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ABSTRACT Gravitational search algorithm (GSA) inspired from physics emulates gravitational forces to
guide particles’ search. It has been successfully applied to diverse optimization problems. However, its
search performance is limited by its inherent mechanism where gravitational constant plays an important
role in gravitational forces among particles. To improve it, this paper uses chaotic neural oscillators to
adjust its gravitational constant, named GSA-CNO. Chaotic neural oscillators can generate various chaotic
states according to their parameter settings. Thus, we select four kinds of chaotic neural oscillators to form
distinctive chaotic characteristics. Experimental results show that chaotic neural oscillators effectively tune
the gravitational constant such that GSA-CNO has good performance and stability against four GSA variants
on functions. Three real-world optimization problems demonstrate the promising practicality of GSA-CNO.

INDEX TERMS Chaotic neural oscillator, chaotic state, gravitational constant, gravitational search
algorithm.

I. INTRODUCTION
Metaheuristic algorithms have been attracting more and
more attention for addressing various optimization pro-
blems [1]–[3]. They possess novel search mechanisms with-
out precise mathematical calculation to find global optimal
solutions. Thus, they can resolve several complicated and dif-
ficult problems, such as multi-objective optimization [4], [5],
dynamic optimization [6], [7], classification and predic-
tion [8], [9]. Their successful applications have verified their
good effectiveness and efficiency.

Metaheuristic algorithms can be classified into three
categories: biology-based algorithms, physics-based
algorithms and geography-based algorithms. Biology-based
algorithms are inspired from natural evolution and biolog-
ical behaviors, which consist of swarm-based algorithms
and evolution-based algorithms. Swarm-based algorithms
mimic cooperative behaviors of social nature, such as
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ant colony optimization (ACO) [10] and particle swarm
optimization (PSO) [11]. A swarm consists of many distinc-
tive individuals and shows global social behaviors without
central control. Individuals in a swarm are relatively sim-
ple whereas their collaboration can exert remarkable effect
to handle different missions. Evolution-based algorithms
are inspired from biological evolution. Biological operators
including natural selection, crossover and mutation are intro-
duced into algorithms to improve their search abilities. Thus,
these algorithms have learning, adaptive and evolutionary
capabilities, such as genetic algorithm (GA) [12], evolu-
tionary programming (EP) [13] and differential evolution
(DE) [14]–[17]. Physics-based algorithms are designed from
physical phenomenon and rules, such as simulated annealing
(SA) [18] and GSA [19]. Geography-based algorithms are
to search space according to geography, such as Tabu search
(TS) [20] and imperialistic competition algorithm (ICA) [21].
These algorithms have two crucial properties, i.e., explo-
ration and exploitation. Exploration means that algorithms
sufficiently search an entire space without trapping into
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local optima. Exploitation indicates that algorithms further
optimize the search space in order to find a better solution.
To obtain better results, the balance between exploration
and exploitation should be considered. Consequently, numer-
ous researchers focus on them to improve performances of
algorithms.

As a metaheuristic algorithm, GSA is proposed from the
concept of gravity. It endows gravitational forces, masses,
accelerations to particles. Particles emulate the law of gravity
to implement their search. GSA has shown great potential
in the field of optimization and engineering [22]. Its various
variants have been devised from the perspective of operators.
In [23], a disruption operator was proposed to improve the
search ability of GSA. In [24], two mutation operators were
used to alleviate the premature convergence of GSA. In [25],
an orthogonal crossover operator was used to accelerate the
convergence of GSA. In [26], a niching operator was pro-
posed to enable GSA to find multiple solutions. In [27],
chaotic operators were utilized to enhance the performance of
GSA. Besides, Kepler operator [28], escaping operator [29]
and repulsive operator [30] were introduced to optimize parti-
cles’ positions. These operators effectively improve particles’
movements.

