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ABSTRACT Aiming at improving the tracking performance of the delta-generalized labeled multi-Bernoulli
(δ-GLMB) filter, we present a one time step lagged δ-GLMB smoother in this work, which also inherently
outputs targets trajectories and differs from the Probability hypothesis density (PHD),Multi-Bernoulli (MB),
and Cardinalized probability hypothesis density (CPHD) smoothers that are incapable of generating target
trajectories directly. Under the standard multitarget measurement likelihood and state transition kernel,
we show that a δ-GLMB distributed multitarget filtering density would result in a same distributed one
time step lagged multitarget smoothing density. An efficient implementation of the proposed smoothing
algorithm using the standard ranked assignment technique is also given. Numerical results show that the
proposed smoother is capable of tracking a time-varying number of targets, in the presence of measurement
origin uncertainty, target detection uncertainty, and clutter, and show that the proposed smoother outperforms
the δ-GLMB filter, and the PHD, MB, and CPHD smoothers of the same time lag on both the estimates of
target number and state and it also outperforms the LMB and the approximated δ-GLMB smoothers of the
same time lag on target number estimate.

INDEX TERMS Delta-generalized labeled multi-Bernoulli, multitarget tracking, random finite set,
smoothing.

I. INTRODUCTION
The objective of multitarget tracking (MTT) is to estimate the
number of targets and their states jointly using measurements
provided by sensors, such as radar, sonar, and infrared [1], [2].
Driven by aerospace applications [3], MTT has also found
applications in other areas such as image processing [4],
automatic vehicles [5], biomedical research [6], etc. The
main challenges in MTT are various uncertainties, such as
measurement origin uncertainty, target detection uncertainty,
and target number uncertainty [1], [2].

To handle the uncertainties in MTT, a lot of approaches
[1]–[3], [7] have been proposed. To date, three major
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approaches to MTT exist. They are multiple hypothe-
sis tracking (MHT) [8], joint probabilistic data associa-
tion (JPDA) [9], and random finite set (RFS) [7]. The RFS
approach provides a systematic and elegant Bayesian for-
mulation for MTT, in which the collection of target state is
treated as an RFS.

The core of the RFS approach is the Bayes multiobject
filter [7], which recursively propagates the multiobject filter-
ing density forward in time. However, due to its numerical
complexity, the optimal Bayes multiobject filter is generally
computationally intractable [7]. Approximations such as the
probability hypothesis density (PHD) filter [10], cardinalized
PHD (CPHD) filter [11], multi-Bernoulli filters [7], [12], and
the more recently Poisson multi-Bernoulli mixture (PMBM)
filter [13], [14] have been proposed as tractable solutions.
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Nevertheless, these Bayes multiobject filters do not produce
trajectory estimates directly, and they need other techniques,
such as [15] for the PHDfilter, to acquire trajectory estimates.

Based on the labeled RFS [16], a Bayes multitarget track-
ing filter called delta-generalized labeled multi-Bernoulli
(δ-GLMB) filter was proposed in [17]. The δ-GLMB filter
models the targets states using labeled RFS, which makes the
targets states distinguishable across multiple time steps and
leads to its trajectory generation capability. It is a computa-
tionally tractable exact-closed-form solution of the multitar-
get Bayes filter [18]. The δ-GLMB filter rests on the premise
that the δ-GLMB density is a multiobject conjugate prior
with respect to the multitarget measurement likelihood and is
also closed under the Chapman-Kolmogorov prediction equa-
tion [16]. Implementation that avoids the super-exponentially
growing number of filtering components is given in [17].
A computational efficient implementation of the δ-GLMB
filter that combines the prediction and update into a single
step is detailed in [19]. Principled approximations of the
δ-GLMB filter that preserve the key statistical properties
of the full multitarget density were also proposed to fur-
ther reduce the numerical complexity, which includes the
labeled multi-Bernoulli (LMB) filter [20] and the marginal-
ized δ-GLMB filter [21]. The δ-GLMB filter has inspired
much work, such as multitarget tracking with merged mea-
surements [22], extended target [23], and generic observa-
tion model [24]. More recently, unlabeled solutions that also
output targets trajectories using the so-called sets of trajecto-
ries are also presented [25], [26]. Those Bayes multiobject
filters such as the PHD [10], CPHD [11], MB [12], and
δ-GLMB [16] filters obtain their filtering densities at a given
time using measurements only up to that time.

By utilizingmeasurements beyond a given time, smoothing
generally yields better estimate than filtering [27]. Multi-
object smoothing is generally more challenging [28] than
single-object smoothing due to the various uncertainties
in MTT mentioned above. Principled approximations of
the Bayes multiobject smoothers have also been proposed.
The PHD smoother was derived using the physical-space
approach [29], and it was then derived rigorously using
finite set statistics (FISST) [28]. A forward-backward multi-
Bernoulli (MB) smoother for multi-target tracking was given
in [30], in which they state that it improves the estimation
accuracy of target number and state over the MB filter [12].
A tractable but approximate CPHD smoother was proposed
in [31], and they show that the CPHD smoother provides
better cardinality estimate compared to the PHD smoother
and does not exhibit undesirable track deletions that the PHD
smoother suffers [31]. However, due to the mathematical
formulation of the states, these Bayes multiobject smoothers
also do not inherently produce targets trajectories.

Concerning multitarget smoothing using labeled RFS,
a generalized labeled multi-Bernoulli forward-backward
smoother was derived in [32], but the smoother has not been
implemented and no simulation results are given. A com-
putationally efficient LMB smoother was proposed in [33],

and they show that it improves the tracking performance
over the PHD and MB smoothers, and the LMB filter.
A GLMB tracker with partial smoothing was detailed in [34],
in which they update the trajectory tuples using the output
of the GLMB filter at each time step, and then perform
single-object forward-backward smoothing. An approximate
δ-GLMB (δ-GLMB-A) smoother was proposed in [35],
in which the derivation assumes that no targets births and
deaths occur in the smoothing period.

In this work, aiming at improving the tracking performance
of the δ-GLMB filter, namely improving the estimates of
target number and state, we present a one time step lagged
Bayes multitarget smoother using the δ-GLMB density. It is
the subsequent work of [35], where the assumption that tar-
gets births and deaths do not occur in the smoothing process
is removed. In specific, we first show that the one time
step lagged multitarget smoothing can be achieved in a way
resembles the measurement update of the Bayes multitarget
filter [17], and then we show that a δ-GLMB distributed mul-
titarget filtering density would results in a same distributed
one time step lagged multitarget smoothing density. We also
show that if the birth process follows an LMB RFS, then
the implementation of the proposed smoother can be accom-
plished in an efficient manner by using the ranked assign-
ment technique. Simulation results show that the proposed
smoother outperforms the δ-GLMB filter, and the PHD [28],
MB [30] and CPHD [31] smoothers of the same time lag on
both the estimates of target number and state, and compared
to the LMB and δ-GLMB-A smoothers of the same time
lag, the proposed smoother provides similar performance
on estimate of target state, yet better estimate on target
number.

