent segments with similar
constancy of RD signals are merged into a partition, where
some systematic noises are balanced out.

Considering the importance of genomic positions, we com-
bine smoothed RD signals and their corresponding genomic
positions to transform the smoothed RD signals in
one-dimensional space into a two-dimensional profile. The
details of this transformation are described in our previous
study [28]. In this way, we can observe RD signals from
both horizontal and vertical levels, which reflect copy number
amplitude and positional space, respectively.

B. INTEGRATED DPGMM
We use X = {x1, x2 . . . ,xN } represents the above
two-dimensional RD signals of the observed sample, where
N denotes the number of partitions in this sample and xi
is a vector, which denotes the smoothed RD signal and the
corresponding genomic position of the i-th partition in this
sample. Here we assume that smoothed RD signals across
the entire genome follow a GMM ideally, where a Gaussian
distribution model represents a state of copy number [17].
Here we display the frequency histogram of RD signals
from an ovarian cancer sample (chr21, EGAD00001000084)
in Fig. 2. We find that the RD signals maybe follow a GMM,
in which there may be four Gaussian models. By calculating
the maximum probability of the RD signal of a partition
generated by Gaussian distribution models, we determine the
specific copy number of that partition. Suppose X is amixture
of K Gaussian distributions (K is unknown). To solve K,
the implicit variable s = {s1, s2, . . . ,sN }(si ∈ {1, . . . ,K })
is defined to represent the Gaussian distribution’s label of
the partition in this paper. Let si = k denotes the i-th
partition belongs to the k-th Gaussian component, and let
p(·) represents a Gaussian component with a parameter of
θk , θk = {µk , σ 2

k } in the GMM, where µk , σ 2
k are the

mean and variance of the k-th component separately. πk is

FIGURE 2. The frequency histogram of RD signals from an ovarian cancer
sample (chr21, EGAD00001000084).

defined to represent the weight of the k-th component, where
πk ≥ 0, k = {1, . . . ,K }, and

∑K
k=1 πk = 1. At this point,

let a parameter set 2 = {π1, . . .πK ; θ1, . . . ,θK } denotes all
parameters of the GMM to be determined. RD signals of
partitions can be established as:{

p(xi|2) =
∑K

k=1
πkp(xi|θk )

p (xi | θk) = N (xi;µk , σ 2
k )

(2)

The i-th partition is labeled by the following (3):

τi = argmax
k∈K

(p (θk | xi)) (3)

where p (θk | xi) represents the probability of the k-th Gaus-
sian distribution that xi belongs to, and τi is the label of the
i-th partition. Thus, our goal is to estimate the parameter set
2 of this GMM and calculate τi.
At present, there are two kinds of methods for the

hyper-parameter estimate: Expectation-maximization (EM)
algorithm, and nonparametric Bayesian method. The EM
algorithm is mainly used to estimate parameters of a finite
mixed model by adopting the maximum likelihood criterion.
GMM based on EM algorithm requires a prior of the number
of Gaussian models in advance and is easy to fall into local
optimum. Once the number of Gaussian models is roughly set
as three because of three copy number states (loss, neutral,
and gain), there are many coarse CNV calls with a high
false positive rate [17]. The second method employs the DP
as the prior distribution, establishes an infinite DP GMM
of RD signals, and constructs the posterior distribution of
parameter set 2 by Monter-Carlo Markov chain (MCMC)
sampling methods or by variational methods. The method-
ology of MCMC sampling provides a systematic approach
to compute likelihoods and posterior distributions, but it can
be slow to converge and their convergence can be difficult
to diagnose [29], [30]. One class of alternative variational
inference methods seeks an approximate distribution (vari-
ational distribution) of a posterior distribution and converts
the inference of the posterior distribution into an optimiza-
tion problem for minimum distance between these two dis-
tributions. Compared with MCMC sampling methods, the
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variational inference method is prohibitively faster and its
convergence time is independent of dimensionality for the
range of data [29]. In this study, we regard the DP as the prior
distribution and adopt the mean-field variational inference
algorithm [29] to tackle the parameter set 2 of the posterior
distribution.

