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ABSTRACT Obstacle avoidance is a key feature for safe drone navigation. While solutions are already
commercially available for static obstacle avoidance, systems enabling avoidance of dynamic objects, such as
drones, are much harder to develop due to the efficient perception, planning and control capabilities required,
particularly in small drones with constrained takeoff weights. For reasonable performance, obstacle detection
systems should be capable of running in real-time, with sufficient field-of-view (FOV) and detection range,
and ideally providing relative position estimates of potential obstacles. In this work, we achieve all of
these requirements by proposing a novel strategy to perform onboard drone detection and localization using
depth maps. We integrate it on a small quadrotor, thoroughly evaluate its performance through several flight
experiments, and demonstrate its capability to simultaneously detect and localize drones of different sizes
and shapes. In particular, our stereo-based approach runs onboard a small drone at 16 Hz, detecting drones
at a maximum distance of 8 meters, with a maximum error of 10% of the distance and at relative speeds
up to 2.3 m/s. The approach is directly applicable to other 3D sensing technologies with higher range and
accuracy, such as 3D LIDAR.

INDEX TERMS Drone, detection, collision avoidance, depth map.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) are a popular choice for
robotic applications given their advantages such as small
size, agility and ability to navigate through remote or clut-
tered environments. Collision avoidance is a key capability
for autonomous navigation, which typically involves four
stages [1]: detection (obstacle perception), decision (whether
the detected drone is an actual threat and how to avoid it),
action (the actual collision maneuver execution) and resolu-
tion (which determines whether the navigation can be safely
resumed).

The detection stage typically involves the use of sens-
ing technologies to determine the presence of obstacles and
gather information which can be useful for preventing a
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potential collision, such as the relative position and/or the
speed of the obstacle.

Several sensing technologies have been proposed for drone
detection, such as radar [2] and other RF-based sensors [3],
acoustic sensors [4] and LIDAR [5]. Hybrid approaches
have also been researched [6]. However, some of these tech-
nologies have limitations for being integrated onboard small
drones due to various factors such as: high power consump-
tion, weight and/or size requirements, and cost. As opposed
to the aforementioned technologies, electro-optical sensors
provide a small, passive, low-cost and low-weight solution
for drone detection. These sensors are therefore particularly
suitable for small drones.

In the literature, visible-spectrum imaging sensors have
been widely proposed for flying object detection. [7]–[13].
Thermal infrared imaging has also been considered for
the same purpose [14], [15]. The most relevant difference
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FIGURE 1. Simulated indoor scene showing a flying drone (left) and
corresponding depth map (right). Any drone or flying object in a depth
map generates a blob which contrasts with the background. This happens
as a flying object is typically isolated in 3D space, with no contact with
other objects having the same depth. In other words, a flying object
typically generates a discontinuity in the depth map, which can be used
as a distinct visual feature for drone detection.

between both imaging technologies is that, while the sensors
in thermal infrared cameras typically have lower spatial res-
olutions, they have the advantage that they can be operated at
night.

Image-based detection approaches typically rely either on
background subtraction methods [16], or on the extraction of
visual features, either manually, using morphological opera-
tions to extract background contrast features [17] or automati-
cally using deep learning methods [18], [19]. Rozantsev et al.
[7] present a comparison between the performance of various
of these methods. The aforementioned detection techniques
rely on the assumption that there is enough contrast in the
visible spectrum between the drone and the background. The
use of depth maps, which can be obtained from different
sensors (stereo cameras, RGB-D sensors or 3D LIDAR),
relies mostly on the geometry of the scene and not so much
on its visual appearance.

3D point clouds have been recently proposed for having
drones autonomously execute obstacle avoidance maneuvers
using an RGB-D camera [20], but focusing on the detection
of static obstacles only. An alternative representation for
point clouds are depth maps, which have been investigated
for general object detection [21] and human detection [22],
providing better detection performance compared to RGB
image-basedmethods. In the context of drone detection, a key
concept that explains the usefulness of depth maps is that
any drone or flying object in a depth map appears as a blob
which contrasts with the background. The reason for this is
that a flying object is typically isolated in 3D space, with no
contact with other objects having the same depth. In other
words, a flying object typically generates a discontinuity
in the depth map, which can be used as a distinct visual
feature for drone detection. This concept is depicted in Fig. 1.
An additional advantage of detection using depth maps is
that, while data from monocular image sensors can generally
provide relative altitude and azimuth of the object only, depth
maps can provide full 3D relative localization of the objects.
This is particularly useful in the case of obstacle avoidance for
drones, since the 3D position of the drone can be exploited to
perform effective collision-free path planning.

