
Received January 6, 2020, accepted January 31, 2020, date of publication February 4, 2020, date of current version February 12, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2971576

Human Digital Twin for Fitness Management
BARBARA RITA BARRICELLI 1, (Member, IEEE), ELENA CASIRAGHI 2, (Member, IEEE),
JESSICA GLIOZZO3, ALESSANDRO PETRINI2, AND STEFANO VALTOLINA2
1Department of Information Engineering, Università degli Studi di Brescia, 25123 Brescia, Italy
2Department of Computer Science, Università degli Studi di Milano, 20133 Milan, Italy
3Department of Dermatology, Fondazione IRCCS Ca’Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy

Corresponding author: Elena Casiraghi (casiraghi@di.unimi.it)

This work was supported by the Bando Sostegno alla Ricerca 2019 through the University of Milan.

ABSTRACT Our researchwork describes a team of humanDigital Twins (DTs), each tracking fitness-related
measurements describing an athlete’s behavior in consecutive days (e.g. food income, activity, sleep). After
collecting enough measurements, the DT firstly predicts the physical twin performance during training
and, in case of non-optimal result, it suggests modifications in the athlete’s behavior. The athlete’s team is
integrated into SmartFit, a software framework for supporting trainers and coaches inmonitoring andmanage
athletes’ fitness activity and results. Through IoT sensors embedded in wearable devices and applications for
manual logging (e.g. mood, food income), SmartFit continuously captures measurements, initially treated
as the dynamic data describing the current physical twins’ status. Dynamic data allows adapting each DT’s
status and triggering the DT’s predictions and suggestions. The analyzed measurements are stored as the
historical data, further processed by the DT to update (increase) its knowledge and ability to provide reliable
predictions. Results show that, thanks to the team of DTs, SmartFit computes trustable predictions of the
physical twins’ conditions and produces understandable suggestions which can be used by trainers to trigger
optimization actions in the athletes’ behavior. Though applied in the sport context, SmartFit can be easily
adapted to other monitoring tasks.

INDEX TERMS Counterfactual explanations, digital twins, Internet of Things, machine learning, smart
health, sociotechnical design, wearables.

I. INTRODUCTION
Nowadays, the extension of Internet connectivity into phys-
ical devices and everyday objects has radically transformed
interactions and communications happening in all the aspects
of human life. Devices can now communicate and interact
with each other over the Internet, and the data they generate
can be remotely monitored and controlled. This condition,
referred to as the Internet of Things (IoT) is having a pro-
found impact on our daily lives, and it is fundamentally
changing how people interact with physical objects and the
environment.

Some of the latest IoT developments include technolo-
gies for home, health, transportation, and environment mon-
itoring. In particular, health and wellness applications have
emerged as a fast-growing category of smart applications
based on the use of wearable devices. This increasing trend
is considered as a prompt and useful resource for collecting

The associate editor coordinating the review of this manuscript and

approving it for publication was Mostafa M. Fouda .

users’ data that are exploited for generating recommendations
for a healthy lifestyle.

Together with these advances, the synergic action of ubiq-
uitous connectivity, spread sensor technologies, advances in
artificial intelligence (AI), big data analytics, cloud com-
puting, and shared databases (distributed in the cloud) has
motivated the development of the industrially diffused Dig-
ital Twin (DT) technology [1]. In the fields of aviation and
manufacturing, where DTs are nowadays being massively
developed and used, a DT is defined as the virtual (digital)
counterpart of a physical system. The DT starts living as the
physical is being prototyped, dies when it is disassembled,
and follows its physical twin during its whole life, resembling
its status and being continuously connected and synchronized
with it. Thanks to AI, the DT continuously controls and mon-
itors its physical twin status, with the aim of optimizing its
performance by triggering self-optimization and self-healing
mechanisms. The digital-physical twins interaction is based
on a ‘‘closed-loop’’ [2], [3], which refers to the continuous
exchange of data between the cyber and physical worlds in
order to continuously optimize the physical side. The DT

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 26637

https://orcid.org/0000-0001-9575-5542
https://orcid.org/0000-0003-2024-7572
https://orcid.org/0000-0003-1790-8640

B. R. Barricelli et al.: Human DT for Fitness Management

receives data from its physical twin, reconfigures itself to be
synchronized with it, applies AI algorithms to detect anoma-
lies and then suggests self-healing or optimization actions.

Thanks to the DT, all stakeholders have a quick and easy
access to the physical object status, to monitor and control it
and eventually trigger required actions.

