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ABSTRACT Accurate fault location is crucial for finding and clearing faults in distribution networks. It can
help to reduce the loss of power failure and ensure safe and stable operation. Without efficient observation
points and the lack of phase angle information, traditional fault location methods of distribution networks
usually have large errors. As the application of µPMUs in the distribution network becomes more and
more common, voltage and current waveforms, as well as phase angle can be recorded and provide more
information for accurate fault location. In this paper, an intelligent location method is proposed to pinpoint
the fault location based on the information of µPMUs which are properly allocated. The fault section is
firstly determined by comparing the zero-sequence current waveforms on both sides of the fault section.
Then, a Stack Auto-Encoder (SAE) is modeled to provide an end-to-end solution to pinpoint fault point with
the voltage and current phasors. Finally, the performance of the proposed method is tested by a simulated
distribution network on the platform of PSCAD. The results show that the proposed method is effective
in locating faults and can withstand the effects of transition resistance, fault type, and noise. Compared to
another popular method, the proposed method shows better location accuracy.

INDEX TERMS Fault location, stacked auto-encoder, distribution network.

I. INTRODUCTION
The distribution network connects power transmission net-
work and power loads, and directly provides the power to
users [1]. In some countries such as China, distribution sys-
tems are ungrounded or grounded with Petersen coil. When
a single-phase grounding fault occurs, the phase voltage of
the faulted phase will drop and only a small fault current
will be produced. As only current relays are installed in
distribution networks, the fault features are not obvious, and
the current relay does not operate immediately. The phase-to-
ground voltage of non-faulted phases will rise and might lead
to insulation breakdown and serious faults. Therefore, quick
and reliable determination of the fault point is critical for the
maintenance and operation of the distribution network.

Fault location in the distribution network is always a tough
job and faces a lot of challenges. The first challenge is the
complicate operating condition. The topologies of distribu-
tion networks are complicated and change with operation
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status [2]. Transmission lines are short, andmultiple branches
are included. It is difficult to discriminate which section or
part the fault occurs in. The second challenge is the unobvious
fault feature. Since the neutral point of the transformer is
ineffectively grounded, the post-fault currents are small. With
such a slight difference, to pinpoint the exact fault position is
not an easy job. Besides, limited measurement information is
also a challenge. Usually, only currents are recorded for feed-
ers. Voltages are only detected on buses. Phase information is
missed in distribution networks.

Although precise fault location in the distribution net-
work is a tough job, a lot of research work has been done
to solve this problem [3], [4]. Those methods include the
injection-based methods, the steady-state based ones, and
the transients-based ones. The injection-based methods are
usually offline locations. A signal is generally injected into
the faulted system. The fault location could be calculated
with the reflection or transition of the injected signal. But
this kind of method requires additional injection equip-
ment which is uneconomic [5]. Also, if the topology of the
faulted system is complicated or transmission lines are long,
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the injected signals may become too weak to be detected.
Furthermore, the location accuracy of the injection-based
method is affected by distributed capacitance, grounding
resistance and other factors. Steady-state methods adopt volt-
ages and currents to calculate fault locations iteratively based
on known topologies and parameters of distribution network,
for example, the interconnections, branches, line parameters,
and power of loads. But its location performance depends
on the accuracy of known parameters [6]. It is ineffective in
locating single-phase-to-ground faults. The transients-based
methods utilize post-fault transient measurements. As more
and more transient waveforms in the distribution networks
can be obtained, the application and research of transients
based fault location become more popular. Its location per-
formance is reported to be effective in many research works.
In reference [7,] [8], the fault is located with wavelet-based
frequency characteristics as well as the topology of the distri-
bution network. In reference [9], [10], the instants of sudden
variations of post-fault transients are calculated with Hilbert-
Huang transform, and the fault location is calculated with
these instants and transients propagating velocities.

Electrical measurements, including injected pulse waves,
steady-state phasors, and transient waveforms, can provide
enough information for mapping the nonlinear relationship
between electrical features and fault locations. Machine
learning-based models have been adopted in pinpointing
faults in distribution networks, for example, artificial neural
networks (ANN), support vector machine (SVM), multilayer
perceptron neural network (MLP-NN), extreme learning
machine (ELM), and other intelligence algorithms [11], [12].
Effective performance was reported. In some research,
the wavelet spectrums of voltage and zero-sequence currents
are analyzed by SVM to identify possible fault zone and
accurate fault distance based on the voltage drop data and
the change of zero-sequence current during faults [13], [14].
Also, the wavelet characteristics of three-phase post-fault
currents and voltages are used to train an ANN and deter-
mine the fault location on the distribution lines under various
scenarios [15], [16].