In this paper, we build on our previous work for drone
detection using depth maps obtained from a stereo cam-
era [23] and introduce several improvements. Instead of

training the detector directly with ground truth depth maps
generated with Microsoft AirSim, we now perform stereo
matching of simulated RGB image pairs to generate more
realistic depth maps for training. Additionally, in terms of
implementation, we propose the use of a shared memory
block to synchronize image data between the image acqui-
sition and the inference processes, implemented in C++
and C/CUDA, respectively. This is an efficient alternative to
using code wrappers or middlewares, which typically intro-
duce processing overheads. Additionally, we fully integrate
the detection system onboard a small drone, allowing for
drone detection during navigation. To the best of the authors’
knowledge, this is the first time that depth maps are used
onboard a drone for the detection of other drones. The pro-
posed detection method has been evaluated in a series of real
flight experiments with different collision scenarios.

The remainder of this paper is as follows. Firstly,
in Section II, we present our framework for drone detection
and localization. Secondly, in Section III, the proposed hard-
ware setup is presented. Thirdly, in Section IV, we describe
the evaluation methodology followed. In Section V,
we present the results of the experiments and finally,
in Section VI, we present the conclusions and future work.

II. PROPOSED DETECTION AND
LOCALIZATION FRAMEWORK
The objective of this work is to develop a system which
can operate onboard a small drone, performing drone detec-
tion and 3D localization with respect to the drone carrying
the detection system. In order to avoid confusion, we will
onwards refer to the drone that carries the camera as the
detector drone, and the drones which we aim to detect and
localize with the proposed system as target drones. The pur-
pose of gathering data about the target drone (the degree of
certainty about its presence and its relative position) can be
exploited for collision-free path planning in later stages. This
section will focus on the proposed software system, including
algorithmic and implementation details.

A. PROCESSING PIPELINE
The software system has been designed to efficiently perform
various tasks: depth image acquisition, detection using a
state-of-the-art object detection model and 3D localization of
the target drone. The system is depicted in Fig 2.

Synthetic RGB image pairs of a flying drone, obtained
from a simulated stereo camera, and the segmentation maps
corresponding to the images from the left camera, are gen-
erated using Microsoft AirSim in order to build a dataset
for training the object detection model. The segmentation
maps are RGB images in which drone pixels have a char-
acteristic color which facilitates segmentation. The synthetic
RGB image pairs are processed using a stereo matching
algorithm in order to obtain depth maps, and the labels for
each depth map are obtained straightforwardly by extracting
the minimum area rectangles enclosing the drone blobs in the
segmentation maps. The resulting dataset is used to train a
modified version of a state-of-the-art object detection model.
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FIGURE 2. Detection system overview. Synthetic RGB image pairs of a
flying drone and segmentation maps are generated using Microsoft
AirSim in order to train the object detection model. During operation,
depth maps are acquired from the Stereolabs ZED Stereo camera onboard
and fed to the trained model. The model outputs bounding boxes and
confidence values for detected drones. The minimum depth in each of the
bounding boxes is extracted and used to obtain a robust estimate of the
3D position of the detected drone.

During operation, depth maps are acquired from a Stere-
olabs ZED Stereo camera onboard and copied to a shared
memory block from which they are fed to the trained model.
This allows to share the data directly between both processes
(image acquisition and inference) in an efficient way, without
the need of a wrapper interface which could affect overall
performance. Once the model is trained, it outputs bounding
boxes and confidence values for detected drones. In order to
filter possible outliers corresponding to background points
that fall within the bounding box, the centroid of all 3D points
whose depth is within 500mm of the minimum depth in the
bounding box is used as a robust estimate of the relative 3D
position of the detected drone.

B. OBJECT DETECTION MODEL
The aforementioned dataset is used to train amodified version
of the YOLOv2 object detection model [24], implemented in
C and CUDA. This model is the continuation of the original
YOLO model [25], a detection architecture named after the
fact that a single forward pass through its convolutional neural
network (CNN) is enough for object detection. This architec-
ture has gained a lot of popularity both in the industry and in
academia because of its high accuracy and speed. Although
an extensive description falls out of the scope of this article,
the most relevant details and particularly, the modifications
to adapt the model for drone detection in depth maps will be
presented next.

