SPECIAL SECTION ON GREEN COMMUNICATIONS ON WIRELESS NETWORKS

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 13, 2019, accepted January 27, 2020, date of publication February 4, 2020, date of current version February 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2971566

iISEC: An Optimized Deep Learning Model for
Image Classification on Edge Computing

ENDAH KRISTIANI“12, CHAO-TUNG YANG 3, (Member, IEEE), AND CHIN-YIN HUANG!

! Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung City 40704, Taiwan
2Department of Informatics, Faculty of Engineering and Computer Science, Krida Wacana Christian University, Jakarta 11470, Indonesia

3Department of Computer Science, Tunghai University, Taichung City 40704, Taiwan

Corresponding author: Chao-Tung Yang (ctyang @thu.edu.tw)

This work was supported by the Ministry of Science and Technology (MOST), Taiwan, under Grant 108-2745-8-029-007, Grant

108-2745-8-029-007, and Grant 108-2622-E-029-007-CC3.

ABSTRACT Optimization strategies in deep learning models require different techniques for different
use cases. Besides, various phases of the model deployment life-cycle specify possible and particular
optimization strategies. In this paper, an optimized deep learning model on the edge computing environment
is proposed for image classification cases. For preparing the dataset, the image preprocessing and data
augmentation methods are utilized to prepare the data for the training process. To accelerate the deep learning
training process, this system implemented CPU optimization and hyperparameter tuning. Tensorflow is
applied as a framework for the training model. InceptionV3, VGG16, and MobileNet are applied as topology
implemented in the deep learning training comparison. In this case, InceptionV3 was used for modeling the
deep learning applications on edge. To optimize the trained model, a Model Optimizer is used on the edge
device. It can be seen in the experiments, MobileNet was the least accurate model (85%) and the longest
time to load the model (71s). VGG16 was the most reliable (91%) and the shortest time to load the model
(50s). InceptionV3 has median accuracy (87%) and the average time to load the model (52s).

INDEX TERMS Data augmentation, CPU optimization, hyperparameter tuning, deep learning, inference

optimization, InceptionV3, VGG16, mobilenet, cloud computing, edge computing.

I. INTRODUCTION

In 2018, there are an estimated 62% of organizations using
artificial intelligence (AI) that can create significant ben-
efits for early adopters. A research [31] by McKinsey
in 2017 found that after using automation, the healthcare,
financial services, and professional services industries posted
a 3-15% higher profit margin. This phenomenon is an oppor-
tunity for the machine learning developer to provide a bet-
ter Al modelling [36]. The first step towards the success-
ful implementation of the artificial intelligence modeling
system is to design a stable, repeatable, and sustainable
development process [32]. These are only strengthened in
value for the modeling of deep learning (DL) and machine
learning (ML).

Optimization allows developers to transform this step-
by-step process into a streamlined process of prototyping.
Advanced approaches to automatic adjustment enable
developers to optimize search steps for data transforma-

The associate editor coordinating the review of this manuscript and

approving it for publication was Giovanni Pau

VOLUME 8, 2020

tion, design, and software hyperparameter configuration
[38], [39]. Therefore, it can significantly impact the entire
process of model development. The optimization strat-
egy can be different based on problem identification.
It empowers developers to test their modeling efforts rapidly
quickly and is designed to customize each system for best
performance [33], [34].

Edge computing is inherently a decentralized system with
intelligence in independent entities. Along with the emerg-
ing of the Internet of Things (IoT), they create oppor-
tunities for more decentralized and distributed computing
infrastructures. This phenomenon embodied a cut-through
of edge computing to complement cloud computing [17],
[18]. Edge computing offers essential services to support
this critical concept of Industry 4.0 [22], [23]. The out-
comes of the edge computing environment can support the
need in the case of inter-connectivity, higher reliability, real-
time predictive analysis, and low latency [16], [24], [25].
Specifically, the form of Artificial Intelligence (AI) in edge
computing is almost unavoidable. The use of edge computing
in the industry mostly related to visualization and automation

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 27267


https://orcid.org/0000-0003-2925-2992
https://orcid.org/0000-0002-9579-4426
https://orcid.org/0000-0002-5798-398X

IEEE Access

E. Kristiani et al.: iSEC: Optimized Deep Learning Model for Image Classification on Edge Computing

[27], [28]. The need to improve and optimize the algorithms is
fundamental [29], [30].

There are three main phases of machine learning, dataset
preparation, training, and the inference process. Clean-
ing, structuring complex dataset, and data wrangling in
dataset preparation will allow a quick training process.
Also, it enhances the model accuracy in the process of
training data. In the training phase, it is essential to opti-
mize the process by selecting a framework network, fine-
tuning the model, and do hyperparameter tuning for better
model performance. During the inference process, it is essen-
tial to optimize the model for ensuring the speed and the
accuracy [37].

Object recognition technology is one of the essential appli-
cations of Computer Vision. This technology can empower
computers the ability to see things like humans, find and
locate specific objects within an image [1], [2]. Recently
applications such as video surveillance or face recognition
have been created in industries. The use of computer vision
in the sector has been a good view of the future [3]. It can be
inferred that new advances in Al will help to accelerate this
trend towards manufacturing. In this case, the essential part
of implementing a model of Al is data preparation, training,
and inference [4], [5]. Therefore, the main focus of this
paper is performance modeling and optimization for dataset
preparation, training model, and inference on the edge-cloud
computing [21].