However, traditional machine learning-based methods
were not widely discussed and used. On the one hand, the fea-
tures which are extracted on the basis of experts’ experience
might not fully represent the complicated, unobvious, but
unique fault characteristics; on the other hand, the traditional
machine learning models such as ANN and SVM are shallow
learning ones. They cannot learn the complicated relationship
between electrical measurements and fault locations. Their
generalization is poor, so they usually have unsatisfied perfor-
mance when the system parameters or operating environment
changes [17].

Benefiting from the application of the microphase mea-
surement unit (µPMU), the real-time dynamic monitoring
of the distribution system can be realized [18]. µPMUs
can provide both voltage and current measurements with
phase and time information. With properly assigned µPMUs,
the dynamic process of distribution network can be known

and the fault zone or even fault point can be found out.
Some research work has reported fault location in distribution
network with µPMUs. For example, the PMU information
on both ends of the faulted line is used in reference [19] to
estimate fault points. Those research results show a poten-
tial application of µPMU-based fault location in distribution
networks. But some problems such as error of line parameters
and the effect of multiple branches have not been well solved.
Further investigations are needed to adopt µPMU-based
information in the distribution network fault location.

In order to improve the fault location accuracy in distribu-
tion networks, this paper proposes a locationmethod based on
µPMUmeasurements and stack auto-encoder (SAE). SAE is
a kind of unsupervised learning algorithm, which can reduce
the dimension of raw data and establish a stable representa-
tion of the original input. As the depth of the SAE network
can be easily increased, SAE can effectively fit complicate
functions and represent nonlinear features. It has been widely
employed to solve big data problems or issues with strong
uncertainties. In this paper, based on a suitable setting of
µPMUs, the distribution network is segmented into different
zones. Once a fault occurs, the faulted zone is firstly found
out according to the similarity of zero-sequence waveforms
provided by µPMUs. An SAE is then trained to learn the
relationship between voltage-current-phase vectors and fault
distances. Finally, the µPMU measurements on both ends of
the fault zone are processed by the trained SAE to obtain the
fault distance.

The rest of this paper is organized as follows. In Section II,
the settings of µPMUs in the distribution network and the
fundamentals of SAE are introduced. The SAE based location
method is proposed on the basis of fault features analysis.
The proposed method is implemented in Section III. Both
data processing and training of SAE are discussed. A series
of simulations are conducted to prove the effectiveness of
the proposed method in Section IV. Finally, this paper is
concluded in Section V.

II. PROPOSED METHOD
In order to find the location of the fault point, the fault
zone should be determined first. Based on the analysis of
fault features, fault location method will be proposed in this
section.

A. RELATED ANALYSIS
1) DIVISION OF FAULT ZONE
Since unobvious current features will be generated, it is cru-
cial to find the faulted zone in the distribution network in
order to reduce the computation complexity. The assignment
of µPMUs at all nodes in the distribution network is a good
solution but an uneconomic one. Besides, it is impossible to
process such a large amount of real-time and synchronous
µPMU measurements at the same time. The communication
capacity in the distribution network is limited. Therefore,
the assignment ofµPMUs should be balanced. MoreµPMUs
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FIGURE 1. Topology of fault zones, (a) zone I, (b) zone II.

FIGURE 2. Characteristics of zero-sequence currents in distribution
network, (a) equivalent circuit of distribution network, (b) zero-sequence
currents in the system.

are preferred in the aspect of obtaining useful information,
while fewer ones are needed when considering communica-
tion bandwidth and economical operation. In this paper, the
distribution network is divided to be different zones according
to the following principles: 1) only two µPMUs are included
in each zone at the boundaries. 2) less than 3 nodes (except
boundary nodes) are contained in each zone. Therefore,
the zone topologies of distribution networks can be divided
into two main types: 1) zone I, as shown in Fig. 1(a), which
has only one branch; and 2) zone II, as shown in Fig. 1(b),
which includes ‘‘T’’ shape interconnection. In both kinds of
zones, two µPMUs are installed at zone terminals, which are
denoted by red dots in Fig. 1.

