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ABSTRACT A deep learning method for improving the performance of polar belief propagation (BP)
decoder equipped with a one-bit quantizer is proposed. The method generalizes the standard polar BP
algorithm by assigning weights to the layers of the unfolded factor graph. These weights can be learned
autonomously using deep learning techniques.We prove that the improved polar BP decoder has a symmetric
structure, so that the weights can be trained by an all-zero codeword rather than an exponential number
of codewords. In order to accelerate the training convergence, a layer-based weight assignment scheme is
designed, which decreases the amount of trainable weights. Simulation results show that the improved polar
BP decoder with a one-bit quantizer outperforms the standard polar BP decoder with a 2-bit quantizer and
achieves faster convergence.

INDEX TERMS Polar codes, one-bit decoder, deep learning, BP algorithm.

I. INTRODUCTION
Polar codes are a novel channel coding technique proposed
by Arıkan [1] and have been proven to achieve the capac-
ity of binary-input discrete memoryless channels (B-DMCs)
under the successive cancellation (SC) decoding. In addi-
tion, polar codes are also of interest because of their low
encoding and decoding complexity. Under the CRC-aided
SC list (CA-SCL) decoding [2]–[4], polar codes with finite
code length achieve competitive performance to turbo codes
or low-density parity-check (LDPC) codes. Therefore, polar
codes have been selected as the coding scheme for the control
channel of enhanced mobile broadband (eMBB) scene in the
5G communication system [5].

In the implementation of modern receivers that require
high data rates, the use of one-bit ADCs can reduce the
power consumption [6]. In light of this, one-bit quantized
massive multiple-input multiple-output (MIMO) and orthog-
onal frequency division multiplexing (OFDM) systems are
studied [7]–[9]. However, in applications such as the Inter-
net of Things, cyber-physical systems or wireless sensor
networks, low-delay transfer of analog measurements is a
more relevant task for high-rate communication [10], [11].
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Therefore, we focus on the zero-delay transmission model
on the additive white Gaussian noise (AWGN) channel in
presence of a one-bit quantizer (Fig. 3), and the polar decoder
is optimized in this paper.

One-bit quantization introduces strong nonlinearities and
other intractable features that render conventional polar
decoder far from optimal. Motivated by the success of
deep learning in many different challenging communication
tasks [12]–[15], this technique is considered to compensate
for the loss of polar decoding performance caused by the
one-bit quantizer. In the existing neural decoding research,
Gruber et al. proposed to use a deep feedforward neural
network decoding random codes and polar codes in [16].
However, the exponential training complexity makes it only
suitable for short code-length. A series of model-driven neu-
ral network decoders are proposed in [17]–[23], which can
be trained with an all-zero codeword. They are built on the
standard BP algorithm and represented as BP-NNs. Unfortu-
nately, BP-NNs lack a theoretical basis and cannot maintain
fast training convergence in the zero-delay model equipped
with a one-bit quantizer.

In this paper, the weighting scheme of the weighted polar
BP algorithm is optimized to accelerate training convergence.
In addition, we investigate the symmetric structure of the
BP-NNs, which provide an interpretive theory for the
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property of BP-NNs that can be trained by an all-zero code-
word. The main contributions of this paper are summarized
as follows:

1) Our decoder is constructed by assigning weights to the
edges of the unfolded polar BP factor graph and uses
the weights to adjust the results of message updates.
The introduced weights provide additional optimizable
parameters, and the standard polar BP algorithm is
a special form in which all of the weights are one.
A layer-based weighting scheme is proposed to guide
the learning process of the weights, and the small num-
ber of trainable weights leads to faster learning than
conventional BP-NNs.

2) We investigate the symmetrical structure of the BP-
NNs. Under the condition of symmetry, the whole
behavior of the BP-NNs can be predicted from the
behavior of assuming that an all-zero codeword is
transmitted. Therefore, it is sufficient to train the
BP-NNs with an all-zero codeword. This paper pro-
vides an interpretive theory for the property of BP-NNs
that can be trained by an all-zero codeword.