In this paper, an optimized model of the edge comput-
ing environment for deep learning is proposed. First, for
preparing the dataset, the image preprocessing and data aug-
mentation methods are utilized to prepare the data for the
training process. Second, a Jupyter notebook server with
an [Python kernel is deployed as a machine learning server
in the cloud with security support [8]-[10]. Third, on the
edge side, a Raspberry Pi with the Intel® Neural Compute
Stick 2 (Intel® NCS 2) is developed to provide decentralized
service applications. The use case is based on the most stolen
vehicle reported in the US in 2017. The use case dataset is
generated from Vehicle Make and Model Recognition Dataset
(VMMRdb). The images consist of 6877 files of 10 fold-
ers/classes. This system implemented CPU optimization and
hyperparameter tuning to accelerate the deep learning train-
ing model. Tensorflow is used as a framework for the training
model. InceptionV3, VGG16, and MobileNet are applied as
topology used in the deep learning process. A Model Opti-
mizer (mo) is used on the edge device to optimize the trained
model. The specific objectives of this paper are listed as
follows:

o Data preprocessing and augmentation to prepare the

better dataset for machine learning training.

o Accelerating the deep learning training model with CPU

optimization and hyperparameter tuning.

« Performance comparison testing of the chosen networks,

InceptionV3, VGG16, and MobileNet.
o Deep learning inference optimization using Model
Optimizer on Raspberry 4.

27268

Input: 299x299x3, Output 8x6x2048

A >@@/

FIGURE 1. The diagram of Inception V3, image source Google [35].

Convolution
inal part:8x8x2048 -> 1001

Il. BACKGROUND REVIEW AND RELATED WORKS

In this section, several components are used as the approach-
ing methods of this work. The next subsections discuss each
element in more detail.

A. TENSORFLOW FRAMEWORK

The TensorFlow framework is based on an opensource which
supports more features, also has the supported package for
creating the models. TensorFlow with CPU optimizations can
give up to 14x Speedup in Training and 3.2x Speedup in Infer-
ence. TensorFlow is flexible enough to support experimenta-
tion with new deep learning models/topologies and system-
level optimizations. Moreover, TensorFlow can be scaled or
deployed on different types of devices ranging from CPUs,
GPUs, and inference on small devices like mobile phones.
TensorFlow has seamless integration with CPU, GPU, and
TPU with no need for any configuration.

B. TENSORFLOW TOPOLOGY

There are several things to be considered when selecting the
topology or network, that is time to train, size, accuracy, and
inference speed. InceptionV3, VGG16, and MobileNet are
the three networks which currently supported on the edge
devices (CPU, Integrated GPU, Intel® Movidius ™ Neural
Compute Stick). In this paper, the InceptionV3 was used as
the machine learning model application.

C. INCEPTIONV3

Google’s Inception V3 is the third version of the Deep Learn-
ing Architectures series [14]. Inception V3 was trained using
1000 classes from the first ImageNet Datasets and trained
with over 1 million training images while Tensorflow has
1001 classes that are not used in the original ImageNet as a
result of an optional background package. Figure 1 describes
the Inception V3 model diagram as shown below:

D. CPU OPTIMIZATION

With all the instructions provided by the target CPU [26],
CPUs, like Intel® Xeon processors, will achieve optimal per-
formance when TensorFlow is built from the source. In addi-
tion to using the latest instruction sets, the Intel® Math Ker-
nel Library for Deep Neural Networks (Intel® MKL-DNN)
has been added to TensorFlow by Intel. These optimizations
are often referred to as MKL or TensorFlow with MKL.
TensorFlow with Intel MKL-DNN provides information on

VOLUME 8, 2020



E. Kristiani et al.: iSEC: Optimized Deep Learning Model for Image Classification on Edge Computing

IEEE Access

the optimization of Intel® MKL. By adjusting the thread
pools [7], the two configurations listed below are utilized to
optimize CPU performance.

« intra-op-parallelism-threads: nodes that can parallel
their execution with multiple threads will schedule the
individual pieces in this pool.

« inter-op-parallelism-threads: all ready nodes in this pool
are planned.

These configurations are set in the config attribute through
the tf. ConfigProto and passed to tf.session, as shown in the
snippet below. For both configuration options, the number of
logical CPU cores will be set by default if they are not set or
set to zero. Testing showed that the default is effective for
systems ranging from a single4-core CPU to multiple 70+
combined logical core CPUs. Setting the number of threads in
both pools equal to the number of physical cores rather than
logical cores is a common alternative optimization. To tune
performance, Intel MKL uses the following environment
variables:

o KMP-BLOCKTIME - Set the time for a thread to wait,
in milliseconds, before sleeping after completing the
execution of a parallel region.

o KMP-AFFINITY - Threads can be bound to physical
processing units by the runtime library.

o KMP-SETTINGS - Enable (true) or disable (false) for
the printing during program execution of OpenMP* run-
time library environment variables.

o« OMP-NUM-THREADS - Specifies the thread number
to use.

E. HYPERPARAMETER OPTIMIZATION

The learning rate is a configurable hyperparameter applied in
the training of neural networks that has a small positive value
between 0.0 and 1.0. Generally, a high learning rate helps
the model to learn more quickly at the cost of achieving a
sub-optimal final set of weights. A lower learning rate may
allow the model to learn a more optimal or even globally
optimal weight range, but it may take a considerably longer
time to train. If the learning rate is too large, it will result in
weight updates that are too high, and the model’s performance
(such as its loss on the training dataset) will fluctuate over the
training epochs. Therefore, it should not use too large or too
low a learning rate. However, the model must configure in
such a way that on average a good enough set of weights
to approximate the mapping problem as the training dataset
represents. The performance of the learning rate does not
depend on the size of the model. The same standards that
performed best for 1x size performed best for 10x size.