After the division of distribution network, fault location
can be simplified by finding fault zone and pinpointing fault
points within the faulted zone.

2) ZERO-SEQUENCE ANALYSIS OF FAULT CURRENT
After the occurrence of a single-phase grounding fault,
the first thing is to find the faulted zone. As shown in Fig.2,
the zero-sequence equivalent of a single-phase-to-ground
fault in the distribution network is to add a zero-sequence
fault component U0f at the faulted point. Such component
U0f provides zero-sequence currents I0f in this faulted sys-
tem. According to theµPMU assignment principle in the pre-
vious section, the electrical measurements at both boundaries
of each zone can be collected.

In the non-fault section AB and faulted section BC, the cur-
rent relationships can be described as in equation (1) and (2).

i0A − i0B = ic1 (1)

i0B − i0C = i0f − ic2 − ic3 − ic4 (2)

FIGURE 3. Comparisons between zero-sequence currents, (a) non-faulted
zone, (b) Faulted zone.

As the capacitance to ground, for instance, C1, C2, C3
and C4 in Fig. 2(b), in the distribution system, is very
small, the current in capacitance ic1 should be small, and
the zero-sequence currents at both boundaries should be
similar if no fault components is included. But due to the
existence of the zero-sequence component, such as i0f in (2),
the waveform and polarity of zero-sequence currents at both
boundaries of the faulted zone will be different.

Generally, the zero-sequence impedances of ineffective
grounded networks are at least 4 or 5 times larger than those
of directed grounded ones. Therefore, in Fig.2, the trans-
former is delta-wye connected and grounded with a Petersen-
coil, which equivalent inductance is set to be 0.45H. Fig. 3
compares the zero-sequence currents of µPMUs installed
at nodes A, B and C in Fig. 2(a). Fault is added between
point B and C. The similarity between zero-sequence cur-
rents i0A measured at µPMU A and i0B at µPMU B is
much higher than that between i0B and i0C at µPMU C
due to the existence of the zero-sequence component Uof .
Therefore, it is possible to adopt the differences between the
zero-sequence currents of all zones to find the faulted one.

3) ANALYSIS OF POST-FAULT PHASE ANGLE
Once the faulted zone is determined, finding the precise fault
point is the most important job. Fig.4 shows the equivalent
post-fault circuit of the faulted zone when ignoring the effect
of capacitance to ground. Here, VM, VN, IM and IN are the
measured voltages and currents ofµPMUs at both boundaries
of the faulted zone. The total length of the faulted zone is L,
and its unit impedance is zMN . Voltage Vf and current If is
the voltage and current at fault point, and Rf denotes the
grounding resistance. The distance between µPMU M and
fault point f is x.
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FIGURE 4. Equivalent circuit of faulted line.

FIGURE 5. Phasor diagram of faulted line.

According to the equivalent circuit, the voltages at µPMU
M and faulted point f have a relationship, as described in
equation (3):

V̇M = V̇f + zMN xİM = Rf İf + zMN xİM (3)

Their phasor diagram is displayed in Fig. 5.
Here, angle α is the phase angle between İf and İM , β is

the phase angle between İM and V̇M , θ is the phase angle
between İf and the line voltage drop zMN xİM , and γ is the
phase angle between V̇M and the line voltage drop zMN xİM .
The three voltage phasors construct a triangle. According to
the Law of Sines, equations in (4) can be obtained, and the
fault distance can be written as in (5).∣∣V̇M ∣∣

sin θ
=

∣∣V̇M ∣∣
sin (α + β + γ )

=

∣∣zMN İM ∣∣ x
sin (α + β)

(4)

x =

∣∣V̇M ∣∣ sin (α + β)∣∣İMzMN
∣∣ sin (α + β + γ ) (5)

When the grounding resistance Rf is zero, the angle γ is
zero, the phase difference between V̇M and İM is β which
can be measured by µPMUs. But with the increase of Rf ,
the angle α and γ change accordingly, their effect cannot be
ignored. But those two angles are difficult to be measured
as the grounding resistance Rf and grounding voltage V̇f
are unknown. In some traditional methods [20], angle α is
ignored and assumed to be 0◦. Due to the change of load,
fault location and system impedance in distribution networks,
α usually varies between 0 to 15◦ [21]. The value of angle
γ depends on the modulus of V̇f . It can be an acute angle
less than 60◦ since the modulus of both V̇f and zMN xİM
cannot be greater than that of V̇M . As two angles α and γ are
unknown in equation (5), it is difficult to calculate the value
of x directivity.