DP is generated from Dirichlet distribution, the extension
of Dirichlet distribution in continuous space, and is a measure
on measure [23]. The DP comprises of a base distribution G0
and a positive scaler α, which is shown as (4):

G ∼ DP(G0, α) (4)

where G is a random distribution produced from aDPwith the
base distribution G0 and concentration scaler α. The larger α
is, the closer G is toG0. Therefore, we present the infinite DP
GMM for RD signals of a sample:

xi ∼ p(xi|θsi )(i = 1, . . . ,N )
θsi ∼ G
G ∼ DP(G0, α)

(5)

where p
(
xi | θsi

)
is the probability of a Gaussian distribution

with parameter θsi . θsi is the parameter θk of the Gaussian
model that the i-th partition belongs to, where si = k .
According to Bayesian theory:

p(2|X , α,G0) ∝p(X |2,α,G0)×p(2) (6)

we estimate parameters (2,α,G0) of (6) by comput-
ing its prior distribution p(2) and likelihood function
p(X |2,α,G0). p (X |2,α,G0) is also the posterior distri-
bution of data. Here we use DP to determine the prior dis-
tribution for every parameter in 2, and use the variational
inference algorithm to approximate the posterior probability
p (X |2,α,G0).
For computing p (X |2,α,G0), we first introduce latent

variablesW and integrateW for p (X |2,α,G0). Considering
the DP GMM with parameter set (2,α,G0), latent variables
W, and observations X. The posterior distribution of the latent
variables W is:

p (W |X ,2, α,G0) = exp{logp (X ,W |2,α,G0)

−logp(X |2,α,G0)} (7)

Next, the problem of computing the posterior distribution
p (W |X ,2, α,G0) is transformed as an optimization prob-
lem [29]. In this work, we find a variational distribution q
to approximate the posterior distribution p, and minimize
the Kullback-Leibler (KL) divergence between these two
distributions:

D(qv (W) |p(W |X ,2, α,G0))

= Eq [logqv (W )]

−Eq [logp (W ,X |2,α,G0)]+ logp(W ,X |2,α,G0)

(8)

where let qv (W ) is the variational distributions with free
variational parameters ν.

The minimization in (8) can be converted as the maximiza-
tion of a lower bound on the log marginal likelihood [23]:

logp (X |2,α,G0) ≥ Eq [logp (W ,X |2,α,G0)]

−Eq [logqv (W )] (9)

Here the posterior p (X |2,α,G0) is calculated by the
mean-field framework based on the stick-breaking represen-
tation of the DP mixture proposed by Jordan [23], [31].
We provide a detailed explanation of the equation from (7)
to (9) in Appendix file 1. The specific details are described
in Jordan’s research [23] and Pedregosa’s scikit-learn [32].
Thus, we obtain the optimal parameter set of the DP GMM
for the observed RD signals.

In the process of solving the parameters of the DP
GMM model, some parameters need to be introduced to
help initialize the model, such as the initialization of α
and K. Among these parameters, α is represented by the
‘‘weight_concentration_prior’’, and K is represented by
‘‘n_component’’ in the DP GMM. We will discuss these
parameters in the ‘‘RESULT’’ Section. Also, the window size
of each segment when we compute RD signals will also be
discussed in the ‘‘PARAMETER SETTINGS’’ subsection of
the ‘‘RESULTS’’ section.

C. ESTIMATION OF COPY NUMBERS
After acquiring the DP GMM for RD signals, we assign the
copy number for each Gaussian component using the formula
mentioned in previous work [8] for the RD signal of each
segment as follows:

CN k

2
=

µk

RDmean
(10)

where CN k , µk represent the rounded integer copy number
and themean value of k-th Gaussian component, respectively.
Here we suppose the sequenced normal human genome is
diploid. RDmean is the mean value of all RD signals in the
DP GMM and is calculated by the following (11):

RDmean =
∫
xp (x) d (x) =

∫
x
∑

πkp (x | θk) dx

=

∑
πk

∫
xp (x | θk) dx =

∑
πkµk (11)

To quantify the copy number of a partition i, we just
calculate τi using (3) mentioned in Section ‘‘Integrated
dpGMM’’ to determine which Gaussian component the parti-
tion belongs to, whose copy number is the copy number of the
partition. Especially, partitions whose copy number are larger
than 2, are regarded as CNV gains. Otherwise, partitions
with 0- or 1- copy are treated as CNV losses. Aiming at
continuous partitions, we merge the partitions with the same
copy number into a CNV call.

III. RESULT
To evaluate the performance of dpGMM, we apply it
three simulation datasets and two real datasets. Meanwhile,
we compare the performance of dpGMM with CNVnator
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TABLE 1. Summary of simulated and real datasets.

GROM-RD, and BIC-seq2 on these datasets. The reason
why we choose CNVnator and GROM-RD for the com-
parative study is explained as follows: Firstly, CNVnator
and GROM-RD are two widely used RD-based models for
CNV discovery in the low depth of coverage WGS data.
Our proposed dpGMM is also based on RD to detect CNV
from low-coverage WGS data. Secondly, CNVnator and
GROM-RD do not require a control sample or multiple sam-
ples when analyzing CNVs. Our proposed dpGMM is also
a control-free CNV detection method. Thirdly, CNVnator,
GROM-RD, and our method all consider the biases of NGS
technologies, but use different strategy to normalize the RD
signals and build different algorithms to discover CNVs.
In addition, we also add comparisons with another popular
RD-based method BIC-seq2 for CNV detection in this study,
since BIC-seq2 is also popular and normalizes RD signals
by considering GC contents, the nucleotide composition of
the short reads and the mappability to reduce biases of NGS
technologies.