The rest of the paper is organized as follows. Section II
first provides a brief review of the two commonly used
labeled RFSs, namely the δ-GLMB and LMB RFSs, and then
presents the standard multitarget measurement likelihood and
the multitarget transition kernel. Closed-form formulation of
the proposed smoother is detailed in Section III. Implementa-
tion details are presented in Section IV. Section V reports the
simulation and experiment results. Concluding remarks and
future research direction are presented in Section VI.

II. BACKGROUND
In this work, we adhere to the notation [16] that single-object
states are denoted by lowercase letters, e.g. x, x, while
multiobject states are denoted by uppercase letters, e.g. X ,
X, symbols for labeled states and their distributions are
bolded to distinguish them from unlabeled ones, e.g. x, X,
π , etc. Spaces are denoted by blackboard bold, e.g. X, L, Z,
etc. Also, the multiobject exponential is denoted by hX =∏

x∈X h(x), where h is a real-valued function, with h∅ = 1
by convention, and we also denote the generalized Kroneker
delta and inclusion functions by

δ
(X )
Y =

{
1, if X = Y
0, otherwise,

1(X )Y =

{
1, if X ⊆ Y
0, otherwise
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TABLE 1. Summary of frequently used symbols.

To aid the reader, a summary of the frequently used sym-
bols in this work is given in Table 1 below.

A labeled RFS is an RFS [7] whose elements are assigned
with distinct labels [16]. Given state space X, discrete label
space L, and projection L : X × L → L, a finite subset
X of X × L is a labeled RFS if and only if X and its
label set LX = {L(x, `)}(x,`)∈X, where L(x, `) = `, have
equal cardinality [16]. We denote compactly the distinct label
indicator introduced in [16] to ensure the uniqueness of the
labels in a labeled RFS as1X = δ

(|LX|)
|X| , where | · | represents

the cardinality of a set.
An important class of the labeled RFS is the δ-GLMB RFS

[16], whose distribution is

π (X) = 1X
∑

(I ,ξ )∈F (L)×4
ω(I ,ξ )δ

(LX)
I [p(ξ )]X (1)

where F(L) is the collection of all finite subsets of label
space L, and 4 is a discrete index space, and density
p(ξ )(x, `) and weightω(I ,ξ ) are such that

∫
X p

(ξ )(x, `) = 1 and∑
(I ,ξ )∈F (L)×4 ω

(I ,ξ )
= 1. In multitarget tracking, each (I , ξ )

represents a hypothesis that there are |I | targets, whose labels
are I , and that their states are determined by association map
history ξ ; ω(I ,ξ ) denotes the probability that (I , ξ ) is the true
one, and p(ξ )(x, `) is the probability density of the kinematic
state of track ` [16].

Another frequently used labeled RFS is the labeled
multi-Bernoulli (LMB) RFS [20], whose density is

π (X) = 1Xω(LX)[p]X (2)

where the weight and probability density satisfy

ω(L) =
∏
`∈L

(1− r (`))
∏
`′∈L

1(`
′)

L r (`
′)

1− r (`′)
(3)

p(x, `) = p(`)(x) (4)

Given multitarget state X, each single-target state
(x, `) ∈ X is either detected with probability pD(x, `)
and generates a single-target measurement z with likelihood
g(z|x, `), or missed with probability qD(x, `) = 1− pD(x, `).
The multitarget measurement Z = {z1, . . . , zM } is the union
of detected single-target measurements and clutter (assumed
Poisson with intensity κ). Under the assumption that detec-
tions are independent conditioned on multitarget state and
clutter is independent of detections, it was shown [16], [17]
that the multitarget likelihood is

g(Z |X) = λZ
∑

θ∈2(LX)

[ψ (θ )
Z ]

X
(5)

where

λZ = e−〈κ,1〉κZ (6)

ψ
(θ (`))
Z (x, `) =


pD(x, `)g(zθ (`)|x, `)

κ(zθ (`))
, if θ (`) > 0

1− pD(x, `), if θ (`) = 0
(7)

with θ being the association map given in [17] that described
the mapping between labels in LX and the measurements
in Z .

Given multitarget state X at time step k , each single-target
state (x, `) ∈ X either continues to exist at time step k + 1
with probability pS (x, `) and evolves to state (x+, `+) with
probability density δ(`+)` f (x+|x, `), or dies with probability
qS (x, `) = 1 − pS (x, `). Let the newborn multitarget state at
time step k + 1 be denoted as B+, then its density is [16]

fB(B+) = 1B+ω
(LB+ )
B+ [pB]B+ (8)

where ω
(LB+ )
B+ is the newborn weight, and B+ denotes

the newborn label space, and pB is the probability density of
the kinematic state for newborn state at time step k + 1. The
multitarget stateX+ is the superposition of the surviving state
S+ and newborn state B+. Assuming births are independent
of survivals and states evolve independently yield the multi-
target transition kernel [17] in following form

f(X+|X) = fS (X+ ∩ X× L|X)fB(X+ − X× L) (9)

where

fS (S+|X) = 1S+1X1
(LS+ )
LX

[8S+ ]
X (10)

8S+ (x, `) =
∑

(x+,`+)∈S+

δ
(`+)
` pS (x, `)f (x+|x, `)

+(1− 1(`)LS+
)qS (x, `) (11)

To facilitate the analytic derivation of the proposed
smoother, we use the following equivalent form of (9)

f(X+|X) = 1X+1Xω
(LX+ )
LX

[qS ]X[3X]X+ (12)

3X(x+, `+) =
∑

(x,`)∈X

δ
(`+)
` ρ(x, `)f (x+|x, `)

+(1− 1(`+)LX
)pB(x+, `+) (13)
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where theweightω(L+)
LX
= 1(S+)LX

ω
(B+)
B+ , with the surviving label

set S+ = L+ ∩ L and the new born label set B+ = L+ ∩ B+,
and the ratio ρS (x, `) = pS (x, `)/qS (x, `).
Using the Bayes predict and update recursions, it was

shown [16] that the δ-GLMB density is closed under the
multitarget measurement likelihood (5) and multitarget tran-
sition kernel (9), which means that if the initial multitarget
filtering density is δ-GLMB distributed, then the multitarget
filtering densities at all subsequent times are also δ-GLMB
distributed. In the following section, we show that if the
multitarget filtering density is δ-GLMB distributed, then the
one time step lagged multitarget smoothing density is also
δ-GLMB distributed.