Fig.6 illustrates the variations of µPMU-based measure-
ments, including voltages, currents and phase angles with
fault distance x. They change with the increase of fault dis-
tance. The waveform variations of µPMU-based measure-
ments still suggest the mapping relationship between fault

FIGURE 6. Waveform variations with fault distance, (a) voltage
waveforms, (b) current waveforms, (c) phase angle waveforms.

distance x and phasors V̇M and İM , which would be learned
with machine learning models.

B. FUNDAMENTALS OF SAE
A stacked autoencoder (SAE) becomes more widely used for
learning generative models of data, and shows great poten-
tial in representing electrical measurements with reduced
dimensions.

1) AUTOENCODER (AE)
As the basic unit of SAE, an AE usually contains an encoder
and a decoder. When used as a coding tool, only the encoder
part is used. The typical structure of an AE is shown in Fig. 7.

The dimensions of the input layer and the output layer
are the same. The input vector x = [x(1)x(2)···x(n)] is encoded
at the hidden layer and reconstructed at the output layer.
When the reconstruction error between original x and recon-
structed x̂ = [x̂(1)x̂(2) · · · x̂(n)] is small enough, the output of
the hidden layer, or the primary code h = [h(1)h(2) · · · hm]
can be regarded to be an extracted feature of input x. The
encoding and decoding mapping are as shown in equation (6)
and equation (7), respectively. Here, n is the dimension of
the input layer, m is the dimension of the hidden layer, W
is weight matrix, b is the bias vector, and S represents the
activation function.

h = f (x) = S(Wx + b) (6)

x̂ = g(h) = S(W ′h+ b′) (7)
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FIGURE 7. A typical AE structure.

FIGURE 8. Formation of a two-layer SAE.

2) SAE
A stacked autoencoder is a neural network consisting of
multiple layers of sparse autoencoders in which the out-
puts of each layer are wired to the inputs of the successive
layer [5]. The construction process of a two-layer SAE is
illustrated in Fig. 8. To train a SAE, four steps are usually
included.

(1) Train the AE1 with input x, and produce primary
code h1.
(2) Train the succeeded encoder AE2 with primary code h1

of the previous autoencoder.
(3) Combine the encoders of both AE1 and AE2 to con-

struct an SAE. An output layer should be added to form a
regression model.

(4) Fine-tune the entire network. Labeled samples such as
fault measurements and fault distances are used to train the
network in a supervised way.

C. PROPOSED METHOD
According to the aforementioned analysis, a µPMU-based
fault location method is proposed in this paper. It includes
two main steps: waveform similarity-based fault zone deter-
mination and SAE based fault distance calculation.

1) FAULT ZONE DETERMINATION
As discussed in Section II part A, the zero-sequence current
are similar when a fault is not included. The similarity which
is characterized by Pearson correlation coefficient C(x, y) is
used to discriminate the faulted zone from non-faulted ones.

FIGURE 9. Flow chart of fault distance calculation.

The definition of C(x, y) is shown in equation (8):

C(x, y) =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑
i=1

(xi − x̄)2
n∑
i=1

(yi − ȳ)2
(8)

where, xi and yi refer to the ith element in vector x and
vector y, respectively. x̄ and ȳ are the mean values of x and y.
The value of |C(x, y)| is between 0 and 1. Larger |C(x, y)|
suggests more similar waveforms.

When a fault occurs in the distribution network, the simi-
larity between zero-sequence currents measured by µPMUs
is calculated zone by zone, from the source to the load.
A threshold θ is adopted to identify the faulted zone. The first
zone with a |C(x, y)| smaller than θ is regarded to be faulted.

2) FAULT DISTANCE CALCULATION
With the voltage, current and phase information, the fault
distance can be deduced as shown in equation (5). The voltage
and current vectors measured by µPMUs on both sides of the
faulted section are used as the inputs of SAE. SAE model is
used in this paper to learn the mapping relationship between
µPMU measurements and fault distance. The fault distance
calculation procedure is displayed in Fig. 9. The mapping
relationship will be learned separately by SAE, and the fault
distance will also be calculated separately with the µPMU
measurements at each boundary. Since two main topologies:
single line and T shape, are considered, the middle point of
two calculated distance is selected to avoid the influence of
calculation error and grounding resistance.