In this section, there are mainly six subsections:
(1) DATASETS, (2) EVALUATION MEASUREMENTS
(3) PARAMETER SETTINGS, (4) SIMULATION DATASETS,
(5) REAL DATASETS, and (6) ALGORITHM METRICS.

A. DATASETS
To test the performance of dpGMM for predicting CNV
regions, we use both three simulated datasets (with known
CNV labels), six individual genomes (NA12878, NA12891,
NA12892, NA19238, NA19239, and NA19240) real data
(with a great many of validated CNVs) and 22 ovarian cancer
samples (Table 1). We first compare our method with three
commonly used RD-based approaches, GROM-RD, CNVna-
tor, and BIC-seq2 on simulated datasets.

We adopt the recently developed software IntSIM [33]
to simulate two groups of simulation datasets under vari-
ous configurations, which considering the sequencing bias,
GC-content bias, and complex variations. There are several
studies using chromosome 21 (chr21) to generate simulated
data and using 50 replicated samples of chr21 for the statisti-
cal analysis of the performance [21], [22]. Firstly, the public
chr21 of human reference genome hg19 is taken as the refer-
ence input of the IntSIM. Considering normal tissue cells may
be involved in the sequenced pathological tissue samples,

we set the proportion of normal cells as 0.2. Given the
CNV detection performance of an algorithm on low-coverage
sequencing data, we set low sequence coverages vary from
4x to 6x and high sequence coverages vary from 10x to 20x
to configure the simulations. Moreover, taking the influence
of CNV length on CNV identification into account, we sim-
ulate CNV lengths in our simulation varying from 10kb to
50kb. Furthermore, due to the imbalanced RD signals, such
as containing a large number of amplified fragments and a
small number of deletion regions, the performance of CNV
detection methods is also influenced. On consideration of this
imbalance, we use this simulator to generate two simulation
datasets: each sample in simulation1 embeds 6 gains and
8 losses (gain== loss, balance simulated data); each sample
in simulation2 is comprised of 26 gains and 10 losses (gain
� loss, unbalanced simulated data). Gains range from 3 to
8 copy numbers and Losses vary from 0 to 1 copy num-
ber (homozygous and heterozygous). In addition, we use a
larger chromosome 11 (chr11) with a different CNV pattern
(12 gains and 10 losses) to generate samples at 4x coverage
and 10x coverage, separately as the simulation3 datasets.
We simulate 50 replicated samples for each coverage level
in each simulation dataset for estimating the average perfor-
mance of the algorithm and avoiding the contingency of the
algorithm. All simulated samples are aligned to hg19 using
BWA.

Next, we compared GROM-RD, CNVnator, BIC-seq2,
and dpGMM on chr17 of individual genome NA12878 [34]
and on chr21 of six individual genomes with 5x coverage
depth downloaded from The International Genome Sample
Resource (IGSR). The standard benchmark of the real dataset
is referred to as the collection of Mill’s study [35] and Alt-
shuler et al.’s study [34], embedding some experimentally
validated and high confidence CNVs. We test the perfor-
mance of the four algorithms using this standard benchmark.

In addition, we also apply the dpGMM to the genome-wide
(22 autosome chromosome) of 22 ovarian cancer sam-
ples from the EGA archive (https://www.ebi.ac.uk/ega/home)
under accession EGAD00001000084. These samples are
aligned and formatted with the BAM files. Meanwhile,
we also compare the performance of dpGMM with CNVna-
tor, and BIC-seq2 on these ovarian cancer samples’
sequencing data.

B. EVALUATION MEASUREMENTS
To better access the performance of the proposed approach
and compare it to peer popular methods (GROM-RD, BIC-
seq2, and CNVnator) on current NGS data, we employ the
following commonly used measurements: recall, precision,
specificity, F1-score, and G-mean.

F1− score =
2× recall × precision
recall + precision

(12)

G− mean =
√
recall + specificity (13)

Here recall (also called the true positive rate, TPR) reflects
the ability of a model to discover CNVs in the dataset, while
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the precision represents the proportion of CNVs detected by
the model to real CNVs of ground truth. However, when the
recall and precision of a model are unbalanced, it is difficult
to compare the performance of the model by using these two
measurements. F1 score takes into account both the precision
and recall of a model and is considered as the harmonic
average of the two indicators, ranging from 0 to 1. Never-
theless, some methods have high true positive rates on CNV
discovery, but there are also many false positive calls. At this
time, the F1 score cannot adequately describe this appear-
ance. In this work, we choose G-mean combining recall
and specificity (1-false positive rate) to comprehensively dis-
play these two critical aspects of the method’s performance
on imbalanced datasets. Especially, the performance of the
algorithm is the average value of a measurement (TPR, FPR,
F1 score, and G-means) of this algorithm over 50 replicated
simulations with the same level coverage.