In terms of architecture, we rely on the model depicted
in Fig. 3, with an input image size of 672×672, featuring
9 convolutional layers with batch normalization and leaky
rectified linear units, plus 6 intermediate max-pooling layers.

Our model incorporates the following improvements from
YOLOv2:

• 3-stage training: the model is trained initially as
a classifier using 224×224 pictures from ImageNet
1000 class classification dataset [26]. Secondly, the clas-
sifier is retuned with 448×448 pictures using much

fewer epochs. Finally, the fully connected layers are
removed and a convolutional layer is added to obtain the
definitive architecture, which is retrained end-to-end for
object detection. This procedure provides the classifier
with greater spatial resolution, which can be helpful for
detecting small or distant drones.

• Bounding box priors: if the model predicts bounding
boxes, the initial training steps are susceptible to unsta-
ble gradients due to the fact that the predictions might
work very well for some objects and very bad for others,
causing steep gradient changes. However, the strategy
followed here consists of predicting offsets to bounding
box priors, also known as anchors, as opposed to pre-
dicting bounding boxes. When the training is performed
by using a limited number of diverse guesses that are
common for real-life objects, each prediction focuses on
a specific shape, leading to a much more stable training.
This makes even more sense when training the detector
for a single object, a drone in our case. Following the
methodology proposed in the [24], we run a k-means
clustering algorithm, using intersection over union as
distance metric, in order to find the 5 bounding boxes
that have the best coverage for the drone images in our
training data.

• Fine-grained features: in order to improve the detection
of smaller objects (i.e. small and/or distant drones),
feature maps are rearranged by concatenating layers
with different feature map sizes during inference. Adja-
cent high resolution and low resolution features in the
last layers are stacked together into different channels,
allowing the detector to have accesses to both types of
features.

• Multi-scale training and inference: in order to improve
the performance across different input image sizes,
the model is randomly scaled every 10 batches during
training, forcing the network to generalize across a vari-
ety of input dimensions. Since the model only uses con-
volutional and pooling layers, this is a straightforward
process, which also provides the model with a lot of
flexibility to balance accuracy and speed.

The last layer corresponds to a 1×1 convolution, leading to
a final tensor size of 21×21×30. The first two values come
from the division of the image in a 21×21 grid. The value
of 30 comes from the fact that each cell in the grid makes
a prediction using each prior box, in our case 5 predictions,
each with 6 values: 4 offset values for the prior box, a value
of confidence score (objectness) and a value for the class
probability, in our case, the probability that the object is
a drone given that there is an object in the bounding box.
All the proposed predictions are filtered using non-maxima
suppression and threshed by their confidence values in order
to remove false positives.

Most YOLO implementations available perform multi-
frame detection averaging in order to make video predic-
tions visually smoother. However, this produces mismatches
between the input depth maps and their corresponding
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FIGURE 3. Proposed CNN architecture for drone detection. The model has been customized taking into account the hardware
constrains onboard a small UAV to achieve real-time performance.

bounding box predictions, which become specially noticeable
when detected objects move fast. For this reason, we remove
this feature in our implementation to ensure correct mapping
of the predicted boxes to their corresponding depth maps.

C. SYNTHETIC DATASETS AND TRAINING METHODOLOGY
In order to effectively generate large datasets for train-
ing the model previously discussed, we opted to use syn-
thetic images. We utilized the high-fidelity UAV simulator
Microsoft AirSim [27] for this purpose. Microsoft AirSim
runs as a plugin for Unreal Engine, which is a popular game
engine routinely used for AAA videogames. Unreal Engine
makes it possible to render photorealistic environments, while
providing features such as high-resolution textures, pho-
tometric lighting, dynamic soft shadows and screenspace
reflections. Using these features, environments can be mod-
eled in Unreal Engine to be very close to real life scenes,
which makes it a good choice for computer vision related
applications. On top of Unreal Engine’s base features, AirSim
provides the capabilities to create and instantiate multiple
drone models, simulate their physics, allow for basic flight
control and also create and access onboard camera streams.

In order to generate a synthetic dataset, we used AirSim
and Unreal Engine with a few enhancements. In Unreal
Engine, we created a custom outdoor urban environment.
We chose the quadrotor model resembling a Parrot AR.Drone
provided by AirSim and equipped it with two cameras so as
to simulate a stereo vision system. The parameters for the
cameras, such as baseline between cameras and the field of
view were configured to match the specifications of the ZED
camera, as that was our test platform of choice.