III. IMPLEMENTATION
When a single-phase to ground fault occurs in the distribution
network, the µPMU measurements in this system will vary.
Fig. 10 shows the flowchart of the proposed location method.
As themost important step, the training of the SAEmodel will
affect the location performance. Therefore, the parameters
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FIGURE 10. Flowchart of proposed fault location method.

TABLE 1. Measurements used for fault distance calculation.

and structure of the proposed SAE model are discussed and
analyzed in the following content.

A. FAULT ZONE DETERMINATION
When single-phase to ground fault occurs in distribution
networks, zero-sequence measurements can be detected.
If continuous zero-sequence sampling points are detected,
for instance, three periods, the system is regarded to be
faulted. The waveform similarity coefficient |C(x, y)| of
zero-sequence currents will be calculated zone by zone from
source to load. The threshold value θ is selected according to
experimental results and field experiences. As the line length
is only a few kilometers, the similarity of zero-sequence
currents of non-faulted zone usually follows |C(x, y)| > 0.85.
When a single-phase-to-ground fault with zero grounding
resistance occurs, such coefficient would be |C(x, y)| < 0.3.
The threshold value θ should be within the range from 0.5 to
0.8. The median value of this range, 0.65 is thus selected to
be the value of similarity threshold θ .

B. DATA PROCESSING
The raw data collected by µPMUs should be processed and
normalized to eliminate the influences from magnitude, ini-
tial state, and other factors. According to the practical applica-
tion of µPMU, the sampling frequency is selected to be 5kHz
and the post-fault data of 0.05s will be recorded [22]. Differ-
ent from fault zone determination, phase voltage and phase
current is adopted in fault distance calculations. Table 1 lists
the measurements used in SAE-based fault distance calcula-
tion when a single-phase-to-ground fault occurs. For exam-
ple, the phase voltage VA and phase current IA will be used
when phase A is grounded.
As aforementioned in equation (5), the fault distance is

related to the phasor V̇M and İM , whose relationship can
be modeled with machine learning algorithms. SAE which
is effective in finding features in an unsupervised way is
adopted. As complex numbers, the phasor measurements V̇M

and İM cannot be used as the inputs of SAE directly, the values
of their real parts (V r , I r ) and imaginary parts

(
V i, I i

)
are

employed, as shown in equation (9).{
V r
= V cos θ, I r = I cos θ

V i
= V sin θ, I i = I sin θ

(9)

In order to eliminate the influence of the initial state,
only the fault increments are analyzed. The increments are
obtained according to equation (10), where V r

0 , V
i
0, I

r
0 , I

i
0 are

the initial vectors before fault occurrence.{
V r∗
t = V r

t − V
r
0 I r

∗

t = I rt − I
r
0

V i∗
t = V i

t − V
i
0 I i

∗

t = I it − I
i
0

(10)

Min-max normalization is adopted here to avoid the influ-
ence of magnitude. The value range of normalized vector is
between [0], [1]. The normalized voltage and current vectors
are combined together to form a fault transient vector g,
as shown in equation (11).

g =
[
V r∗
A ,V

i∗
A , I

r∗
A , I

i∗
A

]
(11)

Fig. 11 illustrates the original voltagemeasurementsVt , the
current measurements It , and the normalized fault transient
vectors g. It can be shown from Fig. 11(a) and Fig. 11(b),
the voltage and current vectors vary with fault distance. After
normalization, both voltage and current vectors are in the
same range and only the variation of their waveforms is
considered.

C. SAE NETWORK TRAINING
The aim to train an SAE model is to reduce the error between
calculated distance and actual fault distance. Training error
defined in equation (12) is a common criterion to measure
the performance of a trained network.

Eerror =
1
N

N∑
i=1

|pi − ti| (12)

where, N is the number of training samples, pi is the fault
distance calculated by the ith input, and ti is the ith actual fault
distance. Training error is used in the selection of network
architecture and functions to ensure better performance of
fault distance calculation.