C. PARAMETER SETTINGS
We discuss parameters of dpGMM, and one of the most
important of these parameters is the number of Gaussian com-
ponents (‘‘n_component’’). ‘‘n_component’’ is the K param-
eter mentioned in ‘‘Integrated dpGMM’’ section. Users need
to set a value as ‘‘n_component’’ in dpGMM, even though the
n_component does not match the true generative distribution
of the dataset. Additionally, the appropriate window size in
Section ‘‘BIAS CORRECTIONAND SEGMENTATION’’ can
also influence the detection performance of CNV in dpGMM.
Many existed RD-based CNV detection methods regard the
window size as 1000 bp or other fixed size, since the defini-
tion of CNV is a duplication or deletion of DNA segment of
size more than 1000 bp [18], [36], [37]. However, the window
size is a critical parameter and is supposed to depend on
the RD, as it adjusts the trade-off between detection resolu-
tion and robustness to noise. To calibrate the parameters for
‘‘n_component’’ and ‘‘window size’’, we first use 50 sam-
ples from the simulation1 dataset with coverage of 6x and
window sizes ranging from 0.5kbp to 5kbp to compute the
performance of our method (Fig. 3 and Appendix file 1:
Fig. 1S). It should be noted that 0.5kbp is not the up-bound
resolution of the proposed method theoretically. Users can set
the ‘‘window_size’’ parameter by themselves. Fig. 3 shows
dpGMM performs best when the ‘‘n_component’’ is 4 and
the ‘‘window size’’ is 1kbp. When plotting the TPR and FPR
in Figure 3, we set the value of TPR of FPR as null instead
of the average of TPRs or FPRs of all samples with the same
coverage, if dpGMMcannot detect CNVs on some conditions
in a certain sample with coverage of 6x. Therefore, there are
no results for some conditions. In this way, we find 1kbp is the
optimal window size on dataset with coverage of 6x. In addi-
tion, we also apply the dpGMM with window size ranging
from 0.5kbp to 5kbp to analysis of simulation1 dataset with
coverage of 4x, 10x, and 20x and simulation2 datasets. The
results are shown in Appendix file 2, which demonstrates
dpGMM has a good performance with window size of 1kbp.
In addition, 1kbp also confirm to the definition of length of

FIGURE 3. Performance of dpGMM on simulation1 dataset (6x coverage
depth) with different parameter settings (‘‘n_component’’, ‘‘window size’’).

CNV mentioned above. When the coverage of sequencing
data is uncertain, especially in real dataset, we can use 1kbp
as a priority of window size. Here, we also set ‘‘covari-
ance_type’’ is ‘‘full’’ (Appendix file 1: Fig. 2S), and the
concentration parameter α (‘‘weight_concentration_prior’’)
of dpGMM is None. Users can also set these parameters
as needed. Taken together, we use the optimal parame-
ter set (‘‘n_componet’’: 4, ‘‘window size’’: 1kbp, ‘‘covari-
ance_type’’: full, and ‘‘weight_concentration_prior’’: None)
on all simulation datasets. For GROM-RD and CNVna-
tor, 100 base-window [19] and the default 1k base-window
are suitable for all datasets [18], separately. For BIC-seq2,
we choose 1kbp as the expected window size. To ensure the
fairness of comparison, the aforementioned optimal param-
eter settings of all algorithms are adopted in both simulated
and real datasets.

D. SIMULATION RESULTS
The major motivation of applying dpGMM is to automat-
ically determine the number of mixture components from
data. To clarify the flexibility of dpGMM model for CNV
detection task, we perform a comparison of the dpGMMwith
basic GMM of pre-determined k. Here we set k to 3 and 7,
respectively. In the first case, k equals 3, which means there
are three copy number states: loss, neutral, and gain. In the
latter case, we regard k as 7, which represents CNs of diploid,
heterozygous deletion, homozygous deletion and 3, 4, 5,
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FIGURE 4. Performance of dpGMM, basic GMM of pre-determined 3
(GMM = 3), and basic GMM of pre-determined 7 (GMM = 7) on
simulation1 datasets. The three bars (cyan, orange and grey) respectively
represent the TPR (left panel) and the FPR (right panel) of the three CNV
detection tools (dpGMM, GMM = 3, and GMM = 7).