The remainder of the paper is organized as follows.
In Section II, basic concepts of polar codes and the polar
BP algorithm are reviewed. Section III presents the system
model with the one-bit quantizer. In section IV, the archi-
tecture and weighting scheme of the layer-based weighting
BP-NN (LBP-NN) are introduced. We prove the symmetrical
structure of the LBP-NN in section V. Section VI gives the
simulation results. Finally, Section VII concludes the works.

Throughout the paper, calligraphic characters are used to
denote sets, such as X . The x, x, and X denote scalar, vector,
and matrix, respectively.

II. PRELIMINARIES
In this section, we review the basic concepts of polar codes
and introduce the standard polar BP algorithm.

A. POLAR CODING
Polar codes proposed in [1] are constructed based on the
kernel matrix F2 =

[
1 0
1 1

]
. For an (N ,K ) polar code with

length N = 2n, the most reliable K polarized subchannels
are selected to transmit the information bits, and the set A is
the collection of information bit indices. The remainingN−K
subchannels are assigned to carry fixed values which are
usually set to zeros. The set Ac corresponds to the collection
of frozen bit indices. The generator matrix of the N -length
polar code is defined as FN = F⊗n2 , where F⊗n2 represents
the n-th Kronecker power of F2. An N -length codeword x is
calculated by

x = uFN , (1)

where the source vector u = {u0, u1, . . . , uN } is generated by
assigning ui = 0 for i ∈ Ac, and the remaining elements are
assigned as information bits.

Consider an AWGN channel and binary phase shift
keying (BPSK) modulation, the channel output vector y

FIGURE 1. The polar BP factor graph of (8, 4) polar codes with
Ac = {0, 1, 2, 4}.

corresponding to the transmitted codeword x is

y = (1N − 2x)+ z, (2)

where 1N is a all-one vector with size N and z =

{z0, z1, . . . , zN−1} is the AWGN vector with zi ∼ N (0, σ 2).
The log likelihood ratio (LLR) vector that computed from the
channel output vector y is

Li = log
Pr(xi = 0|y)
Pr(xi = 1|y)

=
2yi
σ 2 , i = 0, 1, . . . ,N − 1. (3)

B. BP DECODING OF POLAR CODES
The polar BP algorithm can be performed over a factor graph,
as illustrated in Fig. 1, where the message nodes are repre-
sented by black circles, and the processing elements (PEs) are
represented in dotted rectangles. The messages are updated
through the PEs and iteratively propagated. A complete iter-
ation begins with a right-to-left message transmission that
propagates the LLR from the channel side (rightmost) to the
source side (leftmost), and ends with a left-to-right message
transmission that propagates the LLR in the inverse direction.
A PE and its corresponding messages are shown in Fig. 2(a),
where ls,i (rs,i) denotes the right-to-left (left-to-right) mes-
sage of the i-th node at the s-th stagewith i ∈ {0, 1, . . . ,N−1}
and s ∈ {0, 1, . . . , n}.
The polar BP factor graph can be unrolled [21], [22], and

the polar BP iterative decoding can be performed sequen-
tially on the unrolled factor graph. Correspondingly, a PE
can be equivalent to two sub-PEs of the unrolled factor
graph: one (PEL) updates the right-to-left messages and the
other (PER) updates the left-to-right messages, as shown
in Fig. 2(b) and Fig. 2(c) respectively, where t ≤ T
denotes the t-th iteration and T is the predetermined max-
imum iteration number. The two sub-PEs have the same
computing structure, but the input and output messages are
different.

The update rule of the PEL is{
l ts,i = g(l ts+1,i, r

t−1
s,i+2s + l

t
s+1,i+2s ),

l ts,i+2s = g(l ts+1,i, r
t−1
s,i )+ l ts+1,i+2s ,

(4)
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FIGURE 2. (a) PE, (b) PEL of the unrolled factor graph and (c) PER of the
unrolled factor graph.

and of the PER is{
r ts+1,i = g(r ts,i, l

t
s+1,i+2s + r

t
s,i+2s ),

r ts+1,i+2s = g(r ts,i, l
t
s+1,i)+ r

t
s,i+2s ,

(5)

where, g(x, y) = log 1+ex+y
ex+ey . In order to reduce the

computational complexity, g(x, y) can be approximated
as

g(x, y) = sgn(x)sgn(y) min(|x|, |y|), (6)

where sgn(x) is the sign function and

sgn(x) =

{
1, x ≥ 0,
−1, x < 0.