1) SELECTION OF NETWORK ARCHITECTURE
The selection of SAE network architecture refers to two
aspects: the depth of network and the width of each layer.
To provide an end-to-end fault distance calculation model,
the size of the input and output layers should be the same
as the input vector, fault transient vector, and the output, fault
distance. So, the size of input layer is 1000, and the size of
output layer is 1. Only the number of hidden layers and the
size of each hidden layer should be determined here. A deeper
network could learn more complex mapping relationships
and larger amounts of data. Fewer units will be contained
in hidden layers and better generalization will be obtained
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FIGURE 11. Formation of fault transient vectors, (a) normalized currents,
(b) normalized voltages, (c) fault transient vectors.

TABLE 2. Training time and training errors with different depths.

in test sets. But it is not the deeper the better. A too large
or too deep network may result in time-consuming training
or overfitting. Properly selection of architecture is needed to
satisfy its application.

a: NUMBER OF HIDDEN LAYERS
In order to choose the number of hidden layers, four kinds
of network structures are roughly selected to test their per-
formances. The size of each hidden layer is only half of their
previous layer. The training error in equation (12) is used to
evaluate the performance. A mean error of 5 training results
are used to avoid the effect of random initial states, and are
listed in Table 2. Also, the mean training time of SAEs with
the same structure is considered.

As discussed before, the training time of the SAE network
increases with the number of layers. But the training error
does not decrease with the number of layers. It reaches a
minimum when the number of the hidden layers is 2, and
rises rapidly when the number of hidden layers continues
increasing. The SAE network with 2 hidden layers works

FIGURE 12. Training errors with different sizes of hidden layers.

better when its fitting capability matches the complexity of
the mapping task. So, the number of hidden layers is selected
to be two to balance the training time and the training error.

b: SIZE OF HIDDEN LAYERS
As 2 hidden layers are chosen, it is necessary to determine
the number of nodes S2 and S3 in the second and third
layers in the SAE network, respectively. Comparing training
errors is still a popular method in determining the size of
hidden layers [23]. The value of S3 should be smaller than
S2 to realize dimensional reduction. The changing step of the
hidden layer is set to be 5 to balance the training time and
performance. So, the range of S3 is from 10 to 1000, and the
range of S2 is from 5 to S3. All the possible numbers of S2 and
S3 are trained and the mean training error of 5 networks are
recorded. Fig. 12 shows the distribution of training errors of
all possible combinations of S2 and S3. The size of hidden
layers are finally determined to be S2= 435 and S3= 145 for
SAE1 ofµPMU at the source side. Similarly, the hidden layer
sizes of SAE2 of µPMU at the load side are selected to be
S2 = 485 and S3 = 165.

2) SELECTION OF FUNCTIONS
a: ACTIVATION FUNCTION
In SAE networks, the activation function maps the input of
the neutron to its output. A non-linear activation function
can help the network to fit non-linear mapping relationships
which are common in practical applications. Three non-linear
activation functions: sigmoid function, hyperbolic function
and rectified linear function are discussed here.

A sigmoid function is a mathematical function having a
sigmoid curve. A standard choice for a sigmoid function is
the logistic function defined by equation (13). The value of
the function f (z) is between 0 and 1. It is sensitive to the input
only when z is close to zero, and saturates quickly when z is
too large or too small. Gradient-based learning with sigmoid
function can be very difficult due to its wide saturation area.

f (z) =
1

1+ e−z
(13)

Hyperbolic functions (Than) are defined as combinations
of the exponential functions. A typical form of the hyperbolic
function is shown in equation (14), and its value also ranges
from 0 to 1. The derivation of the hyperbolic function is very
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FIGURE 13. Training errors of SAE with different activation functions.

large. In the back-propagation algorithms, the gradient update
with hyperbolic function is fast, but the vanishing gradient
problem still exists.

f (z) =
1− e−2z

1+ e−2z
(14)

Rectified linear function (Relu), which is defined in equa-
tion (15), overcomes the vanishing gradient problem, allow-
ing models to learn faster and perform better. But it cannot
activate inputs with zeros when gradient-based algorithms are
adopted. Also, the local minimum of cost functions cannot be
achieved.

f (z) = max {0, z} (15)

The training error curves of different activation functions
with the same iterations are shown in Fig. 13. For the appli-
cation of fault distance calculation, the sigmoid function
performs best. Its errors are smaller than those of the others,
and converge rapidly. The sigmoid function is thus used as
the activation function in this research.

b: LOSS FUNCTION
The cost function J (θ ) is used to measure the difference
between the predicted value and the actual value. Reducing
the value of cost function is the primary goal of SAE training.
Two typical definitions of cost functions are discussed here:
mean squared error and cross-entropy.