FIGURE 5. Performance of dpGMM, basic GMM of pre-determined 3
(GMM = 3), and basic GMM of pre-determined 7 (GMM = 7) on
simulation2 datasets. The three bars (cyan, orange and grey) respectively
represent the TPR (left panel) and the FPR (right panel) of the three CNV
detection tools (dpGMM, GMM = 3, and GMM = 7).

6 copies (Even larger copy gains might be very rare).We have
computed TPR and FPR of results of the basic GMM with
the two cases on both simulation 1 datasets and simulation
2 datasets in Fig. 4 and Fig. 5, respectively. The comparison
results show that the dpGMM model performs better than
the basic GMM of pre-determined k (3, and 7). We also
display the boxplots of results on simulation1 datasets, shown
as Fig.6, which demonstrates that the proposed dpGMM
remains stable.

To have a fair comparison, we also compare the perfor-
mance of the proposed method dpGMM with CGHcall [38]
that employs the GMM to detect CNVs. The comparison
results are displayed in Appendix file 1 and demonstrate that
dpGMM still has a comprehensive performance.

Next, the analysis of GROM-RD, CNVnator, BIC-seq2,
and dpGMM on the simulation1 dataset with low cover-
age (4x and 6x) are shown in Fig. 7 (left panel and right
panel). When the reciprocal overlap of detected CNV calls
with true calls of simulation is more than 10%, the detected
CNV calls are regarded as true positive calls. Each mark
in Fig. 7 represents an average performance of 50 samples
from simulatation1 datasets. The overall F1 score of our
method is between 0.87 - 0.94, the recall between 0.92 -
0.927, and the precision between 0.82 - 0.95 when coverage
depth is low. Although CNVnator correctly identifies more
known variations than dpGMM and GROM-RD, it has the

FIGURE 6. Performance of dpGMM, basic GMM of pre-determined 3
(GMM = 3), and basic GMM of pre-determined 7 (GMM = 7) on
simulation1 datasets.

FIGURE 7. F1 scores of dpGMM, CNVnator, GROM-RD, and BIC-seq2 on
simulation1 datasets with low coverage (4x: left panel and 6x: right
panel). The four marks (red circle, green square, blue triangle, and purple
star) respectively represent the F1 scores of the four CNV detection tools
(dpGMM, CNVnator, GROM-RD, and BIC-seq2). The grey lines indicate
different levels of F1 score between 0.1 and 0.9.

least true positives. GROM-RD can detect more true positives
than ours, but its sensitivity is inferior to that of our method
on 6x coverage sequences. BIC-seq2 has a higher recall with
a lower precision compared with our method. Particularly,
the precision of dpGMM is the best among the four tools on
4x coverage data. Taken together, our proposed method has
the best trade-off between sensitivity and precision to reliable
calls on low coverage simulation1 datasets with different
variations.

Applying these four methods to CNV detection of
high-coverage simulation1 datasets (Fig. 8), we find the per-
formance of CNVnator and BIC-seq2 are similar to those
of low-coverage datasets. GROM-RD runs CNV calls with
higher precision than the other three methods on both 10x
and 20x coverage datasets. Compared with GROM-RD, our
dpGMM can discover more known CNVs more accurately.

Although the F1 score can accurately reflect the algo-
rithm’s performance in terms of recall and precision, it cannot
report the false discovery positives. For this reason, we cal-
culate the G-means of all four methods depicted in Fig. 9.
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FIGURE 8. F1 scores of dpGMM, CNVnator, GROM-RD, and BIC-seq2 on
simulation1 datasets with high coverage (10x: left panel and 20x: right
panel). The four marks (red circle, green square, blue triangle, and purple
star) respectively represent the F1 scores of the four CNV detection tools
(dpGMM, CNVnator, GROM-RD, and BIC-seq2). The grey lines indicate
different levels of F1 score between 0.1 and 0.9.

FIGURE 9. G-means of dpGMM, CNVnator, GROM-RD, and BIC-seq2 on
simulation1 datasets with different coverage. The light blue horizontal
line represents the optimal G-mean value. The bar charts (grey, orange,
dark yellow, and green) are the G-means of the four methods (dpGMM,
CNVnator, GROM-RD, and BIC-seq2) separately.

Since CNVnator takes the ‘N’ bases in the genome sequence
as losses, there are many false positives in this approach,
resulting in a low G-mean of CNVnator. On low-coverage
datasets, our method and BIC-seq2 have slightly higher
G-means than GROM-RD. From this point of view, dpGMM
is also a good choice for CNV detection with few false
positives.