(7)

The messages are initialized before decoding. For i =
0, 1, . . . ,N − 1 and ∀t ≤ T , the l tn,i is set to Li and the r

t
0,i is

initialized as follows:

r t0,i =

{
0, for i ∈ A,
+∞, for i ∈ Ac.

(8)

All the other messages to be propagated are initialized to 0.
The polar BP decoder simultaneously estimates the source u
after T iterations such that:

ûi =

{
0, if l t0,i + r

t
0,i ≥ 0,

1, otherwise.
(9)

III. SYSTEM MODEL
This section provides the zero-delay system model on the
AWGN channel in presence of a one-bit quantizer and intro-
duces the equivalent channel of the AWGN channel after
one-bit quantized.

A. THE SYSTEM MODEL WITH A ONE-BIT QUANTIZER
The system model is an end-to-end communication link
equipped with a one-bit quantizer, which is shown in Fig. 3.
At the transmitting side, the source vector u is encoded
into a codeword x, and the transmitted signal s is obtained
by BPSK modulation. On the other hand, the receiver is
equipped with a one-bit quantizer, which allows the polar
decoder to receive only one-bit quantized signal yb, cor-
responding to the channel output y. The LLR vector L
that sent to the decoder is calculated by the yb instead
of y.

The one-bit quantization results in significant performance
loss compared to the floating-point polar decoder. In this
paper, a neural network decoder (NND) is built to replace
the conventional polar decoder. The NND can automatically

FIGURE 3. The zero-delay system model on the AWGN channel in
presence of the one-bit quantizer and the neural network decoder.

FIGURE 4. The equivalent channel of a BIAWGN channel with one-bit
quantized output.

extract features from the one-bit received signals and learn to
correct the transmission errors. Compared with the conven-
tional polar decoder, it shows better error correction perfor-
mance. The details will be presented below.

B. EQUIVALENT CHANNEL
In a communication system, signal processing modules such
asMIMO signal detection, demodulation and equalization are
required before decoding. The signal observed by the decoder
is the LLR, which exhibits a Gaussian-like distribution after
the previous signal processing. Therefore, the zero-delay
system with the AWGN and BPSK are considered in this
paper.

The output of the binary input AWGN (BIAWGN) chan-
nel is quantized to a binary symbol after passing a one-bit
quantizer, and thus can be viewed as a binary symmetric
channel (BSC). A demonstration of the equivalent BSC is
shown in Fig. 4. The transition probabilities of the equivalent
BSC are calculated as follows:

Pij = Pr(yi ∈ Vj|xi = b) =
∫
Vj
p(yi|xi = b)dyi, (10)

where b, j ∈ {0, 1}, xi represents the i-th transmitted sym-
bol, and yi is the corresponding unquantized channel out-
put value. The Vj is an interval with V0 = (−∞, 0) and
V1 = (0,+∞). Given the transmitted value xi = b, the cor-
responding conditional probability density function (PDF)
of the unquantized channel output value yi is indicated by
p(yi|xi = b).
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FIGURE 5. The structure of NND with T = 2 and N = 8.

FIGURE 6. Three types of neurons in the NND.

IV. THE NEURAL NETWORK DECODING FRAMEWORK
WITH ONE-BIT QUANTIZER
For the low-power practical scenarios considered in this
paper, we design an NND to compensate for the perfor-
mance loss caused by one-bit quantization. In this section,
we describe the process of constructing an NND with a
layer-based weighting scheme in detail. Besides, we prove
that the NND has a symmetrical structure and can be trained
with an all-zero codeword.

A. THE NND STRUCTURE
The NND is constructed based on the unfolded factor graph
of polar BP algorithm described in section II-B with a set of
active functions according to message update functions.

A simple example representing the NND structure is given
in Fig. 5. The NND consists of one input layer, H = (T −
1) · 2(n − 1) + n hidden layers and one output layer, where
n = log2(N ). lts (r

t
s) denotes the vector of right-to-left (left-

to-right) message at the t-th iteration and the s-th stage of
the polar BP factor graph. Especially, l0s (r0s ) is the value
initialized before decoding. Note that the last hidden layer
in right-to-left propagation only exists in the last iteration,
which calculates the output of the leftmost nodes in the polar
BP factor graph.