The mean squared error (MSE) measures the average of
the squares of the errors. As defined in equation (16), y is the
actual value, x is the input value, θ is the network parameter,
and f (x; θ ) is the prediction value.

J (θ) =
1
2
Ex,y∼p̂data ‖y− f (x; θ)‖

2 (16)

Cross-entropy is used to quantify the difference between
two probability distributions: the true distribution of outputs
y calculated with the input x, and the estimated probability
distribution y calculated with the maximum likelihood theo-
rem. It is defined as in equation (17).

J (θ) = −Ex,y∼p̂data log pmod el (y|x; θ) (17)

The training error of SAE networks with the same structure
but different activation functions are listed in Table 3. The
network performances better when cross-entropy is used as its
cost function. The training error of cross-entropy is smaller.

TABLE 3. Training errors of SAE with different cost functions.

FIGURE 14. Training error of SAE with different Regular coefficient.

FIGURE 15. Simulated distribution network.

Therefore, cross-entropy is used as the cost function for the
SAE model in this research.

c: REGULARIZATION COEFFICIENT
L2 regularization method is usually employed during SAE
training to avoid overfitting and improve generalization capa-
bility. A regularization item is added to the loss function,
as shown in equation (18):

J = J0 + L2 = J0 +
λ

2n

∑
ω

ω2 (18)

Here, the original cost function is denoted by J0, L2 is the
regularization item. It equals to the sum of network parameter
squares ω2 times regulation coefficient λ and divided by the
sample size n. The relationship between regulation coefficient
and training errors is shown in Fig. 14. Therefore, λ = 0.007
is selected as the regulation coefficient, according to Fig. 14.

IV. SIMULATION RESULTS AND COMPARISONS
To demonstrate the effectiveness of proposed method, a typ-
ical 10kV distribution network is modeled on the platform
of PSCAD. The simulation system is shown in Fig. 15. The
source voltage is 38.5kV, and the rated ratio of the trans-
former is 38.5kV/10.5kV. Bergeron model is adopted as line
models. This system is divided into 6 zones according to
the µPMU assignment principles in Section II part A. The
measuring points M1-M7 stand for µPMUs, where voltage
and current waveforms can be collected. Six single-phase to
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TABLE 4. Similarity coefficients of different faults.

TABLE 5. Simulation scenarios for training and test samples.

ground faults, F1 to F6, are simulated in each zone to test the
proposed method.

A. FAULT ZONE DETERMINATION
When a fault occurs, the waveform similarity between two
µPMU-based zero-sequence current measurements is calcu-
lated. The similarity is compared with an empirical thresh-
old which is chosen to be 0.75. The similarity coefficients
|C(x,y)| of different faults are listed in Table 4. Clearly,
the waveform similarity is higher when the fault is not
included in the analyzed zone, and it will drop greatly when
the analyzed zone is a faulted one. The proposed waveform
similarity-based fault zone determination is effective to find
the faulted zone.

B. FAULT DISTANCE CALCULATION
Once the faulted zone is determined, fault distance is needed
to be found out. The trained SAEs analyze the µPMU-
based fault transient vectors of both zone boundaries. To train
and test the proposed SAE-based fault distance calculation
method, 480 training samples and 90 test samples are gener-
ated. The simulation parameters are listed in Table 5.

The location results are evaluated with the fault location
error defined in equation (19) [24]. Here, LMN is the line
length between two µPMUs, Lesti represents the calculated
fault distance, and Lact stands for the actual fault distance.

Error(%) =
|Lesti − Lact |

LMN
× 100 (19)

TABLE 6. Location results based on SAE.

TABLE 7. Location results with different number of branches.

The location results are shown in Table 6. The average
error of all test samples is 1.41% and the maximum error
is 2.43%. That means the maximum location error distance
would be around 2 meters, if the total length of faulted zone is
1 kilometer. This error is acceptable in practical applications.