We apply the four approaches to simulation2, the unbal-
anced dataset embedding 26 gains and 10 losses, respectively.
F1 scores of the four algorithms on simulation2 with low
coverage (4x and 6x) and high coverage (10x, and 20x) are
displayed in Fig. 10 and Fig. 11 respectively. Next, their
G-means are exhibited as Fig. 3S in Appendix file 1. From
Fig. 10 and Fig. 11, we find CNVnator has an excellent
capability of recall but with a poor ability to call true positives
as with the results on simulation1 datasets, which is also
illustrated by the G-means in supplementary Fig. 3S. BIC-
seq2 has a similar recall but with a lower precision, compared
with dpGMM and GROM-RD. dpGMM and GROM-RD
have outstanding accuracy rates for both low and high cov-
erage data although they have slightly lower recall rates than
CNVnator. CNVnator regards the ‘‘N’’ bases in genomic

FIGURE 10. F1 scores of dpGMM, CNVnator, GROM-RD, and BIC-seq2 on
simulation2 datasets with low coverage (4x: left panel and 6x: right
panel). The four marks (red circle, green square, blue triangle, and purple
star) respectively represent the F1 scores of the four CNV detection tools
(dpGMM, CNVnator, GROM-RD, and BIC-seq2). The grey lines indicate
different levels of F1 score between 0.1 and 0.9.

FIGURE 11. F1 scores of dpGMM, CNVnator, GROM-RD, and BIC-seq2 on
simulation2 datasets with high coverage (10x: left panel and 20x: right
panel). The four marks (red circle, green square, blue triangle, and purple
star) respectively represent the F1 scores of the four CNV detection tools
(dpGMM, CNVnator, GROM-RD, and BIC-seq2). The grey lines indicate
different levels of F1 score between 0.1 and 0.9.

sequences as deletions, which results in very low precision.
The accuracy of variation calls detected by GROM-RD is
marvelous on all coverage datasets, except in the case of 4x
coverage. Compared with GROM-RD, our method performs
well with higher F1 score on 4x coverage datasets. In a word,
all simulated experimental results show that the proposed
approach has a good comprehensive performance of recall,
precision, and specificity.

We also apply the four approaches to simulation3, embed-
ding 12 gains and 10 losses, respectively. F1 scores of the
four algorithms on simulation3 with low coverage (4x) and
high coverage (10x) are depicted in Fig. 12. In Fig. 12, our
proposed dpGMM has the highest F1 score among these
four methods. G-means of these methods on simulation3 are
computed in Fig. 4S. These results demonstrate that dpGMM
has a comparable performance in simulation3, which also
give us a similar conclusion as before. Finally, we also pro-
vide the variance of all simulation results in Table 1S-3S in
Appendix file 1, which shows that our method has the similar
robustness to other comparative methods.

E. REAL-DATA RESULTS
To extend dpGMM on real data, firstly we analyze chr17 of
an individual genome NA12878 with 5x coverage. We regard
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FIGURE 12. F1 scores of dpGMM, CNVnator, GROM-RD, and BIC-seq2 on
simulation3 datasets with low coverage (4x, left panel) and high coverage
(10x, right panel). The four marks (red circle, green square, blue triangle,
and purple star) respectively represent the F1 scores of the four CNV
detection tools (dpGMM, CNVnator, GROM-RD, and BIC-seq2). The grey
lines indicate different levels of F1 score between 0.1 and 0.9.

TABLE 2. Comparison of methods with the standard benchmark
(21 CNVs) on NA12878 (chr17).

FIGURE 13. CNV calls of the four methods on NA12878 (chr17). The
different color circles (yellow, red, green, and purple) represent the
results of four different methods (GROM-RD, CNVnator, dpGMM, and
BIC-seq2), separately. Shadow parts are overlapping CNV collections of
different methods.

at least a 10% overlap between a predicted CNV and the
standard benchmark as an overlap. We also compare the
quality of CNVs dpGMM detected with those by other men-
tioned tools on this real data, as shown in Table 2. ‘‘others’’
in Table 2 are the CNVs detected by a method but not over-
lapped with the standard benchmark. To ensure fair compar-
isons, default parameter settings are used for all algorithms,
except for the window size in GROM-RD. Using the window
size described in the previous GROM-RD paper, we iden-
tify 100-base windows for chr17 of the NA12878 genome
sequence. Table 2 displays that dpGMM finds six over-
laps, while BIC-seq2, CNVnator, and GROM-RD discover
five, three, and three overlaps, separately. Again, dpGMM
has the highest recall rate for CNVs in low-coverage
data.