III. MULTITARGET TRACKING SMOOTHER
In this section, we first present a formula facilitating the
derivation of the proposed smoothing algorithm, and then
derive the multitarget pseudo measurement likelihood, which
is the key for the closed-form derivation of the proposed
smoother, and in the end, we present the analytic form of the
proposed smoother.

A. ONE TIME STEP LAGGED MULTITARGET SMOOTHING
Let X = {(x1, `1), . . . , (xN , `N )} denote the multitarget state
at time step k , X+ = {(x+,1, `+,1), . . . , (x+,T+ , `+,T+ )}
denote the multitarget state at time step k + 1, and
Z+ = {z+,1, . . . , z+,M+} denote the multitarget measurement
at time step k + 1. Following [28], [36], we express the one
time step lagged multitarget smoothing density as

π (X|Z+) = π (X)
∫

f(X+|X)
π (X+|Z+)
π+(X+)

δX+ (14)

where π (X) represents the multitarget filtering density at
time step k , π (X+|Z+) and π+(X+) denote the multitarget
filtering and prediction densities at time step k + 1, respec-
tively, and f(X+|X) is the multitarget transition kernel, and
the integral in (14) is the set integral introduced in [16].

According to the update of the Bayesmultitarget filter [17],
the multitarget filtering density at time step k + 1 is

π (X+|Z+) =
g(Z+|X+)π+(X+)∫
g(Z+|X+)π+(X+)δX+

(15)

where g(Z+|X+) and π+(X+) denotes the multitarget mea-
surement likelihood and prediction density at time step k+1,
respectively.

Substitution of π (X+|Z+) in (14) by (15) leads to the
multitarget smoothing density in form of

π (X|Z+) =
π (X)

∫
g(Z+|X+)f(X+|X)δX+∫

g(Z+|X+)π+(X+)δX+
(16)

According to prediction step of the Bayes multitarget
filter [17], the multitarget prediction density is

π+(X+) =
∫

f(X+|X)π (X)δX (17)

Substituting the prediction density π+(X+) in (16) by (17)
yields the following multitarget smoothing density

π (X|Z+) =
g(Z+|X)π (X)∫
g(Z+|X)π (X)δX

(18)

where

g(Z+|X) =
∫
g(Z+|X+)f(X+|X)δX+ (19)

From (18), we observe that the one time step lagged multi-
target smoothing density π (X|Z+) can be acquired via the
multiplication of g(Z+|X), which we call it the multitarget
pseudo measurement likelihood in the sequel, and the mul-
titarget filtering density π (X), followed by a normalization
step. In the following section, by virtue of (19), we present the
analytic form of g(Z+|X), which is the key for the derivation
of the smoothing density in (18).

B. MULTITARGET PSEDUO MEASUREMENT LIKELIHOOD
Proposition 1:Under the multitarget measurement likelihood
(5) and transition kernel (12), the multitarget pseudo mea-
surement likelihood can be expressed as

g(Z+|X)

= 1XλZ+

∑
B+⊆B+

∑
S+⊆LX

∑
θ+∈2+

ω
(B+)
B+ [φ(θ+)Z+ ]B+ [ϕ(S+,θ+)Z+ ]X

(20)

where λZ+ = e−〈κ,1〉κZ+ , with κ denotes the clutter intensity;
B+ and S+ denote respectively the surviving and newborn
labels at time step k + 1, and B+ denotes the newborn label
space, andLX denotes the labels ofmultitarget stateX; and θ+
is the association map [17] describing the mapping between
labels in S+ ∪ B+ and measurements in Z+, and ω

(B+)
B+ is the

newborn weight, and the base functions in (20) are

φ
(θ+(`+))
Z+ (`+) =

∫
X
ψ

(θ+(`+))
Z+ (x+, `+)pB(x+, `+)dx+ (21)

ϕ
(S+,θ+(`))
Z+ (x, `) = (1− 1(`)S+ )qS (x, `)+ 1(`)S+pS (x, `)

×

∫
X
ψ

(θ+(`))
Z+ (x+, `)f (x+|x, `)dx+ (22)

in which ψ (θ+(`))
Z+ (x+, `) denotes the single-target ‘‘likeli-

hood’’ given in (7), and pB(x+, `+) is the probability density
for newborn state (x+, `+), and qS (x, `) = 1− pS (x, `), with
pS (x, `) denoting the survival probability, and f (x+|x, `) is
the single-target transition density.

Proof: Substituting the analytic forms of the multitarget
transition kernel f(X+|X) in (12) and themultitarget measure-
ment likelihood g(Z+|X+) in (5) into (19) yields

g(Z+|X)

=

∫
g(Z+|X+)f(X+|X)δX+

=

∫
λZ+

∑
θ+

[ψ (θ+)
Z+ ]

X+
1X+1Xω

(LX+ )
LX

[qS ]X[3X]X+δX+
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= 1XλZ+ [qS ]
X

∫
1X+ω

(LX+ )
LX

∑
θ+

[ψ (θ+)
Z+ 3X]X+δX+

= 1XλZ+ [qS ]
X

∑
L+

∑
θ+

ω
(L+)
LX

×[
∫
X
ψ

(θ+(·))
Z+ (x+, ·)3X(x+, ·)dx+]L+

= 1XλZ+

∑
B+

∑
S+

∑
θ+

1(S+)LX
ω
(B+)
B+ [φ(θ+)Z+ ]B+ [ϕ(S+,θ+)Z+ ]X (23)

with φ(θ+)Z+ and ϕ(S+,θ+)Z+ given by (21) and (22), respectively,
and the second line from the bottom of (23) results from
applying lemma 3 in [16] to the set integral in the third line
from the bottom, and the last line originates from substituting
ψ

(θ+)
Z+ in (7) and 3X in (13) into the second line from the

bottom.
Note that in the last line of (23), the inclusion function 1(S+)LX

indicates that we consider the surviving label set S+ ⊆ LX
only (otherwise 1(S+)LX

= 0), and the newborn weight ω(B+)
B+

indicates we consider the newborn label set B+ ⊆ B+ only
(otherwise ω(B+)

B+ = 0). Such relationships are explicitly
shown in (20), and the set 2+ in (20) denotes the collec-
tion of the association maps whose mappings are between
labels in S+ ∪ B+ and the measurements in multitarget
measurement Z+.