Within the environment, we simulated two drones and
observed one drone through the stereo camera of the other.
As Unreal Engine keeps track of all object meshes and
materials present in the scene, it can easily generate ground
truth segmentation images, which we used to obtain pixel-
wise segmentation images of the drone by removing all
other objects from the segmentation images. At every instant,
both left and right views of the onboard RGB camera were
recorded, along with a segmentation image indicating the
pixels corresponding to the target drone, which was used as
ground truth. In this way, we recorded images of the target
drone from various distances, viewpoints and angles in 3D
space, attempting to simulate the observation of a detector
drone hovering as well as in motion. Our dataset contains

images where the detector drone is in motion as well as
while it is static whereas the target drone always moves.
In our previous work [23], we created a dataset that contained
images of multiple resolutions and simpler environments
as we experimented with various parameters to create the
best configuration. For this work, we have generated images
with a single resolution, 1920×1080 pixels and we chose to
record left and right RGB images to perform stereo matching
separately, instead of using the default depth maps provided
by AirSim. While AirSim provides depth maps along with
RGB and segmentation images, these depth maps do not
have a realistic appearance, as they are obtained directly
from rendering the scene meshes, without any imperfections.
In order to closely match real life stereo matching and allow
for correspondence errors, we run the left and right RGB
images separately through a block matching algorithm to
compute correspondences. We use the OpenCV implemen-
tation of the stereo block matching algorithm to generate
disparity images, which are filtered using a weighted least
squares (WLS) filter and then used for training. Bounding
boxes for the target drones were easily extracted from the
corresponding segmentation images by finding the minimum
area rectangles enclosing the target drones.

The synthetic dataset used for training the detection model
used in the experiments contained 470 depth maps, from
which 80% of the images were used for training and the rest
for validation. As it will be mentioned later on, data augmen-
tation provides an actual number of training images which is
several orders of magnitude higher. The model was trained
for 380k iterations, following an early stopping strategy.

D. TARGET DRONE LOCALIZATION
The more information available about the obstacle (e.g.
speed, relative position, detection uncertainty), the higher
the likelihood of successful planning and executing collision
avoidance maneuvers [28]. This makes the proposed solution
advantageous with respect to monocular detection methods,
which typically provide information about the obstacle only
in the image plane. In order to estimate the 3D relative
position of the drone, first its depth is estimated. Given a ROI
with certainty of containing a drone above a given threshold,
the minimum depth in the ROI, min(Zi,j), is computed. Given
a depth margin for the drone, δ, its depth estimation will be
given by Eq. 1.

Zest = Zi,j | Zi,j ∈ [min(Zi,j),min(Zi,j)+ δ] (1)
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FIGURE 4. Sample images from the dataset. In (a), the RGB image from the detector drone’s perspective is shown for reference, where it views
a ‘target’ drone, a quadrotor. The corresponding depth map is shown in (b), and (c) shows the segmentation image that isolates only the target
drone.

FIGURE 5. Detector drone platform used in the experiments. It is
equipped with a ZED camera, a Jetson TX2 (used for perception) and a
Snapdragon Flight board (used for control).

If u, v are the pixel coordinates of the pixel with mini-
mum depth in the ROI, X and Y coordinates are estimated
through 3D point reprojection using intrinsic camera parame-
ters (fx , fy, cx , cy) and Zest , assuming a pinhole cameramodel.

Xest = Zest
u− cx
fx

Yest = Zest
v− cy
fy

(2)

III. HARDWARE SETUP
A. AERIAL PLATFORMS
The drone shown in Fig. 5 is the one that has been used as the
detector drone in the indoor experiments. It is equipped with
a Jetson TX2, a ZED camera and a Snapdragon Flight, with
a takeoff weight under one kilogram.

In order to show the generalization capability of our detec-
tion algorithm, and its ability to detect and localize multiple
drones, three different target drones have been used, shown
in Fig. 6. One of them is the Parrot AR.Drone, while the other
two ones are custom ones: one medium UAV, and a small
UAV. The sizes of these drones (with the battery included)
is shown in Table 1.

The small UAV is used to test the generalization of our
algorithm when the size is much smaller compared to the AR
Drone, while the medium UAV is used to test the algorithm
when the shape (closer to a spherical one) is different from

TABLE 1. Dimensions of the target drones used in the experiments.