Since some new CNVs may not be found in the standard
benchmark, we calculate overlaps of the CNV calls detected
by the four tools in Fig. 13. BIC-seq2 detects the most
CNVs (111 CNVs) and GROM-RD detects the second most
CNVs (63 CNVs) from this real data compared with the
remaining two methods. Although dpGMM has fewer CNV
calls than GROM-RD and BIC-seq2, dpGMM is the most
consistent with the standard benchmark. For further quan-
tification of overlaps, we also employ the Overlap Density
Score (ODS) measurement proposed by Yuan et al. [21] to
estimate each method. The ODS is defined as (the mean
number of CNVs of one method overlapped with other meth-
ods) × (the mean overlapping times for the total number of
detected CNVs). As for dpGMM in analysis of NA12878,
the ODS is [(15+15+12)/3] × [(15+15+12)/29] = 20.27.
Similarly, the ODS of GROM-RD, the ODS of BIC-seq2, and
that of CNVnator are calculated as 21.37, 4.313 and 13.23,
respectively. Among the four algorithms, dpGMM achieves
a moderate ODS and CNVnator implements the highest
ODS. Additionally, to analyze CNVs detected by our method
but not by other methods, we annotate all detected CNV
regions via the annotation software ANNOVAR [39] and the
GeneCard human gene database (Appendix file 3). Some
CNV calls are confirmed to be related to some pathologic
processes. For example, the copy number loss region (chr17:
39420001-39429000), only detected by our algorithm, is a
location of the SYNRG gene, which is a protein-coding
gene. The GeneCard database reports SYNRG-related dis-
eases including chromosome 17Q12 Deletion Syndrome.
In NA12878, we find a copy number loss in the SYNRG
region, suggesting that this individual may be carrying
disease-causing genes.

Next, we analyze chr21 of six samples (NA12878,
NA12890, NA12891, NA19238, NA19239, and NA19240)
downloaded from the 1000 Genome Project as complement
real datasets. The quality of CNVs dpGMM detected with
those detected by other mentioned tools on these real datasets,
are shown in Table 3 (NA12878, chr21), Table 4 (NA19239,
chr21), and Table 4S-7S in Appendix file 1. In Table 3 and
Table 4, BIC-seq2 calls the greatest number of true positives
(9 CNVs and 38 CNVs), and GROM-RD calls the second
number of true positives. Although BIC-seq2 andGROM-RD
detect more true positives than our method and CNVnator,
they also detect more others. In Table 3, dpGMMdetects only
one true positive less than GROM-RD, but has the highest
precision among these four methods. In Table 4 and Table
4S-7S, dpGMM and CNVnator also have higher precision
than the other two methods. In addition, we compute the
ODS for each method’s results on these six samples, which
are shown as Table 8S in Appendix file 1. In most cases,
our method dpGMM has the highest ODS value. We have a
similar conclusion as before.

Additionally, we provide the analysis of CNVs on the
genome-wide (22 autosome chromosome) of 22 ovarian can-
cer samples by using our proposed dpGMM, CNVnator, and
BIC-seq2. The overlaps of CNVs detected by three methods
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TABLE 3. Comparison of methods with the standard benchmark
(20 CNVs) on NA12878 (chr21).

TABLE 4. Comparison of methods with the standard benchmark
(65 CNVs) on NA19239 (chr21).

FIGURE 14. CNV calls of the three methods on whole-genome
(22 autosome chromosomes) data of ovarian cancer samples.
(a)∼(f) represent the results on samples with suffix of id: 2053_1, 2561_1,
2815_3, 1743_8, 1752_2, and 1752_8, respectively. The different color
circles (red, green, and purple) represent the results of three different
methods (CNVnator, dpGMM, and BIC-seq2), separately. Shadow parts are
overlapping CNV collections of different methods.

are depicted in Fig. 14 and Fig. 5S-6S in Appendix file 1.
The results show that dpGMM identifies a modest number
of CNVs and displays a relatively higher overlapping density

TABLE 5. Comparison of methods on whole-genome (22 autosome
chromosomes) data of 22 ovarian cancer samples.

than others. Since there are no ground truth for these samples,
we also compute the ODS for each method’s results on
different sample data, which are shown as Table 5. In most
cases, our method dpGMM has the highest ODS value.

In summary, dpGMM identifies a modest number of CNVs
in real data and displays a relatively higher overlapping den-
sity than others.

IV. ALGORITHM METRICS
Both simulation datasets and real datasets are conducted
on a PC with an Inter (R) Celeron (R) CPU G1840
@ 2.80GHz processor and 8GB of memory. The input
is a sorted BAM file. Run times for the four meth-
ods on chr17 of NA12878 sequences are listed as 1219s
(GROM-RD), 621s (dpGMM), 632s (CNVnator), and 474s
(BIC-seq2). Therefore, dpGMM is a comparable faster
tool to analyze CNVs, except for BIC-seq2. The source
code is written in python and is freely available at
https://github.com/tudui123/dpGMM/.