In addition to operators, diverse strategies can also
strengthen GSA. Self-adaptive strategies use adaptive meth-
ods to adjust current conditions of GSA. In [31], particles
self-adaptively selected two updating methods to obtain opti-
mal solutions. In [32], an adaptive alpha was calculated via
particles’ states and positions. In [33], hyperbolic functions
were used to adaptively adjust acceleration coefficients, grav-
itational constant and several best particles. Chaotic strategies
adopt chaotic ergodicity and stochasticity to optimize parti-
cles’ search ranges. In [34], chaotic maps were used to adjust
the gravitational constant. In [35], chaotic local search was
employed to further exploit global optimal solutions. Hybrid
strategies apply characteristics of several approaches to tackle
the limitation of GSA. In [36], PSO was used to improve the
search ability of GSA. In [37], dynamic multi-swarm PSO
and GSA were hybridized to enhance the performance of
algorithm. In [38], an opposition-based learning method was
combined with GSA. In [39], quantum mechanics theories
were applied to GSA to prevent its premature convergence.
In [40], a hierarchical structure was embedded into GSA.
An incremental social learning structure was also added into
GSA for high-dimensional functions [41]. In [42], neural
network and fuzzy system were used to adjust the alpha value
of GSA. The alpha value was also tuned via a fuzzy controller
optimized by GA, PSO and DE [43]. In [44], a quasi-Newton
method was added into a chaotic GSA. These strategies help
GSA overcome own disadvantages such that its performance
is enhanced.

For different optimization problems, GSA variants have
continuous, discrete and mixed types. Continuous type with
real-valued variables can resolve real problems [19], [45],
dynamic constrained problem [46], multi-modal and
multi-objective problems [24], [26]. Discrete type with

discrete values can address binary problem [47], graph
planarization problem [48] and knapsack problem [49].
Mixed type can tackle problems with both continuous and
discrete variables [50], [51]. Furthermore, GSA has been
applied to many engineering problems such as design of
type controllers [52], exergy efficiency of geothermal power
plants [53], wind power system [54], Internet of Things [55]
and image segmentation [56], [57]. These wide applications
show the potential power of GSA.

Although GSA can successfully optimize various prob-
lems, its search ability is limited by its own mechanism.
To improve its performance, we use four kinds of chaotic
neural oscillators to tune its gravitational constant, respec-
tively. Outputs of chaotic neural oscillators show distinctive
chaotic states, which effectively controls changes of gravi-
tational forces. Thus, particles’ search abilities are notably
enhanced. Four chaotic neural oscillators are firstly measured
on twenty-nine CEC2017 benchmark functions to determine
the best one for improving GSA. Then, our proposed method
GSA-CNO compares with four GSA variants to further verify
the effect of chaotic neural oscillators. Finally, we apply
GSA-CNO to three real-world optimization problems to show
its practicality.

The contributions of this paper can be summarized as
follows: (1) We innovatively use chaotic neural oscillators to
tune the gravitational constant such that GSA has significant
improvement. (2) Various chaotic states of chaotic neural
oscillators provide a novel transition between exploration and
exploitation processes in GSA. (3) Experiments demonstrate
that chaotic neural oscillators are more effective than chaotic
maps for adjusting the gravitational constant. (4) Our pro-
posed algorithm has practicality for some real-world opti-
mization problems.

The rest of this paper is organized as follows. Section II
introduces original GSA. Section III presents our
proposed GSA-CNO. Section IV carries out several experi-
ments to analyze the performance of GSA-CNO on functions
and real-world optimization problems. Section V summarizes
this paper and gives some future work.

II. GSA
As a physics-based algorithm, GSA emulates the law of grav-
ity to achieve mutual attraction among particles. High-mass
particles attract low-mass ones to move towards them accord-
ing to their gravitational forces. This principle effectively
guides particles’ search and movement. Good particles have
high masses and appropriate positions such that the others
can be attracted. Optimal solutions are gradually improved
by particles’ movement with iterations.