C. ONE TIME STEP LAGGED DELTA-GENERALIZED
LABELED MULTI-BERNOULLI SMOOTHING
Proposition 2: If the multitarget filtering density at time step
δ-GLMB distributed in following form

π (X) = 1X
∑
(I ,ξ )

ω(I ,ξ )δ
(LX)
I [p(ξ )]X (24)

then the one time step lagged multitarget smoothing density
at time step k is also δ-GLMB distributed in form of

π (X|Z+)

= 1X
∑
(I ,ξ )

∑
B+⊆B+

∑
S+⊆I

∑
θ+∈2+

ω
(I ,ξ,B+,S+,θ+)
Z+

×δ
(LX)
I [p(ξ,S+,θ+)]X (25)

ω(I ,ξ,B+,S+,θ+)

∝ ω(I ,ξ )ω
(B+)
B+ [φ(θ+)Z+ ]B+ [η(ξ,S+,θ+)Z+ ]I (26)

η
(ξ,S+,θ+(`))
Z+ (`)

=

∫
X
ϕ
(S+,θ+(`))
Z+ (x, `)p(ξ )(x, `)dx (27)

p(ξ,S+,θ+(`))(x, `)

=
ϕ
(S+,θ+(`))
Z+ (x, `)p(ξ )(x, `)

η
(ξ,S+,θ+(`))
Z+ (`)

(28)

with φ(θ+)Z+ and ϕ(S+,θ+)Z+ given by (21) and (22), respectively.
Each (I , ξ,B+, S+, θ+) represents a smoothing hypothesis

that targets I with association map history ξ at time step k
survive to k + 1 with targets S+ left, and new targets B+ also

appear at k + 1, and the association between S+ ∪ B+ and
measurements in Z+ is given by association map θ+.

The smoothing weight ω(I ,ξ,B+,S+,θ+) is proportional to
filtering weight ω(I ,ξ ) scaled by ω(B+)

B+ [φ(θ+)Z+ ]B+ [η(ξ,S+,θ+)Z+ ]I ,
and the single-target smoothing density p(ξ,S+,θ+(`))(x, `) is
obtained by using the single-target filtering density p(ξ )(x, `)
and the function ϕ(S+,θ+(`))Z+ (x, `) via the Bayes rule. Note that
we can omit the S+ and B+ in (25) since they are implicitly
encapsulated in association map θ+, thus (25) is indeed a
δ-GLMB, and the proposed smoother is capable of generating
target tracks directly.

Proof: Using (20) and (24), we calculate the numerator
of (18) as

g(Z+|X)π (X)

= λZ+1X
∑
(I ,ξ )

∑
B+⊆B+

∑
S+⊆LX

∑
θ+∈2+

ω(I ,ξ )

×ω
(B+)
B [φ(θ+)Z+ ]B+δ(LX)

I [p(ξ )ϕ(S+,θ+)Z+ ]X

= λZ+1X
∑
(I ,ξ )

∑
B+⊆B+

∑
S+⊆I

∑
θ+∈2+

ω(I ,ξ )

×ω
(B+)
B [φ(θ+)Z+ ]B+δ(LX)

I [η(ξ,S+,θ+)Z+ ]LX [p(ξ,S+,θ+)]X (29)

where the last line results from the following identity

p(ξ,S+,θ+(`))(x, `)η(ξ,S+,θ+(`))Z+ (`) = p(ξ )(x, `)ϕ(S+,θ+(`))Z+ (x, `)

(30)

Using (29), the denominator of (18) becomes∫
g(Z+|X)π (X)δX

= λZ+

∑
(I ,ξ )

∑
B+⊆B+

∑
S+⊆I

∑
θ+∈2+

ω(I ,ξ )ω
(B+)
B+ [φ(θ+)Z+ ]B+

×

∫
1Xδ

(LX)
I [η(ξ,S+,θ+)Z+ ]LX [p(ξ,S+,θ+)]XδX

= λZ+

∑
(I ,ξ )

∑
B+⊆B+

∑
S+⊆I

∑
θ+∈2+

ω(I ,ξ )

×ω
(B+)
B+ [φ(θ+)Z+ ]B+ [η(ξ,S+,θ+)Z+ ]I (31)

where the last line of (31) follows directly from lemma 3
in [16]. Substitutions of (29) and (31) into (18) leads to (25).

IV. IMPLEMENTATION
In this section, we present an efficient implementation of the
proposed smoothing algorithm by truncating the multitarget
smoothing density without enumeration of all the smoothing
hypotheses and calculating their corresponding weights via
the standard ranked assignment algorithm.

A. TRUNCATION OF SMOOTHING DENSITY
According to proposition 2, each filtering hypothesis
(I , ξ ) generates a new set of smoothing hypotheses
(I , ξ,B+, S+, θ+), with the newborn label set B+ ⊆ B+,
surviving label set S+ ⊆ I , and association map
θ+ ∈ 2+(S+ ∪ B+).
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For a given label set I , since S+ ⊆ I , thus there are
2|I | possibilities of S+, where | · | represents the cardinality
of a set; similarly, given newborn label space B+, since
B+ ⊆ B+, thus we have 2|B+| possibilities of B+. There
are 2|B+|+|I | possibilities of pair (B+, S+), therefore there are
2|B+|+|I |∑
u=1

|2+(B
(u)
+ ∪ S

(u)
+ )| possibilities of triplet (B+, S+, θ+),

where (B(u)+ , S
(u)
+ ) represents the u th pair of (B+, S+), and

2+(B
(u)
+ , S

(u)
+ ) denotes the collection of the association maps

between label set B(u)+ ∪S
(u)
+ and multitarget measurement Z+.

Due to the large number of the smoothing hypotheses, thus it
is generally intractable to keep all the smoothing hypothe-
ses at each time step. Therefore, we choose to truncate the
smoothing density by keeping only the components with
significant weights

π (X|Z+) = 1X
∑
(I ,ξ )

∑
(B+,S+,θ+)∈0(I ,ξ )

ω
(I ,ξ,B+,S+,θ+)
Z+

×δ
(LX)
I [p(ξ,S+,θ+)]X (32)

where for a given (I , ξ ), 0(I , ξ ) = {(B(m)+ , S(m)+ , θ
(m)
+ )}M

(I ,ξ )

m=1 is

the set of theM (I ,ξ ) elements whoseweightsω
(I ,ξ,B(m)+ ,S(m)+ ,θ

(m)
+ )

Z+

are the highest, and ω(I ,ξ,B+,S+,θ+)
Z+ is the renormalized weight

after truncation. It is clear that the number of kept smoothing
hypotheses M (I ,ξ ) is a filtering hypothesis (I , ξ ) dependent
parameter, and in this work, M (I ,ξ ) is chosen to be propor-
tional to its filtering weight ω(I ,ξ ), i.e., M (I ,ξ )

= [Mω(I ,ξ )],
whereM is the predetermined number of the overall smooth-
ing hypotheses, and [·] represents the operation of rounding
towards its nearest integer.