FIGURE 6. Three drones were used as target drones in the experiments in
order to evaluate the generalization capability of the model to different
drone modalities.

the one of the AR Drone. The hardware design and control of
the small and medium UAVs is very similar to the drone that
carries the ZED camera, with the only difference being that
they do not carry a Jetson TX2 and a ZED camera.

B. DEPTH SENSOR
A ZED Stereolabs camera has been used for the experi-
ments. This stereo camera based on two 4MP sensors features
a 120 mm baseline. Although it is capable of computing
4416×1242 depth maps at 15Hz, it allows for different sens-
ing modes and resolutions to balance computational speed
and depth map quality.

C. ONBOARD PROCESSING UNIT
The perception and detection algorithm runs onboard on a
Jetson TX2, while a Snapdragon Flight is used for state esti-
mation and control. Both devices run independently, with no
connection between them. The state estimation is performed
by fusing IMUmeasurements with an externalmotion capture
system. A cascade control architecture is used to generate the
commands to the motors: the outer loop controller receives
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the desired trajectory and the estimated position and velocity,
and sends the desired orientation and angular rates to the
inner loop controller. This controller compares them with the
estimated attitudes and rates, and generates the commands
that are sent to the motors. More details related to the state
estimation and the control of the drone can be found in [29].

A joystick controlled manually by an operator was used to
generate the desired trajectories for the experiments.

An external motion capture system has also been used for
obtaining the ground truth relative position between the cam-
era and the target drone. This position was recorded using a
ground station computer. All three computing devices: Jetson
TX2, Snapdragon Flight and the ground station computer
had synchronized clocks, allowing to compare position esti-
mations based on detections, computed on the TX2, with
position estimations based on the Vicon system and recorded
on the ground station computer.

IV. EVALUATION METHODOLOGY
A. EVALUATION METRICS
As it has been mentioned earlier, the proposed system per-
forms first a drone detection in the image plane and then uses
the information from this detection to perform localization of
the target drone in the scene. For this reason we propose a
double quantitative evaluation: one for target drone detection
and one for 3D localization of the target drone.

1) DRONE DETECTION METRICS
Accuracy of drone detection is mainly assessed by means
of the average intersection over union, a standard metric for
object detection. This metric evaluates the average area of
overlap between a predicted and a ground truth bounding box.
The area of overlap is measured using Eq. 3, where Bgt is
a ground truth bounding box and Bp represents a predicted
bounding box. The average intersection over union is com-
puted considering for each ground truth box the predicted
box with the highest area of overlap and an objectness value
above 50%.

ao =
area(Bp ∩ Bgt )
area(Bp ∪ Bgt )

(3)

Additionally, classification metrics have been computed
for different detection threshold values. Specifically, preci-
sion p and recall r , defined by Eqns. 4, 5, respectively have
been used. In these equations, TP represents the number of
true positives, FP represents the number of false positives and
FN represents the number of false negatives.

p =
TP

TP+ FP
(4)

r =
TP

TP+ FN
(5)

2) TARGET DRONE LOCALIZATION METRICS
The accuracy of the target drone localization has been mea-
sured in indoor experiments using a Vicon motion capture
system. In this way, the timestamped, relative ground truth

positions reported by the system have been compared with
those reported by the onboard system and RMS errors have
been computed. Additionally, the largest depth reported by
the system will be considered as an indicator of the detection
range of the system. This range depends mostly on the sensor
technology used and could be enlarged with other sensing
technologies, such as 3D LIDAR.

3) COMPUTATION SPEED
Computation speed will also be assessed, as it is a criti-
cal metric for algorithms running in embedded systems and
particularly onboard UAVs. Eq. 6 describes the total time it
takes the system to detect and localize a drone, which can be
measured as the sum of the durations of each of the processes
involved: 1tacq (acquisition), 1tdm (depth map generation),
1ti (inference) and 1trepr (reprojection).

1ttotal = 1tacq +1tdm +1ti +1trepr (6)

While the duration of the acquisition process depends
mainly on the sensor and the CPU resources available,
the depth map generation and the detection model inference
run on GPU. Both processes compete for GPU resources, but
since the depth estimation algorithm in the ZED camera is
pre-compiled, it is not possible to synchronize the processes
and the only way to balance the GPU resources is by choosing
an adequate depth sensing mode. Higher quality depth sens-
ing modes will produce depth maps with higher resolution at
the cost of a slower detection model inference and viceversa.
As for the reprojection process, it runs fully on CPU.