F. MODEL ANALYSIS
Next, the text-based version of different main classification

metrics is listed as follows.
« Precision: The equation of precision is:
TP
P=—— €))
TP + FP

VOLUME 8, 2020

where P is Precision, TP is the number of true positives
and FP the number of false positives. The precision is
intuitively the ability of the classifier not to label as
positive a sample that is negative. The best value is 1,
and the worst value is 0.
o Recall: The equation of recall is:
TP
R=——
TP + FN
where R is Recall, TP is the number of true positives
and FN the number of false negatives. The recall is
intuitively the ability of the classifier to find all the
positive samples. The best value is 1, and the worst value
is 0.

o FI1-Score: Compute the F1 score, also known as bal-
anced F-score or F-measure. The F1 score can be inter-
preted as a weighted average of the precision and recall,
where an F1 score reaches its best value at one and worst
score at 0. The relative contribution of precision and
recall to the F1 score are equal. The formula for the
F1 score is:

(@)

Fl— 2(precisionrecall)
"~ (precision + recall)

3)

« ROC: ROC is a contrast to a true positive value (Y-axis)
of the false positive rate(x-axis) for a range of thresholds
varying from 0.0 to 1.0. The true positive rate (TPR) is
calculated as the number of true positives (TP), split by
the sum of true and false-negative (FN). It summarizes
the model’s performance when the result is positive in
forecasting the positive category [8]. The equation of
TPR is described as follows:

TP
"~ (TP +FN)

The average F1 score of each class with weighting
depending on the average parameter in the multi-class
and multi-label case.

o Support: Support is the total number of classes being
used for the evaluation.

TPR 4

G. RELATED WORKS

Jia X. et al. [11] suggested optimizing the CNN training
method with AlexNet and ResNet-50 algorithms on the
ImageNet dataset. They have used 1024 Tesla P40 GPUs,
1024 Tesla P100, and 2048 Tesla P40 GPUs in their exper-
iments. However, they get less than 76 percent of the accu-
racy, although the learning template time is between 4 and
20 minutes.

Zhang Q. et al. [12] proposed an efficient deep learning
model based on canonical polyadic decomposition to predict
the cloud workload for the information technology industry.
By converting the weight matrices to the canonical polyadic
format, the parameters are much condensed in the proposed
model. Also, they designed an efficient learning algorithm to
train the parameters. They show in their results that the pro-
posed model achieves a higher accuracy of training efficiency

27269



IEEE Access

E. Kristiani et al.: iSEC: Optimized Deep Learning Model for Image Classification on Edge Computing

RWD (Grafana)
Web Ul, i0S, Android

loT Hub API
maTT Manag

Big Data and Al
(ML/DL)

1
1
1
1
1 Azure Azure
1
1
1
1
1

Il \
1 1
1 1
1 1
1 1
| 1
1 Zigbee 1
1 Sensors 1
1 1
1 1
1 1
| 1
l 1

7

Nvidia VMware
Jetson Nano Docker/K8S
Gateway \ MQTT Broker

____________________________

FIGURE 2. Sensors, Edge, and Cloud (iSEC) Framework.

and prediction of the workload than state-of-the-art machine-
learning approaches.

A simple training strategy to improve the classification
performance of a DNN was presented by Caliskan et al. [13].
They used an optimization algorithm for L-BFGS. Compared
to the state-of-the-art classifiers, their classification experi-
ments show that the proposed method substantially improves
the DNN classifier training process and results in significant
improvements in the accuracy of the results of the classifica-
tion.

Li et al. [15] recommended a novel strategy for offloading
to optimize the performancez with edge computing of IoT
deep learning applications. They test the performance of
executing multiple deep learning tasks with their approach
in an edge computing environment in the performance eval-
uation. The results of the assessment show that their method
outperforms other IoT deep learning optimization solutions.

Liang et al. [14] demonstrated the screens of smart devices
tap locations that can be defined based on sensory data. The
results of the experiment show that the prediction accuracy of
tap location inference by using convolutional neural networks
can be at least 90 percent. Also, the user’s application patterns
and passwords can be inferred with high accuracy based on
the information found in the tap location.

Ill. SISTEM ARCHITECTURE AND IMPLEMENTATION

This system presents system architecture and implementation
of the proposed cloud edge computing environment for deep
learning.

A. iSEC

This project is part of Sensors, Edge, and Cloud (iSEC) devel-
opment. Figure 2 describes the entire of the development
framework.

B. SYSTEM ARCHITECTURE

The cloud architecture of this system is shown in Fig. 3.
In this architecture, Intel Xeon Phi Processor 7210 is used
as a hardware system. CentOS 7.4 (64 bit) is utilized as an
operating system. Jupyter Notebook is installed with [Python
Kernel to improve the performance. TensorFlow is applied as
a framework for deep learning.

On the Edge side, the Raspberry Pi is used as the system
device. Raspbian OS is applied as operating system. Python,
TensorFlow, and OpenCV are installed in Raspberry as a tool
for inference. OpenVino package is implemented as a library

27270

a -

aNumPy pances & matp/@tlib @ teare
0
Fensorflow [ Keras co

@ python' spyter INTEL MKL-DNN

t0S @”‘“‘
ntos MODEL

FIGURE 3. Cloud System Architecture.

(3

DATA 2 C

@

Intermediate
Representation
(IR) model

OpenVIN® . &)

OpenCV

f?gthoﬁ ¥ Tensor

+

FIGURE 4. Edge System Architecture and Raspberry 4 device.