As shown above, it is infeasible, especially in cases where
the target number is large, to list all the possible smoothing
hypotheses, calculate their weights, and then choose those
with the highest weights. Nonetheless, we show that if the
newborn multitarget state follows a LMB process, then the
truncation of the smoothing density in (32) can be solved
efficiently via the ranked assignment technique.

B. RANKED ASSIGNMENT FORMULATION
According to (26), the weight of smoothing hypothesis
(I , ξ,B+, S+, θ+) is

ω(I ,ξ,B+,S+,θ+) ∝ ω(I ,ξ )ω
(B+)
B+ [φ(θ+)Z+ ]B+ [η(ξ,S+,θ+)Z+ ]I (33)

Since we assume the births is an LMB process, then using (3),
we rewrite the newborn weight ω(B+)

B+ as

ω
(B+)
B+ = [rB]B+ [1− rB]B+−B+ (34)

where the subtraction sign in B+−B+ denotes the set differ-
ence operation, and r (`)B denotes the birth probability of label
` ∈ B+.

Replacing ω(B+)
B+ in (33) by (34) leads to

ω(I ,ξ,B+,S+,θ+)

∝ ω(I ,ξ )[rBφ
(θ+)
Z+ ]B+ [1− rB]B+−B+ [η

(ξ,S+,θ+)
Z+ ]I

= ω(I ,ξ )[γ (B+,θ+)
Z+ ]B+ [η(ξ,S+,θ+)Z+ ]I (35)

in which

γ
(B+,θ+)
Z+ (`) =

{
r (`)B φ

(θ+(`))
Z+ (`), if ` ∈ B+

1− r (`)B , if ` ∈ B+ − B+
(36)

For a given (I , ξ ), according to (35), if we can generate
(B+, S+, θ+) in decreasing order of [γ

(B+,θ+)
Z+ ]B+ [η(ξ,S+,θ+)Z+ ]I

efficiently, then the truncation of the smoothing density is
solved. Next, we show that the generation of those triplets
can be cast into a ranked assignment problem.

Let the multitarget measurement Z+ = {z+,1, . . . , z+,M+},
the newborn label space B+ = {`1, . . . , `|B+|}, and the label
set I = {`1, . . . , `|I |}.We write the label union L = B+ ∪ I
in form of

L = {`1, . . . , `|B+|, `|B+|+1, . . . , `|B+|+|I |} (37)

in which `1, . . . , `|B+| denote the labels in B+, and
`|B+|+1, . . . , `|B+|+|I | denote the labels in I . It is clear that
there are total N+ = |B+| + |I | labels in label set L.
Given filtering hypothesis (I , ξ ), each triplet (B+, S+, θ+)

is equivalent to an assignment matrix A with N+ × (M+ +
2N+) binary entries, with the row index i ∈ {1, . . . ,N+}
denoting the label index of the element in L and the column
index j ∈ {1, . . . ,M+ + 2N+} denoting the measurement
index.

The assignment matrix A consists of three parts, namely
A = [A1,A2,A3], with the first part A1 accounts for associ-
ation between the labels in L and the multitarget measure-
ment Z+ = {z+,1, . . . , z+,M+}, i.e., for i ∈ {1, . . . ,N+},
j ∈ {1, . . . ,M+}, Ai,j = 1 denotes that label `i generates
measurement z+,j; the second sub-matrix A2 accounts for the
missed detections for labels in L, i.e., for i ∈ {1, . . . ,N+},
j = M++ i, Ai,j = 1 represents that label `i misses its detec-
tion; and the third sub-matrix A3 denotes the cases where the
label `i disappears at time k + 1, i.e., for i ∈ {1, . . . ,N+},
j = M+ + N+ + i, Ai,j = 1 indicates that if label `i ∈ I , then
it does not survive to time k + 1 and if label `i ∈ B+, then it
is not born.

We construct the cost matrix accordingly as

C = [C1,C2,C3] (38)

with the first sub-matrix C1 accounting for the costs between
the mapping of label set L in and the multitarget measure-
ments Z+ given by

Ci,j

= − log

{
r (`i)B φ

(j)
Z+ (`i), if i ∈ {1 : NB+}, j ∈ {1 : M+}

η
(ξ,S+,j)
Z+ (`i), if i∈{NB++1 :N+}, j ∈ {1 : M+}

(39)

and the second part C2 defining the cost when the labels in L
miss their detections given by

Ci,j

= − log

{
r (`i)B φ

(0)
Z+ (`i), if i ∈ {1 : NB+}, j = M+ + i

η
(ξ,S+,0)
Z+ (`i), if i ∈ {NB+ + 1 : N+}, j = M+ + i

(40)
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and the last part C3 accounts for the cases when labels in
newborn label space B+ do not appear and labels in I do not
survive given by

Ci,j

= − log

{
1− r (`i)B if i ∈ {1 : NB+}, j = M+ + N+ + i
1−pS (`i), if i∈{NB++1 : N+}, j=M++N++i

(41)

In (39), (40) and (41), we use {N1 : N2} to denote
{N1, . . . ,N2} for compactness. The functions η(ξ,S+,j)Z+ (`i)

and φ(j)Z+ (`i) in (39) and (40) are given by (27) and (21),
respectively.

Note that the costs in the non-diagonal elements of the sec-
ond and third parts of C in (38) are set to positive infinity to
prevent those assignments from happening, i.e., Ci,j = +∞,
for i ∈ {1, . . . ,N+}, j ∈ {M+ + 1, . . . ,M+ + 2N+}, but
j 6= i + N+, j 6= i + N+ + M+, since for any label in L,
it misses its detection or die only once.