B. EXPERIMENTS
Eight flight experiments were run in order to assess the relia-
bility and robustness of the system quantitatively in different
scenarios. An outdoor experiment (experiment 1) was run
in an open field in College Station, Texas. This experiment
was conceived to evaluate the impact of outdoor illumination
conditions and distant image backgrounds which may affect
the appearance of the generated depth maps. The remaining
experiments, 2 to 8, were run indoors, in the Aerospace
Controls Laboratory at MIT.

In experiments 1 and 2, the target drone detection stage
was quantitatively evaluated. For experiment 1, a 3DRobotics
Solo quadrotor acted as target drone, while the detecting
camera was moved manually for simplicity. In experiment 2,
both the detector and the target drone, a Parrot AR.Drone,
were flying. In both experiments, the depth maps generated
onboard were stored in order to be manually labelled for the
posterior evaluation.

Finally, target drone localization has been evaluated in
experiments 3 to 8 by capturing ground truth data from
both detector and target drones using a motion capture sys-
tem. In these experiments, summarized in Fig. 7, a Par-
rot AR.Drone was used as target drone. Experiments 3 to
5 correspond to head-on encounters, in which the detector
and the target drone fly towards each other. The purpose
of these experiments is to evaluate the performance of the
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FIGURE 7. Graphical explanation of the performed experiments.

system when drones in collision course approach each other
at different speeds. Three relative speeds were chosen for
the evaluation: low (max relative speed of 1.1 m/s), medium
(max relative speed of 1.7 m/s) and high (max relative speed
of 2.3 m/s). Experiment 6 corresponds to another common
potential collision scenario: a tail-chase encounter. Here,
the target drone flies away from the detector drone, but the
latter flies faster, therefore generating a collision risk.

In experiments 3 to 6, both drones, detector and target,
fly at relatively similar altitudes. In experiment 7, we allow
for altitude variations of the target drone while keeping the
detector drone at a constant altitude to evaluate the potential
impact of non-zero relative vertical speed between the drones
in collision course. Finally, in experiment 8, the target drone
crosses the FOV limits of the stereo camera onboard the
detector drone. This allows to assess the actual detection FOV
of the system.

Besides these experiments for quantitatively assessing the
performance of the system, more flights were perfomed for
qualitative evaluation using all three different drones shown
in Fig. 6. In these additional flight experiments the system
performs the onboard detection of up to three three target
drones simultaneously.

V. RESULTS
As mentioned in Section IV, two types of quantitative results
are presented: drone detection and target drone localization
results. Additionally, a video showing some qualitative results
from the indoor environment with up to three flying target

drones can be found online 1. While the video shows how
the system is capable of detecting multiple drones, localizing
more than one drone simultaneously requires a visual tracker
which can deal with the data association problem, which is
left for future work.

A. DRONE DETECTION PERFORMANCE
The trainedmodel achieved an IoU of 84.86% and a recall rate
of 100%. The results are good despite the limited amount of
training images as we benefit from YoLo’s implementation
which incorporates data augmentation, enabling the genera-
tion of an unlimited number of samples through variation of
saturation and exposure, and random cropping and resizing.

The performance of the model for image classification
is summarized in Fig. 14. From this curve, the resulting
mAPs were 0.7487 and 0.6564, for experiments 1 and 2,
respectively. The gap in precision can be explained by the
different complexity of the environments: while the indoor
environment is cluttered with objects which may be consid-
ered false positives, the outdoor experiment is run in an open
field with the camera facing the sky and no ground objects in
the background for most of the frames.

These results are consistent with the performance of this
model in the much more extensive COCO dataset (20 classes,
40k labelled images), where it achieves 57.1 mAP. The model
is able to detect drones in depth images, with no relevant
impact of the motion blur or the changes in illumination in the

1https://vimeo.com/277984275

30486 VOLUME 8, 2020



A. Carrio et al.: Onboard Detection and Localization of Drones Using Depth Maps

FIGURE 8. Results for experiment 3, a head-on encounter at low speed. Dashed lines indicate the FOV of the detector drone.

FIGURE 9. Results for experiment 4, a head-on encounter at medium speed. Dashed lines indicate the FOV of the detector drone.

FIGURE 10. Results for experiment 5, a head-on encounter at high speed. Dashed lines indicate the FOV of the detector drone.