The success of DT technology in manufacturing, docu-
mented in the extensive survey reported in [4], has motivated
several studies aimed at extending it to humans, by designing
human DTs, that is computer models of humans tailored to
any patient to allow researchers and clinicians to monitor the
patient’s health, for providing and test treatment protocols [4].
Human DTs differ from DTs developed and used in Industry
4.0 [5] because they are not continuously connected to their
physical twin. In this case, users and experts are meant to
continuously update the DT with the input of medical digital
data describing the health condition of the physical twin.

A specific domain of application of human DTs is
described in this paper; it is a software framework, called
SmartFit that allows to monitor and manage the fitness activ-
ity of teams of athletes, by exploiting a team of DTs, each
linked to a team member.

SmartFit [6]–[8] has been designed and developed for
allowing trainers to monitor a team of athletes by capturing,
for each athlete, a set of measurements describing the ath-
lete’s behavior over a period, typically a number of days (D).
Such measurements are recorded by physical sensors embed-
ded in wearable devices (e.g. heartbeat, number of steps,
physical activity, sleep), and by applications aimed for exam-
ple at food or mood logging.

After observing the athletes’ measurements and their per-
formance during the training sessions, coaches and trainers
should be able to identify critical behaviors that need to be
avoided or regulated. For doing this, SmartFit allows the
coaches to define some rules that are automatically triggered
when specific situations take place. SmartFit aims at provid-
ing non-professional sport team members with an environ-
ment for creating rules using an easy and visual language,
familiar to them. Those rules are used for monitoring events
related to athletes’ habits and are automatically triggered
to notify the athlete whose behavior needs to be corrected.
Despite the simplicity and efficacy of use of SmartFit inter-
face, during its use it appears that very often the coaches and
trainers were not sure about the rules to define, especially
when they needed to be complex. To provide help to the
trainers in their rules creation task, we have extended the
SmartFit application with the artificial intelligence required
to make predictions and to compute suggestions helpful to
improve athletes’ performance. This is exactly the artifi-
cial intelligence characterizing DTs. Precisely, the extended
SmartFit exploits a team of DTs, each linked to one of the
athletes of the team. When receiving novel measurements
from one of the athletes, SmartFit sends the measurements to
the DT of that athlete, which predicts the fitness of the athlete
and provides the suggestions needed to improve the athlete’s
status. The trainer can exploit the proposed suggestions.

To form the DTs’ artificial intelligence, we have initially
used SmartFit to collect, for each athlete, t=10 vectors,
each containing the measurements recorded for D=3 days.
Each vector represents the athlete’s status during the D days.
To form the training (historical) dataset, a trainer has given
a vote (label) after each training session, which has followed
the D days of measurement. The collected training (histor-
ical) set has been used by SmartFit to build the artificial
intelligence of each athlete’s DT. After training, SmartFit is
ready to: collect novel unlabeled vectors describing the status
of each athlete; exploit each athletes’ DTs to predict their
status and to compute suggestions for improving the athlete’s
outcome; output the computed suggestions to the trainer, who
can trigger changes in the athletes’ behavior.

The novelty of this paper is the introduction of the concept
of team of human DTs. The main strength and peculiarity
of such artificial intelligent DTs is the capability of describ-
ing the reasons of the computed predictions, by computing
the smallest change to the feature values that increases the
prediction. Such explanations are important since they not
only allow improving the physical twins’ conditions, but also
make experts, in this case the trainers, to trust the output
of the automatic learner, which would be otherwise viewed
as a ‘‘black-box’’. Thanks to SmartFit, the trainer can then
trigger all or some of the modifications suggested by the team
of DTs.

Therefore, the main contribution of this work is to intro-
duce a sixth element in the ‘‘Human-In-The-Loop’’ ecosys-
tem [9]: a team of humans’ digital twins interacting with the
end users (at the center of the ecosystem) to predict their
future statuses and provide suggestions for improving their
fitness experience and their wellness in general.

Moreover, thanks to the generalization capability of the
machine learning applications used to develop the team of
DTs, this work describes a human monitoring framework
that could be exploited by generic experts to monitor the
conditions of patients whose health status may be described
by measurements collected through medical IoT connected
devices.

This paper is organized as follows: in Section II the litera-
ture review and research background are reported; Section III
is devoted to the detailed description of the artificial intelli-
gence of the athletes’ DTs; Section IV presents and discusses
the experimental results of the team of DTs; Section V reports
conclusions and future works.