In GSA, a population has N particles. Each particle is
expressed as Xi = (x1i , . . . , x

d
i , . . . , x

D
i ), i ∈ {1, 2, . . . ,N }

whereD is dimension. Gravitational force Fdij (t) between two
particles Xi and Xj is described as

Fdij (t) = G(t)
Mi(t)×Mj(t)
Rij(t)+ ε

(xdj (t)− x
d
i (t)) (1)
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whereG(t) is a gravitational constant.Mi(t) andMj(t) are two
particles’ masses. Rij(t) is the Euclidean distance between
them and ε is a small constant. The gravitational constantG(t)
is defined as

G(t) = G0 × e−α
t
T (2)

where G0 is an initial value and α is a coefficient. T is maxi-
mum iteration count. Each particle’s massMi(t) is expressed
as

mi(t) =
fi(t)− fw(t)
fb(t)− fw(t)

(3)

Mi(t) =
mi(t)∑N
l=1 ml(t)

(4)

where fi(t) is fitness value. fw(t) and fb(t) are the worst and
best fitness values, respectively. Since each particle Xi is
attracted by others, its overall gravitational force Fdi (t) is
obtained as

Fdi (t) =
∑

j∈Kbest ,j 6=i

randj · Fdij (t) (5)

where randj is a random value in the interval (0,1).
Kbest indicates the first K best particles and K is linearly
decreased with iteration t . Thereafter, each particle’s accel-
eration adi (t), velocity v

d
i (t + 1) and position xdi (t + 1) are

calculated as

adi (t) =
Fdi (t)

Mi(t)
(6)

vdi (t + 1) = randi · vdi (t)+ a
d
i (t) (7)

xdi (t + 1) = xdi (t)+ v
d
i (t + 1) (8)

where randi is a random value in the interval (0,1).

III. PROPOSED GSA-CNO
A. CHAOTIC NEURAL OSCILLATORS
Artificial neural networks use simple artificial neurons to
simulate neural behaviors. Researchers have found that
chaotic neural behaviors can be generated between excitatory
and inhibitory neurons [58]. Thus, various chaotic neural
models are proposed, such as chaotic oscillators [59], [60]
and chaotic neural networks [61], [62]. These models can be
applied to many complex problems such as pattern recogni-
tion and scene analysis [63], [64]. Chaotic neural oscillators
show their powerful capabilities.

Recently, Lee-oscillator with retrograde signaling is a
distinctive chaotic model [61]. It consists of four neurons,
described as follows:

W (t) = tansig(I (t)) (9)
L(t) = (V (t)− U (t)) · e−kI

2(t)
+W (t) (10)

U (t + 1) = tansig(a1 · L(t)+ a2 · U (t)− a3 · V (t)

+a4 · I (t)− θu) (11)
V (t + 1) = tansig(b1 · L(t)− b2 · U (t)− b3 · V (t)

+b4 · I (t)− θv) (12)

tansig(t) =
1− e−2t

1+ e−2t
(13)

where W (t), L(t), U (t) and V (t) indicate input, output,
excitatory and inhibitory neurons, respectively. k is a coef-
ficient. ai and bi are weights of corresponding neurons.
θu and θv are thresholds of excitatory and inhibitory neurons.
I (t) ∈ [−1, 1] is an input signal and tansig(t) denotes a
hyperbolic tangent sigmoid function.

Compared with other oscillators, Lee-oscillator with ret-
rograde signaling has more chaotic states owing to its var-
ious parameter settings. Chaotic shapes and regions can be
obtained by tuning parameters. A wide chaotic region can
more effectively process intermediate information. Mean-
while, the number of iterations that a chaotic region needs is
small such that its computational time is low. Based on these
characteristics, Lee-oscillator with retrograde signaling can
show a transient-chaotic attribute for temporal information
processing.

B. GSA-CNO
Although GSA is an effective algorithm for many prob-
lems, it has low search ability and premature convergence.
GSA uses gravitational forces among particles to guide
the search direction of population. Thus, their gravitational
forces play a crucial role in the search process. However,
a gravitational constant considerably influences the gravita-
tional force. More specifically, a great value of gravitational
constant means a large gravitational force, which can lead
to a large search range of particle. In other words, its search
ability is improved. GSA adopts an exponential gravitational
constant to control the gravitational force. In fact, it cannot
guarantee sufficient exploration ability of particles owing to
its fast decay. Meanwhile, exploitation ability of particles
is also declined. Hence, premature convergence is prone to
occur.