Inference DEEP LEARNING DEPLOYMENT
Optimization
On the EDGE Intel Distribution of OpenVINO Toolkits
Deep learning inference deployment on CPU/GPU/

FPGA/VPU for TensorFlow
Training DEEP LEARNING FRAMEWORK
Optimization
On the CLOUD )

¥ TensorF

ANALYTICS & ML DEEP LEARNING

ntel Math Kernel Libral
for Deep Neural Networks
(Intel MKL-DNN)
Open source DNN
functions for CPU/
integrated graphics

Intel Distribution for
Python
Intel distribution

optimized for machine
learning

Dataset DATA WRANGLING
Optimization | = -
On the CLOUD mage Preprocessing

Data Augmentation Techniques
Address Imbalanced Dataset Problem
Organize a dataset into training, validation and
te_sting groups

FIGURE 5. Optimization Development.

for optimizing the inference process. Picamera is applied to
connect with the camera module. Figure 4 describes the edge
system architecture for inference process.

C. OPTIMIZATION DEVELOPMENT

Figure 5 describes the optimization development model used
in this system. In dataset optimization, this system applied
data wrangling to handle imbalanced datasets. This system
utilized open Al software to accelerate the performance of

VOLUME 8, 2020



E. Kristiani et al.: iSEC: Optimized Deep Learning Model for Image Classification on Edge Computing

IEEE Access

CLOUD EDGE

User Application

g/.f:: Run Model

——————+ Traina Model ——————————>  Optimizer
(Mo)

“% Inference Engine
~—— Raspberry 3B+
and Raspberry 4

xml
.bin

Dataset
Preparation

v v v v
Freeze Intermediate Representation Intel® Neuvral
Model PB (IR) Model Compute Stick 2

. (intel® NCS2)

augmented

dataset for

training and
testing

‘ Finalize an

FIGURE 6. Workflow Diagram.

training and inference. The Intel Distribution of OpenVINO
Toolkit facilitates model deployment for inference processing
by converting and optimizing trained models for whichever
hardware target is downstream [19], [20]. It offers support for
models trained in TensorFlow, Caffe, and MXNet on CPU,
integrated GPU, VPU (Movidius Myriad 2/Neural Compute
Stick), and FPGA. The system used the TensorFlow frame-
work to optimize deep learning libraries. The Data Analytics
Acceleration Library and Intel Python distribution are essen-
tial building blocks for machine learning. The DNN (deep
neural network) open-source libraries contain CPU optimized
functions.

D. DATA PREPARATION, TRAINING, AND INFERENCE
WORKFLOW

Figure 6 depicts the workflow diagram of this paper. There
are two steps on the cloud edge system orchestration. First,
in the training phase, the workflow starts from input data,
creates a deep learning network, and produces the output
classification. In this case, the system implemented three
networks, InceptionV3, VGG16, and MobileNet. From this
process, a trained model is produced. Second, in the inference
phase, the workflow starts from new input from the camera
and sensor, trained neural network model, and output the
classification result.

E. USE CASE DATASET
The identification of dataset is based on the hottest wheels
most stolen cars in US by year 2017 [40]. Therefore,
we choose the top ten classes in this problem to shorten
training time, as follows:

1) Honda Civic (1998): 45,062

2) Honda Accord (1997): 43,764

3) Ford F 150 (2006): 35,105

4) Chevrolet Silverado (2004): 30.056

5) Toyota Camry (2017): 17,276

6) Nissan Altima (2016): 13,358

7) Toyota Corolla (2016): 12,337

8) Dodge/Ram Pickup (2001): 12,004

9) GMC Sierra (2017): 10,865

10) Chevrolet Impala (2008): 9,487

VOLUME 8, 2020

FIGURE 7. VMMRdb dataset.

The number indicates number of stolen cars in each model
in 2017.

The cars pictures are extracted from Vehicle Make and
Model Recognition Dataset (VMMRJAD) [6]. Then, we map
multiple year vehicles to the stolen car category (based on
exterior similarity) to provide more samples to work with.
In this case, ten vehicle classification was selected based on
the above problem, as follows:

1) Honda Civic (1997 — 1998)

2) Honda Accord (1996 — 1997)

3) Ford F150 (2005 — 2007)

4) Chevrolet Silverado (2003 — 2004)

5) Toyota Camry (2012 — 2014)

6) Nissan Altima (2013 — 2015)

7) Toyota Corolla (2011 — 2013)

8) Dodge Ram 1500 (1995 — 2001)

9) GMC Sierra 1500 (2007 — 2013)
10) Chevrolet Impala (2007 — 2009)

The images consist of 6877 files of 10 folders/classes
based on the selected categories. For the training purpose,
the dataset is divided into three categories of training, valida-
tion, and test using 0.7, 0.1, and 0.2 ratios, respectively. Train-
ing Data Set consists of 5098 images belonging to 10 classes.
Validation Data Set consists of 586 images belonging to
10 classes. Test Data Set consists of 1193 images belonging
to 10 classes. Figure 7 shows the sample of car dataset.

F. DATA PREPROCESSING AND AUGMENTATION

Based on the class distribution, it can be seen that certain
classes were significantly lower than the others. There is a
need to augment some of the dataset so that the dataset is more
closely distributed. By using the augmentation techniques,
the dataset can oversample minority classes in training set.
This process would not apply invalidation or test in order not
to create any bias on the data. From the data augmentation
process, it can be seen there are four classes need to augment,
toyota-camry, nissan-altima, toyota-corolla, and gmc-sierra.

27271



IEEE Access

E. Kristiani et al.: iSEC: Optimized Deep Learning Model for Image Classification on Edge Computing

FIGURE 8. Image augmentation example.

Distribution Class before Data Augmentation Distribution Class after Data Augmentation

W E i

FIGURE 9. The comparison of class distribution before and after

d
N
=l

FIGURE 10. Training Steps.

Choose a Network
Choose a network
(InceptionV3, VGG16,
MobileNet, ResNet etc.)