The NND propagates l ts,i and r
t
s,i that calculated by:

l ts,i = wt,ls,i · g(l
t
s+1,2i−1, l

t
s+1,2i + r

t
s,i+N/2),

l ts,i+N/2 = wt,ls,i+N/2 · g(l
t
s+1,2i−1, r

t
s,i)+ l

t
s+1,2i,

r ts+1,2i−1 = wt,rs+1,2i−1 · g(r
t
s,i, l

t−1
s+1,2i + r

t
s,i+N/2),

r ts+1,2i = wt,rs+1,2i · g(r
t
s,i, l

t−1
s+1,2i−1)+ r

t
s,i+N/2,

(11)

where wt,ls,i (wt,rs,i ) denotes the trainable weight of the
left (right) message that assigned to the i-th neuron at s-th
stage of t-th iteration. There are three types of neurons in
the NND to compute the propagating messages, as shown
in Fig. 6, where a S2C (sum to check) neuron and a C2S
(check to sum) neuron constitute a sub-PE (PEL or PER), and

S2C neuron is used to calculates l ts,i and r
t
s+1,2i−1, while C2S

neuron calculates l ts,i+N/2 and r
t
s+1,2i. The active functions of

S2C neuron and C2S neuron are defined as follows:

f (af , b′f , b
′′
f ,wf ) = wf · g(b′′f , af + b

′
f ), (12)

q(aq, b′q, b
′′
q,wq) = wq · g(aq, b′q)+ b

′′
q, (13)

where af , b′f and b
′′
f are the inputmessages to S2C neuron, and

b′f and b
′′
f belong to the same vector bf , i.e., bf = {b′f , b

′′
f }.

Similarly, aq, b′q and b
′′
q are the input messages to C2S neuron,

and bq = {b′q, b
′′
q}. wf and wq are the trainable weights,

related to the location of the neurons in the NND.
In the output layer, the active function of the sigmoid

neuron is expressed as:

σ (a) =
1

1+ e−a
. (14)

B. LAYER-BASED WEIGHTING SCHEME
Neural networks optimize performance by constantly adjust-
ing weights during training. Especially for model-driven neu-
ral network decoders, designing weighting schemes based on
conventional communication models is the most important
task. In the conventional BP-NNs, each neuron is assigned an
independent weight. However, too many weights will lead to
the deviation of the learning direction and hinder the learning
speed.

In this paper, a layer-based weighting scheme is proposed.
We impose the constraints on the weights to guide the learn-
ing process. The layer-based weighting scheme is defined
in (15), where wt,ls (wt,rs ) denotes the trainable weight of the
left (right) message that assigned to the s-th layer of t-th
iteration. Each layer of the NND shares a commonweight and
the reduction of trainable parameters leads to a fast training
convergence.

l ts,i = wt,ls · g(l
t
s+1,2i−1, l

t
s+1,2i + r

t
s,i+N/2),

l ts,i+N/2 = wt,ls · g(l
t
s+1,2i−1, r

t
s,i)+ l

t
s+1,2i,

r ts+1,2i−1 = wt,rs+1 · g(r
t
s,i, l

t−1
s+1,2i + r

t
s,i+N/2),

r ts+1,2i = wt,rs+1 · g(r
t
s,i, l

t−1
s+1,2i−1)+ r

t
s,i+N/2.

(15)

V. SYMMETRY OF THE NND
Symmetry is crucial for training the NND, which determines
whether NND can be trained with an all-zero codeword.
Inspired by the symmetry property of the sum product decod-
ing algorithm [26], we prove that the proposed NND also
has a symmetrical structure under the influence of multiple
unequal weights.