To address these disadvantages, we apply chaotic neu-
ral oscillators to adjust the gravitational constant. Based
on Lee-oscillator with retrograde signaling, a normalization
method is used to modify it as

Z (t) =
d − c
b− a

× (L(t)− a)+ c (14)

where a and c indicate lower bounds of two intervals. b and
d denote upper bounds of two intervals. Values of L(t) are
mostly in the interval [−1, 1]. Eq. (14) can map them into
other intervals. In this paper, we set a = −1, b = 1, c = 1
and d = 0 to obtain values of Z (t). New gravitational constant
is calculated as

G(t) = G0 × Z (t) (15)

According to different parameter settings of Lee-oscillator
with retrograde signaling [61], we adopt four kinds of
chaotic neural oscillators, i.e., CNO1, CNO2, CNO3 and
CNO4, to control the gravitational constant, respectively.
Their parameter settings are listed in Table 1. Their graphs
are plotted in Fig. 1. It should be noted that iteration t is
equivalent to the input signal I (t) via normalization. From
Fig. 1, four chaotic neural oscillators show different chaotic
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TABLE 1. Parameter settings of four chaotic neural oscillators.

FIGURE 1. Graphs of four chaotic neural oscillators over 3000 iterations.

states over 3000 iterations. Moreover, they only generate
chaos in intermediate regions. Fig. 2 displays their chaotic
states in detail. From the viewpoint of time, CNO1 has a
long chaotic period whereas CNO3 has a short one. From
the viewpoint of change, CNO4 has a big chaotic amplitude
whereas CNO1 has a small one. These four oscillators use
own characteristics to tune the gravitational constant in order
to improve the performance of GSA. Therefore, GSA-CNO
is formed. Its pseudocode is given in Algorithm 1.

Comparedwith GSA, GSA-CNO uses chaotic neural oscil-
lators to tune the gravitational constant such that its search
ability is significantly improved. To be specific, an exponen-
tial gravitational constant in GSA decays quickly. Thus, GSA
has insufficient time to explore an entire search space due
to its small gravitational force. Furthermore, in a late search
process, this exponential gravitational constant approximates
zero. It cannot provide effective support for exploitation abil-
ity of GSA. However, for GSA-CNO, chaotic neural oscilla-
tors can maintain a great value of gravitational constant in a
long period. It means that particles have large gravitational
forces and sufficient time to search more regions. Hence,
the exploration ability of algorithm is strengthened. In a
late search process, chaotic neural oscillators still generate
effective values to enable gravitational forces to guide par-
ticles. Accordingly, the exploitation ability of algorithm is

FIGURE 2. Chaotic states of four chaotic neural oscillators in intermediate
regions.

Algorithm 1 GSA-CNO
Input: Parameters N , D, G0, T , a1 − a4, θu, b1 − b4, θv,

k
Output: Optimal solution

1 Initialization: Randomly generate N initial particles;
2 while Termination criterion is not satisfied do
3 for i = 1 to N do
4 if Particle Xi is beyond the boundary then
5 Randomly reinitialize overstepping positions

of particle Xi;

6 for i = 1 to N do
7 Evaluate the fitness fi(t) of particle Xi ;

8 for i = 1 to N do
9 Calculate the mass Mi(t) of particle Xi according

to Eqs. (3) and (4);

10 Calculate the gravitational constant G(t) according
to Eqs. (9)-(15);

11 Determine the K best particles as a set Kb ;
12 for i = 1 to N do
13 for j = 1 to K do
14 Calculate the gravitational force between

particle Xi and particle Kbj according to
Eqs. (1) and (5);

15 for i = 1 to N do
16 Update velocity and position of particle Xi

according to Eqs. (6)-(8);