V. DISCUSSION AND CONCLUSION
In this paper, we propose dpGMM, an alternative RD-based
pipeline for CNV detection from low-coverage WGS data.
dpGMM comprehensively normalizes RD signals, builds a
GMM for RD signals to discover CNVs. The key idea of the
dpGMMmethod is that it analyzes RD signals and establishes
a DP GMM for the RD signals, which adopts a DP as prior to
solve the DP GMM, instead of giving a prior of the number
of Gaussian components. By this means, the effective number
of Gaussian components can be inferred from the RD signal
data, which allows us to recognize specific copy number
states for RD signals of genomic regions. Besides, compre-
hensive biases are considered in the ‘‘BIAS CORRECTION
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AND NORMALIZATION’’ step, making RD signals more
normal, which helps improve the accuracy of dpGMM in the
discovery of homo-deletions and losses.

The novelties of our model are presented as follows: (1)
our model assumes that RD signals across genomic regions
from a single sample follow a GMM in which each Gaussian
distribution represents a copy number state; (2) our model
does not require the given number of Gaussian distributions
but uses a DP prior to infer the number of Gaussian models.

The new and differences in the proposed method compared
to other CNV detection methods that use GMM approaches
are listed below: (1) Many existed CNV detection methods
using GMM approaches are based on array CGH data or
Affymetrix 6.0 SNP array data [38], [27], [40]–[51], while
our proposed method analyzes NGS data; (2) Several existed
CNV detection methods build a GMM for multiple samples’
data [38], [40], [47], [49], while our method builds a GMM
for RD signals from a single sample; (3) Many existed CNV
detection methods using GMM approaches need to give the
number of Gaussian components in a GMM, such as 3 or
6 [41], [43], [45]–[47], [50], [51], while the proposed method
does not require that.

We demonstrate the performance of the proposed method
by using both simulation and real sequencing datasets. The
simulation results show that the proposed method performs
better than three popular peer methods in terms of F1 score
and G-mean. Moreover, real data results show that dpGMM
discovers a modest number of CNV calls and has a higher
consistency with the standard benchmark than the other three
methods. Thus, our method is an effective and powerful
bioinformatics tool, which can be used for the identification
of genomic structure variations on WGS data.

Five points of the dpGMM algorithm should be
mentioned here. First, we initialize the parameter of
‘‘weight_concentration_prior’’ of dpGMM to None, due to
without the prior of this parameter. However, specifying
different values for the concentration prior will make the
dpGMM model put different weights on Gaussian compo-
nents at the beginning of the algorithm. Users can choose the
parameter settings by themselves. Second, since the complex-
ity of tumor samples, such as tumor aneuploidy and tumor
heterogeneity, dpGMM needs to be further improved when
applied to the analysis of tumor samples. Third, because of
gaps between exons, it is not suitable for the proposedmethod
to analyze exome-sequencing data, as dpGMM is designed
to cope with WGS data. For the future work, we plan to seek
the optimal concentration prior and analyze other important
hyper-parameters in this model on sequencing datasets with
complex variations for the improvement of dpGMM. More-
over, dpGMM is based on a fixed-window to normalized
RD signals for CNV detection. However, for RD-based CNV
detection methods, especially for low-coverage data, the bin
size (window size) is a critical parameter, as it adjusts the
trade-off between detection resolution and robustness to
noise. Also, mappability bias is also related to the choice of
window size and read-length. For mappability bias, we just

filter out these readswithmapping quality scores below 20 for
simplicity [52]. In the future work, we will also design a RD
normalization strategy combining automatic window size and
mappability bias reduction to discover CNVs.

VI. APPENDIX
Appendix file 1: Supplementary figures. Fig. 1S. G-means
of dpGMM on simulation1 datasets (6x coverage depth)
with different parameter settings (‘‘n_component’’, ‘‘window
size’’). Fig. 2S. BIC scores of dpGMM on simulate1 datasets
(6x coverage depth) with the different parameters of ‘‘covari-
ance_type’’. Fig. 3S. G-means of dpGMM, CNVnator,
GROM-RD, BIC-seq2 on simulation2 datasets with different
coverage. Fig. 4S. G-means of dpGMM, CNVnator, GROM-
RD, and BIC-seq2 on simulation3 datasets with different
coverage. Fig.5S. and Fig.6S. CNV calls of three methods
on whole-genome (22 autosome chromosomes) data of ovar-
ian cancer samples. Table 1S-3S. The variances of results
on simulation1 datasets, simulation2 datasets, and simula-
tion3 datasets, respectively. Table 4S-7S. Comparison of
methods with the standard benchmark on chr21 of NA12891,
NA12892, NA19238, and NA19240, respectively. Table 8S.
Comparison of methods on six samples. Appendix file 2:
Performances of dpGMM with different parameter settings
on all simulation datasets. Appendix file 3: Annotations of
CNV calls detected by CNVnator, dpGMM, GROM-RD, and
BIC-seq2.
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