Now, the overall cost for making assignment A is

cA =
N+∑
i=1

M++2N+∑
j=1

Ci,jAi,j (42)

The key observation is that

[γ (B+,θ+)
Z+ ]B+ [η(ξ,S+,θ+)Z+ ]I = exp(−cA) (43)

which means that for a given (I , ξ ), generating a new set
of triplets (B+, S+, θ+) with highest weights ω(I ,ξ,B+,S+,θ+)

in decreasing order is equivalent to generating a group of
assignments A with lowest costs cA in increasing order.
By constructing the cost matrix C in (38), it turns out that
the truncation of the multitarget smoothing density in (32)
transforms into a ranked two-dimensional assignment prob-
lem, which can be solved efficiently using the Murty’s
algorithm [37].

C. COMPUTE PARAMTERS
We now provide a detailed computation of the cost matrix
in (38), the normalizing factor in (27) and the single-target
smoothing density in (28).

To have an analytic solution, we consider linear Gaus-
sian multitarget model [38] only, which means that the
single-target transition density f (x+|x, `) and the measure-
ment likelihood function g(z|x, `) satisfy

f (x+|x, `) = N (x+;Fx,Q) (44)

g(z|x, `) = N (z;Hx,R) (45)

where N (·;m,P) denotes a Gaussian density with mean
m and covariance matrix P, and F is the state transition
matrix, Q is the covariance matrix of the process noise, H
is the measurement matrix, R is the covariance matrix of the
measurement noise. We further assume that the survival and
detection probabilities depend on label only, which means
that pS (x, `) = pS (`) and pD(x, `) = pD(`).

Suppose that each single-target filtering density and the
density of the new-born state are

p(ξ )(x, `) =
Nξ (`)∑
n=1

ω
(n)
ξ (`)N (x;m(n)

ξ (`),P(n)
ξ (`)) (46)

pB(x+, `+) =
NB(`+)∑
n=1

ω
(n)
B (`+)N (x+;m

(n)
B (`+),P

(n)
B (`+)) (47)

then the key ingredientsφ(j)Z+ (`i) and η
(ξ,S+,j)
Z+ (`i) in costmatrix

Ci,j in (38) are given by

φ
(j)
Z+ (`i) =


pD(`i)εj(`i)
κ(z+,j)

, if j ∈ {1, . . . ,M+}

1− pD(`i), if j = 0
(48)

where

εj(`i) =
NB(`i)∑
n=1

ω
(n)
B (`i)N (z+,j; z

(n)
B (`i),S

(n)
B (`i)) (49)

z(n)B (`i) = Hm(n)
B (`i) (50)

S(n)B (`i) = HP(n)
B (`i)HT

+ R (51)

and

η
(ξ,S+,j)
Z+ (`i)

=


pS (`i)pD(`i)βj(`i)

κ(z+,j)
, if j ∈ {1, . . . ,M+}

pS (`i)(1− pD(`i)), if j = 0
(52)

with

βj(`i) =
Nξ (`i)∑
n=1

ω
(n)
ξ (`i)N (z+,j; z

(n)
ξ (`i),S

(n)
ξ (`i)) (53)

z(n)ξ (`i) = HFm(n)
ξ (`i) (54)

S(n)ξ (`i) = H(FP(n)
ξ (`i)FT +Q)HT

+ R (55)

Equation (48) is acquired by substituting (7) and (47)
into (21); and (52) is acquired by substituting (22) and (46)
into (27), and then use the following identity [36]∫

N (z;Hx ′,R)N (x ′;Fx,Q)dx ′ = N (z;HFx,HQHT
+ R)

Substituting (22) and (46) into (28) yields the single-target
smoothing density

p(ξ,S+,θ+(`))(x, `)

=

Nξ (`)∑
n=1

ω
(n)
ξ,S+,θ+ (`)N (x;m(n)

ξ,S+,θ+ (`),P
(n)
ξ,S+,θ+ (`)) (56)

where

ω
(n)
ξ,S+,θ+ (`) = ω

(n)
ξ (`)q(n)ξ,S+,θ+ (`)/

Nξ (`)∑
n=1

ω
(n)
ξ (`)q(n)ξ,S+,θ+ (`)

(57)

q(n)ξ,S+,θ+ (`) = N (z+,θ+(`); z
(n)
ξ (`),S(n)ξ (`)) (58)
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TABLE 2. Pseudo code for one smoothing recursion.

m(n)
ξ,S+,θ+ (`) = m(n)

ξ (`)+K(n)
ξ,S+,θ+ (`)(z+,θ+(`) − z

(n)
ξ (`))

(59)

K(n)
ξ,S+,θ+ (`) = P(n)

ξ (`)FTHTS(n)ξ (`)−1 (60)

P(n)
ξ,S+,θ+ (`) = (I−K(n)

ξ,S+,θ+ (`)HF)P(n)
ξ (`) (61)

with z(n)ξ (`) and S(n)ξ (`) in (58) given by (54) and (55),
respectively.

Note that (56) holds only when 1(`)S+ = 1 and θ+(`) > 0.

If 1(`)S+ = 0 or θ+(`) = 0, then the single-target smoothing
density is identical to the filtering density

p(ξ,S+,θ+(`))(x, `) = p(ξ )(x, `) (62)

This is an intuitive result, since 1(`)S+ = 0 indicates that label
` does not survive, and θ+(`) = 0 indicates it misses its
detection. In both cases, since nomeasurement is available for
smoothing, thus the single-target smoothing density should
be identical to the filtering density.

A pseudo-code for one recursion of the δ-GLMB smoother
is given in Table 2, in which we replace the δ-GLMB filtering
density {(ω(I ,ξ ), p(ξ ))}(I ,ξ ) by {(ω(h), p(h))}Hh=1, and the num-
ber of kept smoothing hypotheses M (I ,ξ ) is also replaced by
M (h). We denote the truncated δ-GLMB smoothing density
accordingly as {(ω(h,m), p(h,m))}(H ,M

(h))
(h,m)=(1,1), and the function

murty in Table 2 refers to the Murty’s algorithm [37].

V. NUMERICAL RESULTS
In this section, we show the comparison of the proposed
smoother with the PHD [28], MB [30], and CPHD [31]
smoothers, and then presents its comparison with the
LMB [33], and δ-GLMB-A [35] smoothers, and the
δ-GLMB filter, and in the end, we present an experiment
result.
All smoothers used in this section share the lag of one time

step, and the optimal subpattern assignment (OSPA) [39] and
generalized OSPA (GOSPA) [40] are chosen as the perfor-
mance metrics.

TABLE 3. Target/sensor geometry.