17 t = t + 1;

also improved. Besides, chaotic neural oscillators have a dis-
tinctive attribute where chaos is generated in an intermediate
search process. They use chaotic states to innovatively pro-
vide a period of transition between exploration and exploita-
tion processes. Based on these differences, GSA-CNO
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TABLE 2. Experimental and statistical results of GSA with four chaotic neural oscillators on twenty-nine CEC2017 benchmark functions with
30 dimensions.

effectively enhances its performance. In addition, GSA-CNO
has the same computational time complexity O(N 2) as GSA
where N is population size. Thus, GSA-CNO is an effective
and efficient algorithm.

C. CHARACTERISTICS OF GSA-CNO
GSA-CNO has three primary characteristics: (1) Its gravi-
tational constant has continuity and discreteness. In a early
or late search process, chaotic neural oscillators generate
single values to adjust the gravitational constant, which shows
its continuity. In an intermediate search process, chaotic
gravitational constant exhibits its discreteness. (2) Its grav-
itational constant overall shows a sequentially decreasing
process. Chaotic systems such as chaotic maps generally
are unordered and random, but chaotic neural oscillators not
only generates chaos but also maintains sequential changes
of gravitational constant. (3) Chaotic gravitational constant
offers the transition between exploration and exploitation
processes. Chaos only improves the diversity of search behav-
ior in the intermediate search process. It does not influence
the exploration in a early search process and the exploitation
in a late one. Thus, based on these three characteristics,
GSA-CNO effectively controls its gravitational constant and
reinforces its search ability.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
Twenty-nine CEC2017 benchmark functions (F1-F29) are
used to test performances of algorithms. F1-F2 are unimodal.
F3-F9 are multimodal. F10-F19 are hybrid. F20-F29 are com-
position. Search space of functions is [−100, 100]D where
D is dimension. Population size is 100. Initial gravitational
constant G0 is 100. Maximum number of function evalua-
tions (NFEs) is 10000 ∗ D. Algorithms are run 30 times on
each function. Experimental results are mean and standard
deviation of optimization errors between obtained optimal
solutions and known global ones. Their best values are

TABLE 3. Parameter settings of four GSA variants.

highlighted in boldface. Statistical results are calculated by
Wilcoxon rank-sum test at a significant level α = 0.05.
Wilcoxon rank-sum test is a nonparametric test for equality
of population medians of two independent samples. It is
equivalent to a Mann-Whitney U-test [65]. Its alternative
hypothesis is that the distribution of one sample is smaller
or greater than the other. U is the number of times where
a y precedes an x in an ordered arrangement of elements
in two independent samples X and Y , calculated as UX =
RX −

nX (nX+1)
2 and UY = RY −

nY (nY+1)
2 where RX and

RY are the sum of ranks in two samples. nX and nY are
sizes of two samples. The smaller value between UX and
UY is used to consult significance tables. According to
p-value, the significant difference between two samples can
be obtained. In our statistical results, symbol + indicates
that the main algorithm is better than the comparative one.
Symbol − denotes the opposite situation. Symbol ∼ reveals
that two algorithms have no significant difference.
w/t/l shows the number of win, tie and lose between two
algorithms according to statistical results. All experiments
are programmed by Matlab software on PC with 3.30GHz
Intel(R) Core(TM) i5 CPU and 8GB RAM.

B. COMPARISON FOR GSA-CNOS
We firstly evaluate four kinds of GSA-CNOs on twenty-nine
CEC2017 benchmark functions with 30 dimensions. Exper-
imental results in Table 2 show that they obtain the best
mean on different functions, respectively. According to sta-
tistical results, GSA-CNO1 is slightly better than the others.
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TABLE 4. Experimental and statistical results of five GSA variants on twenty-nine CEC2017 benchmark functions with 30 dimensions.

TABLE 5. Experimental and statistical results of five GSA variants on twenty-nine CEC2017 benchmark functions with 50 dimensions.