For the convenience of explanation, we give an equivalent
definition of the active function of the S2C neuron. Let mf =
af + b′′f , then the active function of the S2C neuron can be
expressed as

f (mf , b′f ,wf ) = wf · g(mf , b′f ), (16)

where mf and b′f can be considered as two LLR messages
propagated on the NND.
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Lemma 1 (Symmetry of S2C Neuron): Given two indepen-
dent binary random variables a1 and a2 with probabilities
Pr(ai = b) = p(i)b , b ∈ {0, 1}, and Li = L(ai) = ln(p(i)0 /p

(i)
1 ).

if

f (L1,L2,wf ) = sgn(L1)sgn(L2) · f (|L1|, |L2|,wf ), (17)

then the S2C neuron is symmetrical, i.e. the error probability
is independent of the transmitted vector.

Proof: The LLR of the binary sum A1,2 = a1 ⊕ a2 is
calculated as follows:

L(A2) = ln
(
Pr(A1,2 = 0)
Pr(A1,2 = 1)

)
= ln

(
Pr(a1 ⊕ a2 = 0)
Pr(a1 ⊕ a2 = 1)

)

= ln(
p(1)0 p(2)0 + p

(1)
1 p(2)1

p(1)0 p(2)1 + p
(1)
1 p(2)0

) = ln

1+
p(1)0

p(1)1

p(2)0

p(2)1

p(1)0

p(1)1

+
p(2)0

p(2)1


= ln

(
1+ eL1+L2

eL1 + eL2

)
. (18)

This result can be directly applied to the computation of
S2C neuron. For the input LLR messages mf = af + b′′f and
b′f , defined in (16), the g operation is performed as

g(mf , b′f ) = ln

(
1+ emf+b

′
f

emf + eb
′
f

)

= 2tanh−1
(
tanh

(mf
2

)
tanh

(
b′f
2

))
. (19)

where, tanh(x) =
ex−e−x
ex+e−x and tanh−1(x) is the inverse

function of the tanh(x). Let α = sgn(mf ) and β = sgn(b′f ).
We have

g(mf , b′f )=αβ · 2tanh
−1

(
tanh

(
|mf |
2

)
tanh

(
|b′f |

2

))
, (20)

for any combination {mf , b′f }. so the g operation is symmet-
rical.

Introduce the weight wf , the output of the S2C neuron (df )
is calculated as follows:

df = f (mf , b′f ,wf )

= αβ · wf · 2tanh−1
(
tanh

(
|mf |
2

)
tanh

(
|b′f |

2

))
. (21)

Therefore, S2C neuron is symmetrical. �
Lemma 2 (Symmetry of C2S Neuron): The activation func-

tion of C2S neuron satisfies the invariance of sign inversion,
i.e.,

q(−aq,−b′q,−b
′′
q,wq) = −q(aq, b

′
q, b
′′
q,wq), (22)

where, aq, b′q and b′′q are the inputs of the C2S neuron,
as defined in (13).

Proof: Based on the similar priciples, the output of the
C2S neuron (dq) is calculated by:

dq = q(−aq,−b′q,−b
′′
q,wq)

= wq · g(−aq,−b′q)+ (−b′′q)

= wq · (−(g(aq, b′q)+ b
′′
q)). (23)

Hence, we can see that the C2S neuron also has a symmet-
rical structure. �

The symmetry of the S2C neuron and C2S neuron can be
generalized to the entire neural network decoder.
Theorem 1 (Symmetry of the NND): Let d0 denote the out-

put vector of the input layer and dh denote the output vector
of the h-th hidden layer. Suppose0(·) present the propagation
function of the h-th hidden layer, this function can be recur-
sively expressed as

0(d0) = 8h(8h−1(. . . 81(d0,w1), . . . ,wh−1),wh), (24)

where, for ∀h ∈ {1, 2, . . . ,H} and i = 0, 1, . . . ,N − 1, wh is
the trainable weight assigned to hidden layer, 8h = {ϕh,i} is
a collection of active functions, and

ϕh,i =

{
f (af , b′f , b

′′
f ,wf ), if S2C neuron,

q(aq, b′q, b
′′
q,wq), if C2S neuron.

(25)

Thus, the NND satisfies a symmetrical structure, that is

dh = −0(−d0), (26)
Proof: Recursive propagation of LLRs through two

types neuron (S2C and C2S) can be decomposed into
single-step transformations of LLRs.