We assume that all targets and the sensor move with con-
stant velocity on the same x-y plane. Table 3 presents the
initial positions, velocities and durations of these targets and
the sensor. Since our aim is to track the bearings of those
targets, thus we denote the target state by xk = [βk , β̇k , β̈k ]T ,
where βk represents the bearing, β̇k and β̈k denote its first
and second order time derivatives. The temporal evolvement
of state xk is described by the discrete Wiener acceleration
model [41]

xk+1 = Fxk + 0vk (63)

where the processing noise vk ∼ N (0, σ 2
v ), with

F =

 1 1 12/2
0 1 1

0 0 1

 , 0 =

12/2
1

1

 (64)

in which 1 is the sampling period.
Available measurement is the bearing from sensor to tar-

get, referenced (clockwise positive) to the y-axis, i.e., angle
between y-axis and line of sight, and the measurement
equation is

zk = Hxk + wk (65)

where the measurement matrix H = [1, 0, 0], and measure-
ment noise wk ∼ N (0, σ 2

w).
In the first simulation, the simulation time is 50 s, and the

sampling period is 1 = 1 s, and the standard deviations of
the process and measurement noises are σv = 0.05(◦/s2) and
σw = 1◦, and for convenience, we assume the detection and
survival probabilities are label independent, i.e., pD(`) = pD,
and pS (`) = pS , with pD = 0.9, and pS = 0.98. The clutter
is a Poisson process with average clutter number λc = 4
and a uniform spatial distribution over measurement space of
Z = (−180◦, 180◦].
The birth process is an LMB process with parameters set
{r (i)B , p

(i)
B }

3
i=1, where the probability of birth is r (i)B = 0.02,

and the Gaussian densities p(i)B (x) = N (x;m(i)
B ,PB) share

the covariance matrix PB = diag([4, 0.5, 0.2]T ), but have
different means that are given by m(1)

B = [67, 0, 0]T ,
m(2)
B = [41, 0, 0]T , and m(3)

B = [−42, 0, 0]T .

A. SIMULATION 1
Fig. 1 shows a sample run of the proposed δ-GLMB smoother.
The input, which are cluttered and noisy bearing measure-
ments, are shown in Fig. 1(a), and the output, which are
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FIGURE 1. A sample run of the proposed smoother for simulation 1. (a) Input (measurements), (b) Output (Track estimates).

FIGURE 2. Cardinality statistic and OSPA distance for simulation 1 (200 MC runs). (a) Cardinality statistic, (b) OSPA distance, (c) OSPA
cardinality error, (d) OSPA localization error.

labeled track estimates, are presented in Fig. 1(b). Each
unique track color in Fig. 1(b) originates form a unique label.
In this run, we observe that the proposed smoother produces
accurate estimates of target number and state, except for a
small delay of initiating one track.

Fig. 2 reports the cardinality statistic and OSPA distance
of the PHD [28], MB [30], CPHD [31] and the δ-GLMB
smoothers over 200 Monte Carlo runs. Figs. 2(a) and (b)
reveal that the δ-GLMB smoother outperforms the PHD,
MB, and CPHD smoothers with the lag of one time step.
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FIGURE 3. Mean GOSPA error for simulation 1 (200 MC runs). (a) GOSPA, (b) GOSPA localization error (c) GOSPA false error (d) GOSPA
missed error.

In specific, we observe from Figs. 2(c) and (d) that the
δ-GLMB smoother outperforms other three one time step
lagged smoothers in terms of both the OSPA cardinality and
localization errors.

Fig. 2(a) reveals that the cardinality estimates of the
δ-GLMB and CPHD smoothers are far better than those
of the PHD and MB smoothers, which severely underesti-
mate the target number. Compared to the CPHD smoother,
the cardinality estimates of the δ-GLMB smoother are closer
to the truth. In the average sense, the response of the
δ-GLMB smoother to target birth is faster than that of the
CPHD smoother, whereas its response to target death is
slightly quicker than that of the CPHD smoother. The prompt
response of the δ-GLMB smoother attributes mainly to the
fast response of the δ-GLMB filter [34] to target birth or
death because the smoothing density relies on both the fil-
tering density and the measurements indicating the true tar-
get number. The PHD and MB smoothers suffer from the
premature target death [23], [25] at 40s, 45s, which are also
seen by the large OSPA cardinality errors at those moments
in Fig. 2(c).

Besides, we also observe that the OSPA localization errors
of the CPHD smoother at target death times, for example
at 40s, 45s, are significant larger than those at other times.
A potential reason is that the CPHD smoother suffers from
the ‘spooky effect’ [17], [42]. The deaths of targets at 41s,
46s can be viewed as misdetections, which lead to the PHD
of the CPHD smoothing density shifting to the states of
existing targets, thus the PHD at the state of the disappeared
target would become relatively low. According to Fig. 2(a),
it is highly likely the number of targets given by the CPHD
smoother is identical to the true cardinality. This leads to the
situation where there are two estimates around one of the
states of the existing targets, while around the true state of
the disappeared target, there are no estimates, which even-
tually lead to the large OSPA localization errors at those
moments.

We tested the δ-GLMB smoother on two more difficult
scenarios in terms of the more recently proposed GOSPA
metric [40], which allows us to penalize localization errors
for detected targets and the errors due to missed and false
targets.
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TABLE 4. Root mean square gospa errors for simulation 1.

In the scenario with detection probability pD = 0.9,
the clutter number is set to λc = 10; while in the scenario
with detection probability pD = 0.75, we set λc = 4.
This is detection and clutter (usually assumed to be union
of false alarms) are highly interdependent and adjustable via
the detection threshold: raising the threshold lowers both
detection and false alarm probabilities, and vice-versa [43].
Fig. 2 reveals that the performance gaps between the PHD,
MB and the other two smoothers are large, thus we consider
only the CPHD and δ-GLMB smoother in this comparison.
Fig. 3 illustrates the mean GOSPA errors of the CPHD and

δ-GLMB smoothers. Fig. 3(a) shows that the total GOSPA
error of the proposed δ-GLMB smoother is smaller than that
of the CPHD smoother. Fig. 3(b) reveals that the δ-GLMB
smoother outperforms the CPHD smoother on GOSPA local-
ization error. Besides, compared to the CPHD smoother,
the lower GOSPA false and missed targets errors of the
proposed smoother in Figs. 3(c) and (d) indicate that it can
provide better estimate on target number.

Table 4 provides the root mean square GOSPA errors [26]
and execution times of the CPHD and δ-GLMB smoothers
over 200 Monte Carlo runs. All codes were written
in MATLAB and run on an Intel quad-core processor
i5-4590@3.3GHz. It reveals that the δ-GLMB smoother out-
performs the CPHD smoother of the same time lag in terms
of the GOSPA localization, missed, and false targets errors at
the cost of higher computation complexity.