The fact that four GSA-CNOs have similar results is expected
because they only have different chaotic states in the inter-
mediate search process. However, owing to their different
chaotic states, GSA-CNO1 performs relatively better. It may
be because chaos of CNO1 has a long period and small ampli-
tudes to produce more effective gravitational forces. Thus,
it can find better solutions on some functions. Despite these
four GSA-CNOs overall improve their search performances
and have similar results, we regard GSA-CNO1 as the best
method.

C. COMPARISON FOR GSA VARIANTS
To further verify the performance of GSA-CNO1, four GSA
variants including GSA [19], CGSA [34], PSOGSA [36] and

CGSA-M [35] are adopted. Their comparisons are conducted
on twenty-nine CEC2017 benchmark functions with 30 and
50 dimensions, respectively. Parameter settings of four GSA
variants are listed in Table 3. Experimental results are shown
in Tables 4 and 5.

In Table 4, GSA-CNO1 has the best mean on 20 functions.
According to statistical results, GSA-CNO1 is significantly
better than GSA, CGSA, PSOGSA and CGSA-M on 28,
19, 19 and 28 functions, respectively. It demonstrates that
GSA-CNO1 has better performance on functions with
30 dimensions.

In Table 5, GSA-CNO1 obtains the best mean on
21 functions. w/t/l manifests that GSA-CNO1 remarkably
outperforms GSA, CGSA, PSOGSA and CGSA-M on 27,
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FIGURE 3. Box-and-whisker diagrams of optimal solutions obtained by five GSA variants on F9, F15 and F28 with 30 and 50 dimensions.

22, 20 and 27 functions, respectively. It still indicates the
superiority of GSA-CNO1 on functions with 50 dimensions.

From Tables 4 and 5, we can give some remarks as follows:
(1) The comparison between GSA-CNO1 and GSA veri-
fies the effectiveness of chaotic neural oscillators for tuning
gravitational constant. Chaotic neural oscillators are better
than an exponential function to adjust gravitational forces.
GSA-CNO1 significantly enhances its search performance.
(2) The comparison between GSA-CNO1 and CGSA indi-
cates that chaotic neural oscillators are better than chaotic
maps. CGSA combines ten chaotic maps with gravitational
constant to improve its performance where Sinusoidal map
is the best [34]. However, GSA-CNO1 performs better than
CGSA, suggesting that chaotic neural oscillators are more
effective. (3) The comparison between GSA-CNO1 and
PSOGSA denotes that the method of chaotic neural oscil-
lators to control gravitational constant is superior to that of
using global best individual tomanage the population. (4) The
comparison between GSA-CNO1 and CGSA-M illustrates
that adjusting gravitational constant via chaotic neural oscil-
lators outperforms using chaotic local search to improve the
performance of GSA. The comparison among GSA-CNO1,
PSOGSA and CGSA-M also reveals that adjusting the inher-
ent property of GSA may be more reliable than employing
external auxiliaries.

Fig. 3 plots box-and-whisker diagrams of optimal solutions
obtained by fiveGSAvariants on F9, F15 and F28with 30 and
50 dimensions. Horizontal axis indicates five algorithms and
vertical axis denotes values of optimal solutions. In Fig. 3,
we can see that PSOGSA has the largest distribution of
optimal solutions on three functions, implying that it is the
most unstable. However, GSA-CNO1 has relatively small

distribution of optimal solutions and its medians are smaller
than other four GSA variants’. Thus, GSA-CNO1 has more
stable and better performance.

Fig. 4 depicts convergence graphs of average fitness values
obtained by fiveGSAvariants on F8, F17 and F29with 30 and
50 dimensions. Horizontal axis indicates NFEs and vertical
axis denotes log value of average fitness. From Fig. 4, we can
observe that GSA, PSOGSA and CGSA-M have premature
convergence whereas GSA-CNO1 and CGSA show gradual
convergence on three functions. It illustrates that adjusting
gravitational constant can alleviate premature convergence.
In addition, average fitness values of GSA-CNO1 are smaller
than CGSA’s, suggesting that chaotic neural oscillators are
better than chaotic maps for tuning gravitational constant.