Choose a Framework
(Tensorflow *, Caffe *,
PyTorch)

»

Figure 8 describes an example image and showing the effects
of augmentation given a certain threshold of modification.
The next step is to apply these random augmentations to the
data.

Figure 9 shows the distribution in each class before and
after data augmentation. It can be seen from the graph that
the class distribution has been changed compared to before
the augmentation process.

G. TRAINING STEPS

Figure 10 shows the steps of the training model. The design
system chooses a TensorFlow framework in three topolo-
gies used in this system for model comparison, InceptionV3,
VGG16, and MobileNet. The training model runs on the
IPython Kernel CPU environment for better performance.
Algorithm 1 and Figure 10 show the steps of training
model.

H. INFERENCE STEPS
Algorithm 2 and Figure 11 shows the step of inference model.

I. MODEL OPTIMIZER

The redesigned Model Optimizer (MO) software is imple-
mented as a Python code to convert the TensorFlow frozen
graph into Intermediate Representation (IR) model. By using

27272

Algorithm 1 Training Process
1: KMP — BLOCKTIME =1
2. KMP — AFFINITY =
fine, verbose, compact, 1,0
: KMP — SETTINGS =1
OMP — NUM — THREADS =8
: optimizer = optimizers
: Adam(lr = 0.001)
: < generate a trained model (frozengraph)

granularity =

Algorithm 2 Inference Process

1: plugin = IEPlugin(device — option) < Load Plugin

2: net = IENetwork(model — xml, weightsmodel — bin) <
Read IR/Load Network

3: input — blob,out — blob =
Configure Input and Output

4: next(net.outputs)

iternet.inputs <

5: n,c,h,w = net.inputslinput — blobl.shape <
Load Model

6: exec — net = plugin.load (network = net)

7: inputs = input  —  blob
[ev2.resize(frame—, (w, h)).transpose((2, 0, 1))] <«

Prepare input
8: res = exec — net.infer(inputs) < Infer
9: res = res[out — blob]
10: top = res[0].argsort1 :][:: 1] <= Process Output
11: pred — label = labels[top[0]]

d M

-

FIGURE 11. Inference Steps.

MODEL OPTIMIZER

ANALYZE

Read IR/Load
Network

®

Load plugin

Intermediate

. Representation

(IR) File

QUANTIZE

\
\
‘ OPTIMIZE TOPOLOGY
\

CONVERT

FIGURE 12. Model Optimizer.

Trained Model

MO, it will improve performance and output. Also, using
standard layers will get faster performance without the over-
head of frameworks. In this project, there is two types of
IR model, FPS16 and FPS32. Figure 12 shows the Model
Optimizer process.

VOLUME 8, 2020



E. Kristiani et al.: iSEC: Optimized Deep Learning Model for Image Classification on Edge Computing

IEEE Access

FIGURE 13. The comparison of Confusion Matrix before and after
fine-tuning.

FIGURE 14. Classification Metrics before and after fine-tuning.

IV. EXPERIMENTAL RESULTS

This section discusses the experimental results. A confusion
matrix, a classification report, a precision, fl, recall, and
ROC graph are presented. The comparison of training and
inference performance are compared among InceptionV3,
VGG16, and MobileNet.

A. CONFUSION MATRIX

A standard graph to plot for analysis is a confusion matrix.
It will play out the valid label and the predicted label on a
diagram and color code the result accordingly. The ideal con-
fusion matrix will have a diagonal line from the top left to the
bottom right and no other color. A good pattern of diagonal
line means that each predicted value matched the true value.
The normal preview is that each class might lean toward one
or two other categories that might look similar to the right
class. Figure 13 presents the comparison of the confusion
matrix between on top layer and fine-tuning. From the confu-
sion matrix of the InceptionV 3 classifier output, it can be seen
that before fine-tuning, out of 1170 testing images, 627 are
correctly classified, and 543 are misclassified. While after
fine-tuning training, out of 1170 testing images, 1041 are
correctly classified, and 129 are misclassified.

B. CLASSIFICATION REPORT

There are different main classification metrics, such as preci-
sion, recall, F1-Score, and support, to measure the classifica-
tion model. Figure 14 shows the comparison of classification
metrics before and after fine-tuning. It can be seen that there
is an improvement in the classification metrics value before
and after fine-tune.

C. PRECISION RECALL AND ROC
The Precision-Recall of the classification model is described
in Figure 15. The micro average of Precision-Recall

VOLUME 8, 2020

FIGURE 16. ROC Curve before and after fine tuning.

Topology Comparison Before Fine Tuning the Entire Network

1
) Il II II
0

InceptionV3 VGG16 MobileNet
m Loss 1,25089477 2,014825294 0,973091081

W Accuracy 0,525565801 0,720033529 0,6496228

mloss M Accuracy

FIGURE 17. The Comparison of Loss and Accuracy before fine-tuning.

Curve before fine-tuning is 0.583, while after fine-tuning
is 0.944.

The performance of a binary classifier system presented
as ROC. Figure 16 demonstrates ROC curve per class. The
micro average of the ROC curve before fine-tuning is 0.92,
and the macro average of the ROC curve is 0.93. While after
fine-tuning, both of the micro and macro averages of the ROC
curve are 0.99.

D. COMPARISON OF INCEPTIONV3, VGG16, AND
MOBILENET

Figure 17 and 18 describes the comparison of InceptionV3,
VGG16, and MobileNet topology before and after fine-tuning
of the entire network. From the graphs, it can be seen that
there is a significant improvement in the term of loss and
accuracy.