B. SIMULATION 2
We now report the comparison results of the δ-GLMB,
LMB [33], and δ-GLMB-A [35] smoothers, and the
δ-GLMB filter [17]. A scenario with up to 8 targets is consid-
ered here, and all compared smoothers share the lag of one
time step.

The standard deviations of the measurement and process
noises are σw = 2◦, and σv = 0.01(◦/s2), respectively, and
the detection probability and clutter number are pD = 0.95,
and λc = 16, respectively. The birth process is a LMB RFS
with {r (i)B , p

(i)
B }

8
i=1, where the probability of birth is set to

r (i)B = 0.04, and the density p(i)B (x) = N (x;m(i)
B ,PB), with

m(i)
B = [B(i), 0, 0]T , where B(i) represents the initial bearing

of target i, and PB = diag([4, 0.1, 0.1]T ).

FIGURE 4. A sample run of the proposed smoother for simulation 2.

FIGURE 5. Mean GOSPA errors for simulation 2 (200 MC runs).
(a) Detection probability 0.95 and clutter number 16, (b) Detection
probability 0.75, clutter number 8.

Fig. 4 presents a sample run of the δ-GLMB smoother.
In general, the smoother estimates the target number and state
well except for few missed points, and due to heavier clutter,
false tracks and delay of track initiation and termination also
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TABLE 5. Root mean square GOSPA errors for simulation 2.

exist. No track label switching is observed in this run because
of the low process noise level.

Fig. 5 presents the mean GOSPA errors for two different
settings. It shows that the δ-GLMB, δ-GLMB-A, and LMB
smoothers outperform the δ-GLMB filter, especially when
targets births or deaths occur. As to the three smoothers,
we observe from Fig. 5 that the δ-GLMB smoother pro-
vides the lowest GOSPA error in general, followed by the
LMB and δ-GLMB-A smoothers. The GOSPA error of
the δ-GLMB-A smoother is almost identical to that of the
δ-GLMB smoother, except that it performs less well at the
intervals when targets births and deaths occur, because the
δ-GLMB-A smoother uses a simplified transition kernel that
neglects the births and deaths of targets in the smoothing
period.

Table 5 shows that the δ-GLMB smoother outperforms the
other three in terms of the root mean square GOSPA error.
As expected, the δ-GLMB filter provides the highest GOSPA
localization, missed and false target errors. Compared to
the LMB smoother, the δ-GLMB smoother provides similar
localization and false target errors, while the missed target
error of the δ-GLMB smoother is smaller. Compared to the
δ-GLMB-A smoother, the δ-GLMB smoother suffers less on
missed and false target errors, and the localization errors of
both smoothers are very similar.

In summary, the δ-GLMB smoother outperforms the
δ-GLMB filter, and the PHD, MB, and CPHD smoothers of
the same time lag on estimates of target number and state,
and it also outperforms the LMB and δ-GLMB-A smoothers
of the same time lag on target number estimate, despite the
similar performance of the δ-GLMB, LMB, and δ-GLMB-A
smoothers on target state estimate.

C. EXPERIMENT RESULT
We present in this section the experiment result. An exper-
iment with data from an acoustic sensor was conducted.
Fig. 6 illustrates the scenario. The sensor (green circle) was
fixed at the origin, collecting the bearings of two acoustic
targets over the surveillance region, with target 1 (magenta
square) moving with nearly constantly velocity and target 2
(blue diamond) fixed at its location.

The measurement is the bearing from sensor to target, ref-
erenced clockwise positive to the y-axis, i.e., angle between

FIGURE 6. Target/sensor geometry of the experiment.

y-axis (red dotted line with arrow) and line of sight (black
dotted line with arrow). By turning the power of the acoustic
source on or off, we control the birth or death of target. The
birth and death of target 1 occur at about 90, and 184 s, and
target 2 always exists.

The experiment time is approximately 206s, and the sam-
pling period is 1 = 3.3 s. The standard deviations of the
process and measurement noises are set to σv = 0.01(◦/s2)
and σw = 2◦. The detection and survival probabilities are set
to pD = 0.9 and pS = 0.98. The clutter number is set to
λc = 6. The birth process is a LMB RFS with {r (i)B , p

(i)
B }

2
i=1,

where r (i)B = 0.02 and p(i)B (x) = N (x;m(i)
B ,PB), where the

covariance matrix PB = diag([4, 0.1, 0.1]T ), and the means
m(1)
B = [−61, 0, 0]T , and m(2)

B = [7, 0, 0]T .
Fig. 7 shows the tracking results, and Fig. 8 presents the

GOSPA errors of the expriment, and Table 6 shows the root
mean square GOSPA errors, including the GOSPA localiza-
tion, missed, and false target errors. Fig. 7 reveals that the
CPHD smoother suffers more on missed and false targets,
and compared to the δ-GLMB filter, the δ-GLMB smoother
performs better on both the estimates of target number and
state, as is shown in Table 6. Table 6 also shows that the
GOSPA error of the δ-GLMB smoother is smaller than that
of the LMB smoother, and the false target error of the LMB
smoother is higher due to the unexpected existence of a false
track, and the localization error of the δ-GLMB smoother
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FIGURE 7. Tracking results of the experiment. (a) CPHD smoother,
(b) delta-GLMB filter, (c) LMB smoother, (d) delta-GLMB-A smoother,
(e) delta-GLMB smoother.

is similar to that of the LMB smoother. The tracking result
of the δ-GLMB-A smoother resembles that of the δ-GLMB
smoother, except for a small delay of track initiation and
termination, which is also reflected by the larger GOSPA

FIGURE 8. GOSPA error of the experiment.

TABLE 6. Root mean square gospa errors of the experiment.

error of the δ-GLMB-A smoother at those moments, as is
observed from Fig. 8.

VI. CONCLUSION AND FUTURE RESEARCH
We present a solution for multitarget tracking using one time
step lagged δ-GLMB smoothing. By using a formula that
resembles the measurement update of the Bayes multitarget
filter, we show that a δ-GLMB distributed multitarget filter-
ing density would results in a same distributed one time step
laggedmultitarget smoothing density. An efficient implemen-
tation of the proposed smoother using ranked assignment
technique is also given. Numerical results show that the pro-
posed smoothing algorithm outperforms the δ-GLMB filter,
and the PHD, MB, and CPHD smoothers of the same time
lag on both the estimates of target number and state, and it
also outperforms the LMB and δ-GLMB-A smoothers of the
same time lag on target number estimate. Future work would
consider extending the proposed smoother to the case where
the time lag is greater than one.
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