Lemma 1 and Lemma 2 have given the symmetry of the
NND with N = 2:

d1 = −81(−d0,w1). (27)

For any positive integer n, we assume that the NNDwithN =
2n−1 has the symmetrical structure

dh−1 = −8h−1(· · · −81(−d0,w1), . . . ,wh−1). (28)

The output of the h-th hidden layer in the NND with N = 2n

are calculated as follows:

dh = −8h(−dh−1) = −0(−d0) (29)

It is mathematically proved that the NND has a
symmetrical structure on the basis of Lemma 1 and
Lemma 2. Furthermore, the symmetrical structure exists in all
BP-NNs. �

With the symmetry condition on the neural network
decoder and the equivalent channel, the whole behaviors of
the neural network decoder can be predicted from the behav-
ior of assuming that an all-zero codeword is transmitted.
In other words, an all-zero codeword is enough to train the
BP-NNs.

VI. EXPERIMENTS AND NUMERICAL RESULTS
In this section, the proposed NND is implemented. We verify
the performance of the NND with a one-bit quantizer in
different codeword configurations. In addition, we provide
a performance comparison between the NND and several
typical previous works.

27214 VOLUME 8, 2020
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A. TRAINING THE NND
Based on the symmetrical structure of the NND, the training
dataset is generated by transmitting an all-zero codeword. The
codeword x is modulated by BPSK modulation and transmit-
ted over an AWGN channel with mean of 0 and variance of
σ 2. Thus, after one-bit quantization, the receive signal vector
can be expressed as yb = sgn(1N+z), where 1N represents an
all-one vector with lengthN , which is obtained bymodulation
of the all-zero codeword x. In this paper, we use the LLR
vector as the input to the NND,

L =
2sgn(1N + z)

σ 2 . (30)

It should be clarified that the LLR in this paper cannot accu-
rately reflect the probability that the source bit is 0 or 1, due to
the use of the one-bit quantizer. The LLR calculated by (30)
can be regarded as a softened hard decision result to facilitate
the learning of the neural network.

There are several candidates for loss function as listed
in [19], and we consider the following cross-entropy loss
function:

E = −
1
N

N∑
i=1

ui log(oi)+ (1− ui) log(1− oi), (31)

where u is the source vector and o = {o0, o1, . . . , oN−1} is
the output vector of the NND.

We use supervised learning and mini-batch stochastic gra-
dient descent (SGD) to train the NND. The gradient is cal-
culated by the back-propagation algorithm [24] efficiently.
The model is implemented by the deep learning framework
Tensorflow [25].

B. DECODING EXPERIMENTS OF (64,32) POLAR CODES
In this case, we consider the typical (64,32) polar codes which
are constructed using Gaussian approximation (GA) [27].
Several parameters are pre-set before the experiments.
The size of the batch for training and testing is set to
140 with the signal to noise ratio (SNR) varying SNRs =
{3,3.5,4,4.5,5,5.5,6}dB and 20 samples per SNR. The size
of the training dataset S is set to 1 × 104 batches. To ensure
adequate training samples, S is set to a large value. However,
so many training samples may not be necessary in actual
training. We test the block error rate (BLER) performance
of the NND after every 100 batches. It should be empha-
sized that the training dataset is generated by an all-zero
codeword, but the testing dataset is a collection of random
codewords.

The NND proposed in this paper compares the BLER
performance with the conventional polar BP algorithm [1]
and the BP-NNs proposed in [18], [21] and [23], respectively.
The notation ‘‘A-T -Qbit’’ describes that the ‘‘A’’ algorithm
performs ‘‘T ’’ iterations and ‘‘Q bit’’ quantized signal vector
is received.

The BLER performance of (64,32) polar codes is shown
in Fig. 7. Under the constraint of 5 iterations, the proposed
NND with a one-bit quantizer has a 1.2dB gain compared

FIGURE 7. The BLER performance of the NND with (64, 32) polar codes.