27273



IEEE Access

E. Kristiani et al.: iSEC: Optimized Deep Learning Model for Image Classification on Edge Computing

Topology Comparison After Fine Tuning the Entire Network

InceptionV3 VGG16 MobileNet
M Loss 0,437802708 0,368886739 0,40774731
0,87259011 0,913663035 0,859178542

0

m Accuracy

W loss W Accuracy
FIGURE 18. The Comparison of Loss and Accuracy after fine-tuning.

Time Comparison Before and After Fine Tuning
80

50
40
30
20
10

0

InceptionV3 VGG16 MobileNet
® Time Before Fine Tuning 57 51 75
® Time After Fine Tuning 52 50 71

m Time Before Fine Tuning W Time After Fine Tuning

FIGURE 19. The Comparison of Time before and after Fine Tuning.

The comparison of Model Size
100.000
50.000
80.000
70.000

60.000

50.000

40.000

30.000

20.000

10.000 . - .
o PB

FP16 FP32
u Inception V3 93.581 46.759 93.303
u Mobilenet 16.797 8.348 16.660
BVGG16 59584 29.809 59595

FileSize

Topology

W inceptionV3 M Mobienet B VGG16

FIGURE 20. The Comparison of Model Size.

Figure 19 describes the comparison of the time needed
to load the model. It can be seen from the graph that the
MobileNet model consumes the highest time comparing to
InceptionV3 and VGG16. Generally, the model loading time
before and after fine-tuning has improved slightly.

Figure 20 shows the comparison of model size of
InceptionV3, VGG16, and MobileNet topology. The Incep-
tionV3 has the biggest model size, VGG16 is moderate, and

27274

[08 INF/S] Prediction: ford_f150_2006 (86.87%) [09 INF/S] Prediction: ford_f150_2006 (87.01%)

FIGURE 21. The Inference of FPS16 and FPS32 before fine-tuning.

FPS 16 FPS 32
/e Ktop/CAR/CarFP3 32/car fps32_t allayers | Browse xiL
|/home/pi/Desktop/CAR/label iv3-labels.txt | /home/pi/Desktop/CAR/label/iv3-labels. txt Browse Label
s 5
| homeipi/Desitop/CAR CarExamples/car3. pg momelpiDesKtop/CAR CarExamples/cars.jpg Browse Media

™ Scan Folder]

© CPU_ GPU_ - Movidius| Inference. __ Video - Image __ Camera)

[08 INF/S] Prediction: ford_f150_2006 (96.53%)

[09 INF/S] Prediction: ford_f150_2006 (96.58%)

FIGURE 22. The Inference of FPS16 and FPS32 after fine-tuning.

MobileNet is the smallest model size. Based on the experi-
ments, the model size before and after fine-tuning remains
the same.

E. INFERENCE RESULTS

This study uses Neural Compute Stick 2 (NCS2) to enhance
the performance of the Raspberry Pi 4 in processing computer
vision. In this case, this project compared the inference result
on Raspberry 4 using two kinds of IR model, FPS16 and FPS
32. Figure 21 shows the inference of FPS16 and FPS32 before
fine-tuning. It can be seen that Frame per Second (FPS) value
is eight on the FP16 model and nine on the FP32 model. The
accuracy is 86.87% on the FP16 model and 87.01% on the
FP32 model.

Figure 22 shows the inference of FPS16 and FPS32 after
fine-tuning. It can be seen that Frame per Second (FPS) value
is eight on the FP16 model and nine on the FP32 model. The
accuracy is 96.53% on the FP16 model and 96.58% on the
FP32 model.

V. CONCLUSION AND FUTURE WORKS

This paper demonstrates an optimized model of the cloud
and edge computing environment for deep learning training
and inference. The experiments conducted a deep learning
training process on the cloud and inference process on edge.
The comparisons result before and after fine-tuning were

VOLUME 8, 2020



E. Kristiani et al.: iSEC: Optimized Deep Learning Model for Image Classification on Edge Computing

IEEE Access

presented to examine the improvement in the training and
inference phase. From the experiments, all model analysis
value has been improved based on the implementation of fine-
tuning. In comparing InceptionV3, VGG16, and MobileNet,
there is a significant improvement before and after fine-
tuning in the term of loss and accuracy. In terms of time, it can
be seen from the result that the MobileNet model consumes
the highest time comparing to InceptionV3 and VGGI16.
However, generally, the model loading time before and after
fine-tuning has improved slightly. In the training phase, it can
be seen that the confusion matrix, the classification report,
the precision, f1, recall, and ROC graph are improved. In the
inference phase, it can be seen that the accuracy and FPS have
been enhanced after applied the fine-tuning model on both
FP16 and FP32.

To sum up, MobileNet was the least accurate model (85%)
but had the smallest model size (17,2MB) and the longest
time to load the model (71s). VGG16 was the most accurate
(91%) with the moderate model size (61MB) and the shortest
time to load the model (50s). InceptionV3 has median accu-
racy (87%) with the most significant model size (95,8MB)
and the average time to load the model (52s).

In the future, this model performance can be applied in dif-
ferent image classification cases. The training performance
can be compared with the GPU environment. The security
issue on edge computing might be a challenge research prob-
lem. Also, find another solution for the edge side, such as
comparing with the Jetson NANO environment.

REFERENCES

[1]1 C.Zhang, F. Liu, and Y. He, “Identification of coffee bean varieties using
hyperspectral imaging: Influence of preprocessing methods and pixel-wise
spectra analysis,” Sci. Rep., vol. 8, no. 1, p. 2166, 2018.

[2] M. Poostchi, K. Silamut, R. J. Maude, S. Jaeger, and G. Thoma, “Image
analysis and machine learning for detecting malaria,” Transl. Res.,
vol. 194, pp. 36-55, Apr. 2018.