II. RESEARCH BACKGROUND
A. LITERATURE REVIEW
1) DIGITAL TWIN: FROM AVIATION TO HEALTHCARE
In the 1970 NASA started creating mirrored systems to mon-
itor unreachable physical spaces (e.g. spacecrafts in mission),
with the aim of finding out solutions to unexpected prob-
lems, by using the mirror to test possible solutions. One
of the most famous examples of NASA mirrored system is
the simulated environment developed by engineers in Hous-
ton and Kennedy Space Center which was used to rescue

26638 VOLUME 8, 2020

B. R. Barricelli et al.: Human DT for Fitness Management

astronauts during Apollo 13 mission. Indeed, when the air
tanks exploded, engineers exploited the simulated environ-
ment to model and test possible solutions, and successfully
found a way out, which was an improvised air purifier [10].
From earth, engineers instructed the astronauts how to build it
with materials available in the spacecraft. At the same time,
by using simulating different scenarios, engineers on earth
finally found the way to get the crew of Apollo 13 back to
earth alive.

Mirrored systemswere useful for they bridged physical and
virtual spaces; however, they still lacked the abilities required
for allowing a smart interaction between the two spaces.
Such abilities are those characterizing the DTs, virtual twins
living together, and being synchronized with, their physical
twin (PT). Thanks to seamless connection and continuous
interaction with their PT and with the external environment,
DTs are able to continuously simulate the conditions of the
PT. Simultaneously, they analyze the received data, which
describes both the PT’s condition and the external environ-
ment, in order to predict future statuses and trigger optimizing
and/or preventive actions in case of predicted failures [1], [4].

In the field of aviation, DT models are principally devel-
oped for improving the aircrafts performance and reduce
costs of failures, by predicting damages and triggering
self-healing actions to avoid them [11]–[13].

In the manufacturing fields, DTs [14]–[17] are used not
only for allowing damage forecast and self-healing mech-
anisms through virtualization of manufacturing machines,
but also for optimizing manufacturing processes or even
factories [18]–[22].

Due to their success in the aviation and manufacturing
fields, DTs are spreading also in the healthcare and medical
fields.

In healthcare, they have been firstly implemented for
allowing predictive maintenance of medical devices and
for optimizing their performance in terms of examina-
tion speed and energy consumption, while other applica-
tions have been successfully developed to optimize hospital
lifecycle [23]–[25].

In the medical and clinical fields, DT technology is studied
with the aim of building the human DT, a virtual human
linked to its physical human. Such a DT would allow a
detailed and continuous inspection of the human health status,
thus allowing to predict the occurrence of an illness and
its best prevention and/or treatment by also considering the
PT’s personal history and the current context such as loca-
tion, time, and activity [26]. Such human DT is important
because it would promote the shift from the common way
treatments are delivered in medicine, which is the ‘‘one-size-
fits-all’’ method, where patients are treated according to some
‘‘norm’’ or ‘‘Standard of Care’’, to the so-called ‘‘personal-
ized medicine’’ [27], [28], where treatments are tailor-made,
based on the individual ‘‘physical asset’’, defined by all the
structural, physical, biological, historical characteristics of
the individual.

The research effort devoted to the development of human
DTs [29] has brought to the development of computational
models such as the ‘‘AnyBody Modeling System’’1 that
allows to simulate the human body working in concert
with its environment. With the AnyBody model users can
run advanced simulations to calculate: 1) individual muscle
forces; 2) joint contact-forces and moments; 3) metabolism;
4) elastic energy in tendons; and 5) antagonistic muscle
action.

A physiological model virtualized by a DT would allow
physicians to make in silico predictions of how the real
organ might behave in any given situation; this motivates the
great deal of research devoted to the development of DTs
for monitoring the conditions of organs or of their functions
in patients; examples are the DT of the heart [30]–[32], or
the DT of the hearth specifically developed for monitoring
myocardial conditions [33], or the DT of the airway sys-
tem [34], specifically developed for monitoring the inhala-
tion of patients receiving aerosol-delivered chemotherapeutic
drugs. This has been possible thanks to the availability of
economical storage and convenient access and exchange of
medical examinations (mainly images) from multiple modal-
ities (source machine types).

Even if DTs have encountered great success in many fields,
the DTs developed in healthcare differ enormously from
the one designed in industry, mainly for two reasons. The
first, human DTs should be built upon AI applications and
should make a strong usage of them. The second, and most
important, humans are not equipped with embedded sensors,
and medical data describing their status can be extracted only
from medical examinations; therefore, the seamless connec-
tion among humans and their DT cannot be guaranteed.

In this regard, a recent and interesting research work [35],
strongly related to our, presents a conceptual frame-
work for allowing a continuous communication between
IoT-connected wearables devices transmitting PTs’ health-
related data to their human DTs. Such conceptual human DT
model would allow improving the healthcare of elderly peo-
ple by allowing a continuous monitoring of their conditions.