FIGURE 8. The probability distribution of the weights in the NND, which is
build based on the unfolded (64,32) polar factor graph with 5 iterations.

to the BP-5-1bit, and 0.2dB gain compared to BP-5-2bit.
Moreover, the NND-5-1bit has a lower BLER curve than the
BP-30-1bit. We also compare the performance between the
layer-based weighting scheme (NND-5-1bit) and the conven-
tional neuron-based weighting scheme (MSBP-5-1bit). It can
be observed that the layer-basedweighting scheme results in a
small performance gain at high SNR. Therefore, the decoding
performance of BP-NNs is affected by weights distribution
and toomanyweights will cause performance loss.Moreover,
the BLER results of the SNND-5-1bit [23] and the Neural
BP-5-1bit [18] are tested. Observation shows that the pro-
posed NND has the lowest BLER curve compared to them.

Fig. 8 shows the distribution of weights in the NND of
(64,32) polar codes. The distribution approximates a Gaus-
sian distribution instead of a fixed value of 1. This means that
the trained weights change the LLRs in the standard polar
BP algorithm. At the beginning of the training, the distri-
bution has a small variance, and as the training progresses,
it becomes wider until stable. This indicates that the training
is effective, and the training process converges by the steady
distribution.

C. DECODING EXPERIMENTS OF (256,128) POLAR CODES
In this case, the BLER performance of (256,128) polar codes
is tested. We retain the same pre-set parameters and the
same SNR range as the experiments of (64,32) polar codes.
The BLER of (256,128) polar codes is shown in Fig. 9.
We can see from the figure that the NND-5-1bit achieves a
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FIGURE 9. The BLER performance of the NND with (256,128) polar codes.

FIGURE 10. The probability distribution of the weights in the NND, which
is build based on the unfolded (256,128) polar factor graph with
5 iterations.

2.0dB gain compared to the BP-5-1bit. In addition, the BLER
performance of NND-5-1bit is better than the BP-10-1bit,
BP-5-2bit, SNND-5-1bit [23] and Neural BP-5-1bit [18].
For the (256,128) polar codes, the layer-based weighting
scheme (NND-5-1bit) also result in performance gain com-
pared with the conventional neuron-based weighting scheme
(MSBP-5-1bit). However, there is a gap between the
NND-5-1bit and the BP-30-1bit, but the gap becomes smaller
as the SNR increases.

The distributions of the weights in the NND of (256, 128)
polar codes are shown in Fig. 10. It is similar to (64,32)
polar codes. However, compared to the NND of (64,32) polar
codes, the NND of (256,128) polar codes requires more
training batches to achieve convergence due to more training
weights.

D. VERIFY CONVERGENCE
The convergence of the proposed NND and standard polar
BP algorithmwith one-bit quantizer is verified and the results
are shown in Fig. 11. We can see that the BLER curve of the
NND has a larger slope, compared with the standard polar
BP algorithm. Therefore, with the aid of trained weights,
the proposed NND converges faster than the standard polar
BP algorithm. Furthermore, the proposed NND has a lower
BLER curve than the standard polar BP algorithm, which
proves that the trained weights also obtain performance gain.

FIGURE 11. The comparison of convergence between the NND and the
conventional BP algorithm with one-bit quantizer, where N = 64, 256 and
Eb/N0 = 6dB.

TABLE 1. The number of training batches that achieve the BLER
performance of this paper.

E. LEARNING EFFICIENCY
In general, more trainable parameters often mean more train-
ing samples are needed. In this paper, our layer-based weight-
ing scheme limits the number of trainableweights, and caused
the neural network to converge fast. Table 1 lists the number
of training batches that achieve the desired BLER perfor-
mance as shown in Fig. 7 and Fig. 9. We can see from the
table that the NND achieves the BLER performance with
fewer training batches than MSBP, which means that the pro-
posed layer-based weighting scheme improves the learning
efficiency of the neural network.

VII. CONCLUSION
In this paper, we apply deep learning technology to decode
polar codes with a one-bit quantizer and proposed a neural
network decoder. Our decoder is built based on the unfolded
polar BP factor graph. The symmetrical structure of the neural
network decoder is proved in the paper, which allows the neu-
ral network decoder can be trained with an all-zero codeword
and noise realization only. A layer-based weighting scheme
is proposed, which results in faster learning than the conven-
tional BP-NNs. The neural network decoder compensates for
the performance loss caused by the one-bit quantizer and a
2dB gain can be obtained in the decoding of polar codes with
medium code length.
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