[3] J. Chaki and N. Dey, A Beginner’s Guide to Image Preprocessing Tech-
niques. Boca Raton, FL, USA: CRC Press, 2018.

[4] M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and
H. Greenspan, “GAN-based synthetic medical image augmentation for
increased CNN performance in liver lesion classification,” Neurocomput-
ing, vol. 321, pp. 321-331, Dec. 2018.

[5] H. Salehinejad, S. Valaee, T. Dowdell, and J. Barfett, “Image augmenta-
tion using radial transform for training deep neural networks,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2018,
pp. 3016-3020.

[6] F. Tafazzoli, H. Frigui, and K. Nishiyama, “A large and diverse dataset
for improved vehicle make and model recognition,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jul. 2017, pp. 1-8.

[7] Intelligent Devices, Smarter Decisions. Accessed: Mar. 20, 2019. [Online].
Available: https://www.intel.com/content/www/us/en/homepage.html

[81 Conda Documentation. Accessed: Mar. 15, 2019. [Online]. Available:
https://docs.conda.io/en/latest/

[9]1 The Jupyter Notebook. Accessed: Mar. 15, 2019. [Online]. Available:
https://jupyter.org/

[10] IPython Documentation. Accessed: Mar. 15, 2019. [Online]. Available:
https://ipython.readthedocs.io/en/stable/install/kernel-install.html

[11] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo,
Y. Yang, L. Yu, and T. Chen, “Highly scalable deep learning training sys-
tem with mixed-precision: Training imagenet in four minutes,” Jul. 2018,
arXiv:1807.11205. [Online]. Available: https://arxiv.org/abs/1807.11205

[12] Q. Zhang, L. T. Yang, Z. Yan, Z. Chen, and P. Li, “An efficient deep
learning model to predict cloud workload for industry informatics,” IEEE
Trans. Ind. Informat., vol. 14, no. 7, pp. 3170-3178, Jul. 2018.

VOLUME 8, 2020

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

A. Caliskan, M. Yuksel, H. Badem, and A. Basturk, ‘“Performance
improvement of deep neural network classifiers by a simple training strat-
egy,” Eng. Appl. Artif. Intell., vol. 67, pp. 14-23, Jan. 2018.

Y. Liang, Z. Cai, J. Yu, Q. Han, and Y. Li, “Deep learning based inference
of private information using embedded sensors in smart devices,” IEEE
Netw., vol. 32, no. 4, pp. 814, Jul. 2018.

H. Li, K. Ota, and M. Dong, “Learning IoT in edge: Deep learning for
the Internet of Things with edge computing,” IEEE Netw., vol. 32, no. 1,
pp. 96-101, Jan. 2018.

C.-T. Yang, S.-T. Chen, W. Den, Y.-T. Wang, and E. Kristiani, “Implemen-
tation of an intelligent indoor environmental monitoring and management
system in cloud,” Future Gener. Comput. Syst., vol. 96, pp. 731-749,
Jul. 2019.

E. Kristiani, C. T. Yang, Y. T. Wang, and C. Y. Huang, “Implementation
of an edge computing architecture using OpenStack and Kubernetes,” in
Proc. Int. Conf. Inf. Sci. Appl. Singapore: Springer, Jun. 2018, pp. 675-685.
E. Kristiani, C. T. Yang, C. Y. Huang, Y. T. Wang, and P. C. Ko, ““The imple-
mentation of a cloud-edge computing architecture using OpenStack and
Kubernetes for air quality monitoring application,” J. Mobile Netw. Appl.,
to be published.

Intel Distribution of OpenVINO Toolkit. Accessed: Apr. 24, 2019.
[Online]. Available: https://software.intel.com/enus/articles/OpenVINO-
Using-TensorFlow

Intel Neural Compute Stick. Accessed: Apr. 24, 2019. [Online]. Available:
https://software.intel.com/en-us/movidius-ncs

M. A. Zamora-Izquierdo, J. Santa, J. A. Martinez, V. Martinez, and
A. F. Skarmeta, “Smart farming IoT platform based on edge and cloud
computing,” Biosyst. Eng., vol. 177, pp. 4-17, Jan. 2019.

S. Wang, Y. Zhao, J. Xu, J. Yuan, and C.-H. Hsu, “Edge server place-
ment in mobile edge computing,” J. Parallel Distrib. Comput., vol. 127,
pp. 160-168, May 2019.

C. Li, J. Bai, and J. Tang, “Joint optimization of data placement and
scheduling for improving user experience in edge computing,” J. Parallel
Distrib. Comput., vol. 125, pp. 93-105, Mar. 2019.

L. Greco, P. Ritrovato, and F. Xhafa, “An edge-stream computing infras-
tructure for real-time analysis of wearable sensors data,” Future Gener.
Comput. Syst., vol. 93, pp. 515-528, Apr. 2019.

R. Morabito, R. Petrolo, V. Loscri, and N. Mitton, ‘“Reprint of LEGIoT:
A lightweight edge gateway for the Internet of Things,” Future Gener.
Comput. Syst., vol. 92, pp. 1157-1171, Mar. 2019.

C.-T. Yang, C.-W. Huang, and S.-T. Chen, “Improvement of workload
balancing using parallel loop self-scheduling on Intel Xeon Phi,” J. Super-
comput., vol. 73, no. 11, pp. 4981-5005, Nov. 2017.

C.-T. Yang, C.-J. Chen, Y.-T. Tsan, P.-Y. Liu, Y.-W. Chan, and W.-C. Chan,
“An implementation of real-time air quality and influenza-like illness
data storage and processing platform,” Comput. Hum. Behav., vol. 100,
pp. 266-274, Nov. 2019.