D. THREE REAL-WORLD OPTIMIZATION PROBLEMS
To verify the practicality of GSA-CNO1, three real-world
optimization problems from CEC2011 are used. They are
Lennard-Jones potential problem (LJPP), optimal control
of a non-linear stirred tank reactor (OCNLSTR) and trans-
mission network expansion planning problem (TNEPP).
LJPP is the minimization of molecular potential energy
with Lennard-Jones cluster. OCNLSTR is the optimal con-
trol of chemical reaction in a non-linear stirred tank reac-
tor. TNEPP is to construct the set of transmission lines to
minimize the cost of expansion plan and produce no over-
loads. Their specific descriptions and configurations can
be referred in reference [66]. Five GSA variants are tested
on these three problems. Experimental results are listed
in Tables 6, 7 and 8 whereMean, Std, Best andWorst indicate
mean value, standard deviation, minimum value and maxi-
mum value, respectively.
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FIGURE 4. Convergence graphs of average fitness values obtained by five GSA variants on F8, F17 and F29 with 30 and 50 dimensions.

TABLE 6. Experimental results of five GSA variants on LJPP.

TABLE 7. Experimental results of five GSA variants on OCNLSTR.

In Table 6, CGSA and PSOGSA obtain the minimum value
−28.42whereas GSA-CNO1 has the best mean value−25.57
on LJPP. It manifests that although CGSA and PSOGSA
can find the best solution, GSA-CNO1 is more stable than
them according to mean value. In Table 7, CGSA obtains the
minimum value 13.93 and GSA-CNO1 has the best mean
value 15.57 on OCNLSTR. It also shows good stability
of GSA-CNO1. In Table 8, five algorithms find the mini-
mum value 220 whereas GSA-CNO1 still has the best mean
value 222.30. Meanwhile, standard deviation of GSA-CNO1
is far smaller than the others’, which further highlights its
effectiveness. These three real-world optimization problems
reflect good stability and performance of GSA-CNO1 and
demonstrate its promising practicality.

TABLE 8. Experimental results of five GSA variants on TNEPP.

V. CONCLUSION
A gravitational search algorithm with chaotic neural
oscillators (GSA-CNO) is proposed to improve its search
performance. Chaotic neural oscillators effectively adjust
the gravitational constant to enhance gravitational forces
among particles. Chaotic states provide a transition between
exploration and exploitation processes. Thus, GSA-CNO
significantly reinforces its property. Experiments verify supe-
rior performance of GSA-CNO against other GSA variants
on functions and three real-world optimization problems.
Besides, its computational time complexity is the same as
original GSA.We can conclude that GSA-CNO is an effective
and efficient algorithm.

This paper shows four valuable points. Firstly, we expand
applications of chaotic neural oscillators on metaheuristic
algorithms. To our knowledge, chaotic neural oscillators
are firstly attempted to improve algorithms in this paper.
Secondly, we illustrate that own parameters of GSA such as
gravitational constant can considerably influence its perfor-
mance. Compared with an original GSA, chaotic neural oscil-
lators can better adjust the gravitational constant such that
exploration and exploitation abilities of GSA are significantly
enhanced. Thirdly, we provide a novel inspiration where
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chaos can be used to be a transition between exploration and
exploitation processes. Fourthly, we demonstrate that chaotic
neural oscillators are more effective than chaotic maps for
tuning the gravitational constant.

In the future work, several investigations could be consid-
ered as follows: (1) Gravitational constant could be controlled
by other effective strategies to further improve the search per-
formance of GSA. (2) Gravitational forces among particles
could attempt to be enlarged by some interactive mechanisms
to enhance particles’ exploration and exploitation ability.
(3) Chaotic neural oscillators could be added into other
metaheuristic algorithms to diversify their search behaviors.
(4) New GSA variants should be proposed to optimize com-
plex engineering applications such as type controllers [67]
and switched-mode power converters [68], [69].
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