C. EFFECT OF BRANCHES
As described in Fig.9, the proposed method is designed
to pinpoint phase-to-ground faults in the faulted section
with single branch and ‘‘T’’ shape interconnection. Since
load branches are usually included in distribution networks,
the effect of multiple branches or missing of µPMU-based
measurements should also be discussed. Here, the loca-
tion performance of proposed method up to 4 branches
are studied, including single branch (1 branch), ‘‘T’’ shape
(3 braches), ‘‘5’’ shape (5 branches), and ‘‘T5’’ shape
(7 branches). Samples in Table 6 are used to estimate the
mean and maximum errors of location method with no
more than three branches. Zones 1, 4, 6 are regarded to be
one-branch sections and zones 2, 3, 5 are regarded to be
three-branch sections. Section 2 and section 3 are com-
bined together to form a five-branch section, while sections
2, 3, 4 and 5 form a seven-branch section. The proposed
SAE-based location method is implemented for the five-
branch section and the seven-branch section. The location
results are listed in Table 7. With the increase of the number
of branches, the location performance of the proposedmethod
decreases. When 7 branches are included in a faulted section,
the mean location error reaches 7.4%, and the maximum error
increases to 9.35%. These errors are very large. Additional
methods should be applied to improve the location accuracy.

D. EFFECT OF NOISES
In practical applications, the µPMU-based measurements
are often polluted by noises, for example, the operating
surges from breakers or switches, harmonics from electronic
devices, and background Gaussian noises. As the most com-
mon noise in measured signals, the effect of Gaussian white
noise on the performance of the proposed fault distance cal-
culation method is discussed under different signal-to-noise
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TABLE 8. Location results with different SNRs.

TABLE 9. Comparisons between proposed method and existing ones.

ratios (SNRs). The location results of the SAE-based method
are shown in Table 8. The location errors, both mean error
and maximum error, increase with the drop of SNRs. The
proposed method is still effective when SNR is no less than
40dB. But when SNR continues dropping, the location errors
become worse. When the SNR drops to 20 dB, the maximum
location error reaches 9.17%. It means the location error
distance will be around 90 meters if the total line length
is 1 kilometer. In this case, denoising algorithms should be
added to improve the location accuracy if SNR is lower than
40dB.

E. COMPARISONS
To demonstrate the performance of proposed method,
the location results of the proposed method are compared
with two existing popular methods: impedance-based method
and BP (back-propagation) neural network-based method.

A single-ended impedance-based method is a traditional
fault location method [25]. The capacitance to ground of
distribution transmission lines is ignored. Only line resistance
and line inductance are kept. This method is usually used
when grounding resistance is zero, as in equation (5) when
γ equals to zero. Otherwise, the location error is large.
As the most popular machine learning model, BP neural

network was often used in solving regression problems such
as fault location. In this research, a BP neural network is used.
Its architecture is the same as that of the proposed SAE. The
same activation function and training algorithm are used.

The location results of these three methods are listed
in Table 9.

The location results of the proposed method are better
than traditional popular ones. Both the mean error and the
maximum error of the proposed method are smaller. The
impedance-based method is effective when grounding resis-
tance is zero. But when the effect of grounding resistance is
considered, the location error increases. Also, the accuracy of
the line parameter will affect the location result. Especially,
when the line parameter is inaccurate in practical applica-
tions, the location error cannot be ignored. Although BP

neural network is good at learning non-linear relationships, its
supervised learning algorithm cannot fit complex problems
effectively.

V. CONCLUSION
In this paper, a single-phase-to-ground fault location method
for distribution networks has been proposed. This method
includes waveform similarity-based fault zone determination
and SAE based fault distance calculation. With the prop-
erly assignment of µPMUs, the distribution network can be
divided into separate zones. Once a single-phase-to-ground
fault is detected, the faulted zone can be found out by com-
paring the similarity of zero-sequence current waveforms at
the zone boundaries. SAE network is then trained and used
to calculate the fault distance and pinpoint the fault with
µPMU measurements at both ends. Different from tradi-
tional location methods, the phase information provided by
µPMUs is used to improve location accuracy. The end-to-
end unsupervised learning model can extract features from
raw data and avoid the empirical misjudgments from experts.
By properly dividing distribution networks, fully exploring
µPMUmeasurements, and extractingmore effective features,
the proposed method has better performance in pinpointing
single-phase-to-ground faults in distribution networks and
provides a way for more effective use of end-to-end unsu-
pervised learning models in power systems.
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