C.-T. Yang, S.-T. Chen, J.-C. Liu, R.-H. Liu, and C.-L. Chang, “On con-
struction of an energy monitoring service using big data technology for the
smart campus,” Cluster Comput., vol. 23, no. 1, pp. 265-288, Mar. 2020.
C.-T. Yang, Y.-W. Chan, J.-C. Liu, and B.-S. Lou, “An implementation of
cloud-based platform with R packages for spatiotemporal analysis of air
pollution,” J. Supercomput., pp. 1-22, Nov. 2017, doi: 10.1007/s11227-
017-2189-1.

C.-T. Yang, J.-C. Liu, S.-T. Chen, and H.-W. Lu, “Implementation of a
big data accessing and processing platform for medical records in cloud,”
J. Med. Syst., vol. 41, no. 10, p. 149, 2017.

M. Chui, “Artificial intelligence the next digital frontier?”” McKinsey
Global Inst., New York, NY, USA, Tech. Rep., Feb. 2019,
vol. 47. [Online]. Available: https://www.calpers.ca.gov/docs/board-
agendas/201801/full/day 1/06-technology-background.pdf

C.-S. Shih, J.-J. Chou, and K.-J. Lin, “WuKong: Secure Run-Time envi-
ronment and data-driven IoT applications for smart cities and smart build-
ings,” J. Internet Serv. Inf. Secur., vol. 2, no. 8, pp. 1-17, 2018.

T. Robles, R. Alcarria, D. M. de Andrés, M. N. de la Cruz, R. Calero,
S. Iglesias, and M. Lopez, “An IoT based reference architecture for smart
water management processes,” JoOWUA, vol. 1, no. 6, pp. 4-23, 2015.

N. K. Giang, J. Im, D. Kim, M. Jung, and W. Kastner, “Integrat-
ing the EPCIS and building automation system into the Internet of
Things: A lightweight and interoperable approach,” JoWUA, vol. 1, no. 6,
pp. 56-73, 2015.

Advanced Guide to Inception V3 on Cloud TPU. Accessed: Jan. 10, 2019.
[Online].  Available:  https://cloud.google.com/tpu/docs/inception-v3-
advanced

27275


http://dx.doi.org/10.1007/s11227-017-2189-1
http://dx.doi.org/10.1007/s11227-017-2189-1

IEEE Access

E. Kristiani et al.: iSEC:

Optimized Deep Learning Model for Image Classification on Edge Computing

[36] P. Zhang, Q. Zhao, J. Gao, W. Li, and J. Lu, “Urban street cleanli-
ness assessment using mobile edge computing and deep learning,” IEEE
Access, vol. 7, pp. 63550-63563, 2019.

[37] M. Z. Khan, S. Harous, S. U. Hassan, M. U. Ghani Khan, R. Igbal,
and S. Mumtaz, “Deep unified model for face recognition based on
convolution neural network and edge computing,” IEEE Access, vol. 7,
pp. 72622-72633, 2019.

[38] C.-K.Tsung, H.-Y. Hsieh, and C.-T. Yang, “An implementation of scalable
high throughput data platform for logging semiconductor testing results,”
IEEE Access, vol. 7, pp. 26497-26506, 2019.

[39] C.-T. Yang, S.-T. Chen, W.-H. Cheng, Y.-W. Chan, and E. Kristiani,
“A heterogeneous cloud storage platform with uniform data distribu-
tion by software-defined storage technologies,” IEEE Access, vol. 7,
pp. 147672-147682, 2019.

[40] 2017 Hot Wheels Report. Accessed: Jul. 15, 2018. [Online]. Available:
https://www.nicb.org/news/news-releases/2017-hot-wheels-report

ENDAH KRISTIANI received the M.S. degree
in electrical engineering (information technol-
ogy) from Universitas Gadjah Mada, Yogyakarta,
Indonesia, in 2007. She is currently pursuing
the Ph.D. degree with the Department of Indus-
trial Engineering and Enterprise Information and
join the High Performance Computing Labo-
ratory, Tunghai University, Taichung, Taiwan.
In August 2007, she joined the Faculty of Engi-
neering and Computer Science, Department of
Informatics Engineering, Krida Wacana Christian University (UKRIDA),
Jakarta.

27276

CHAO-TUNG YANG (Member, IEEE) received
the Ph.D. degree in computer science from
National Chiao Tung University, in July 1996.
In August 2001, he joined the Faculty of the
Department of Computer Science, Tunghai Uni-
versity. He is currently a Distinguished Professor
of computer science, Tunghai University, Taiwan.
He is serving in a number of journal editorial
boards, including Future Generation Computer
Systems, International Journal of Communication
Systems, KSII Transactions on Internet and Information Systems, and Jour-
nal of Cloud Computing. He has published more than 300 articles in journals,
book chapters, and conference proceedings. His present research interests are
in cloud computing, big data, parallel computing, and deep learning. He is a
member of the IEEE Computer Society and ACM.

CHIN-YIN HUANG received the Ph.D. degree
from Purdue University, USA. He is currently
a Professor and the Department Chairman of
Industrial Engineering and Enterprise Information
with Tunghai University, Taiwan. His publica-
tions appear in International Journal of Produc-
tion Research, International Journal of Produc-
tion Economics, Computers in Industry, Com-
puters and Industrial Engineering, Robotics and
Computer-Integrated Manufacturing, Epilepsy
Research, Production Engineering, Engineering Computations, and so on.
He also coauthored chapters for Handbooks of Industrial Engineering,
Handbook of Industrial Robotics and Handbook of Automation. He has co-
authored two books in industrial engineering and management published
in Taiwan. His research interests include healthcare management, clinical
data analysis, distributed manufacturing systems, manufacturing process
optimization, and industry 4.0.

VOLUME 8, 2020