FIGURE 11. Results for experiment 6, a tail-chase encounter. Dashed lines indicate the FOV of the detector drone.

FIGURE 12. Results for experiment 7, a head-on encounter with relative altitude changes. Dashed lines indicate the FOV of the
detector drone.

performance of the model. Furthermore, the model is able to
generalize correctly to different drone modalities, even with
a low number of training samples obtained from a single type
of drone model.

B. TARGET DRONE LOCALIZATION ACCURACY
Localization results show the implemented system is able
to detect and track drones robustly, even at high speeds,
as shown in Figs. 8 to 13. In experiments 3 to 5, the target
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FIGURE 13. Results for experiment 8, an encounter while flying in and out of the field of view. Dashed lines indicate the FOV of the
detector drone.

FIGURE 14. Precision-recall curve of the drone detection model for the
indoor and outdoor experiments.

drone is localized at distances of up to 8 meters with a maxi-
mum error below 10% of the distance. Localization errors are
consistent over all the experiments and up to 2.3 m/s, we find
the localization accuracy to be consistent over all experiments
and up to velocities of 2.3 m/s. We also find the localization
to be independent of the relative speeds and the angle from
which the target was captured (for example, viewing it from
the front versus the back). Similarly, changes in altitude do
not produce noticeable effects and the target drone trajectory
is tracked accurately.

With respect to experiment 8, Fig. 13 shows how the
effective FOV of the system, i.e. the FOV at which detec-
tions happen, is smaller (60 degrees) than the camera FOV
(90 degrees). This might have been caused by the fact that
drones in the training labels were fully contained within the
image.

C. COMPUTATION SPEED
As mentioned earlier, the different processes involved in the
detection and localization of drones share the CPU and GPU
resources onboard. Choosing a resolution of 1080p, both the
image acquisition and depth map computation from the ZED
stereo camera can simultaneously reach 30 Hz. The model
inference, when fed with pre-stored depth frames, runs at
20 Hz. However, as mentioned earlier, acquiring depth maps
and running the model in parallel reduces the performance

TABLE 2. Execution times.

of each algorithm individually. Best results were obtained
when choosing to acquire 1920×1080 pixel depth maps, with
the sensing mode providing the highest depth map quality.
With this configuration, the system acquires frames, com-
putes depth maps, detects drones and localizes them at 16 Hz.
Table 2 indicates the average execution time and its standard
deviation over 600 frames for each of the sub-processes.

VI. CONCLUSION AND FUTURE WORK
Obstacle avoidance for drones is currently an active field of
research as it is a desired capability for safe drone navigation.
While many commercial drones already incorporate obstacle
avoidance systems, they are designed mainly for avoiding
structures and not specifically for avoiding dynamic obsta-
cles, such as drones.

The integration of such capabilities in small drones with
constrained takeoff weights is extremely challenging, due
to the efficient perception, planning and control capabilities
required. Perception-wise, obstacle detection systems should
be capable of running in real-time, with sufficient field-of-
view and detection range, and ideally being capable of pro-
viding relative position estimates of potential obstacles.

In this work, we provide a high-performance solution for
small drones based on our previous approach for drone detec-
tion [23]. Here, we propose a novel strategy to perform drone
detection and localization using depth maps which has been
adapted to run at 16 Hz onboard a small drone using a stereo-
scopic camera. Experiments successfully demonstrate that
the system can simultaneously detect and localize drones of
different sizes and shapes at a maximum distance of 8 meters,
with a maximum error of 10% of the distance and at relative
speeds up to 2.3 m/s. This is a remarkable achievement, given
the payload limitations of the small platform used in the
experiments.

A relevant aspect of this research is the ability of the
object detection model to generalize from simulated to real
images. While the results of the proposed solution indicate
this generalization is possible, further research will be con-
ducted to provide exhaustive information about how each of
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the simulation variables (i.e. lighting, background, etc.) affect
the detection performance of the model.

Other future works include the integration of our system
with planning and navigation algorithms, such as reciprocal
velocity obstacles (RVO) or dynamic potential fields. Also
the use of filtering and prediction techniques will be con-
sidered, to both minimize the effect of bad detections and
to provide smoothed velocities of the obstacles, which are
generally required by planning algorithms. A strategy com-
bining detection and tracking will also be studied to provide
continuity of the detections and simultaneous localization of
multiple drones.
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