A similar theoretical work [36] describes and defines a
conceptual DTmodel to be applied for continuousmonitoring
and personalized data-driven medical treatments.

2) MISSING DATA IMPUTATION METHODS
Being connected through their physical twins by also (man-
ually) recorded data, human DTs must generally deal with
datasets containing missing data. In this case the application
of techniques for data imputation, which ‘‘fill in’’ the missing
data based on the structure of the underlying dataset, have
been proven to be an effective technique when dealing with
biological data.

Among them, the k-nearest neighbors imputation
(knn-imputation) algorithm [37]–[39] has proven to be

1 https://www.anybodytech.com.

VOLUME 8, 2020 26639

B. R. Barricelli et al.: Human DT for Fitness Management

effective when applied in the field of bioinformatics to impute
missing values for gene expression arrays [37]–[38].

The schema of knn-imputation is simple; to impute the
missing value of the ith missing feature value xi of sample x,
the algorithm searches for the kimpute feature vectors that are
themost similar (closest or nearest) to the ith feature vector Fi.
In the following such ‘‘nearest to Fi’’ feature vectors are
referred to as: FNN(i,h) (h=1,. . . , kimpute), where NN(i,h) is
the index of the feature vector which is the hth nearest to Fi.
The imputed value xi for sample x(n) is then computed as the
weighted average of the kimpute nearest feature values (of x(n)
itself), that is:

xi(n) =
∑

h=1,...,kimpute

wNN(i,h)xNN(i,h)(n)
kimpute

(1)

where the weights wNN(i,h) are directly proportional to the
similarity between the feature vectors Fi and FNN(i,h). If one of
the values xNN(i,h) from one of the nearest neighbor features
is also missing, the (kimpute + 1)th nearest feature value is
used. It is worth noting that the point label is never used
in the computation of the knn-imputation, thus avoiding any
information leakage.

The work reported in [40] interestingly concentrates on the
data imputation when the amount of missing data is high,
that is when up to 60% of data is missing. Precisely, after
inserting different percentages of missing data in different
attributes of three datasets (Bupa, Cmc and Pima) belonging
to the UCI repository [41], they compared results obtained
by knn-imputation to those achieved by the internal methods
used by the C4.5 (tree generator algorithm [42]) and the
CN2 (rule induction algorithm [43]) to treat missing val-
ues. The study showed that, not only knn-imputation allows
obtaining higher performances, but also that it is superior
over other imputations methods, such as ‘‘case substitution’’,
‘‘mean and mode’’, ‘‘hot deck and cold deck’’, or those using
predictive models.

In [44] authors pointed out the most notable characteristics
of knn-imputation, which are:

• knn can predict both discrete attributes (the most fre-
quent value among the kimpute nearest neighbors) and
continuous attributes (the mean among the kimpute
nearest neighbors);

• imputed values are inferred values which belong to the
dataset distribution;

• knn makes use of auxiliary information provided by the
values in the dataset, thus having a major chance of
preserving the original data structure;

• once the kimpute value is established, knn is non-
parametric and uses the data set as a ‘‘lazy’’ model, thus
not requiring the creation of predictive models for the
missing measurements, and therefore being less prone
to model misspecification;

• since no explicit models (like a decision tree or a set
of rules) are needed for imputation, knn-imputation can
be easily adapted to work with any feature set, by just

modifying which attributes will be considered in the
similarity metric;

• knn can easily treat examples with multiple missing
values.

However, authors also highlighted the following notable
drawbacks of any method based on knn searches:

1) results may be dependent from the choice of the metric
used to gauge the similarity (or the distance) between
observations [45].

2) due to the knn search, when the dataset has many sam-
ples, the algorithm might be time consuming.

3) when unbalanced data are used, knn-imputation may
create a bias toward the most represented class, causing
the nearest neighbor to be always chosen from that
class [46].

4) results may be dependent from the choice of the number
of neighbors to be considered [44].

To deal with the first problem, several state-of-the-art
works have been proposed which essentially modify the met-
ric used to compute the distance between samples. In partic-
ular, in [38], while imputing missing data in genes, authors
compare the usage of Pearson correlation, Euclidean distance
and variance minimization, and conclude that, though being
sensitive to outliers, Euclidean distance appears to be the
most accurate norm when dealing with DNA microarray
data. In [47] authors present a comparative work to evaluate
the effect of knn-imputation in the performance of a knn-
classifier, a Bayesian tree, and an svm classifier. The task is
the outcome prediction of breast cancer patients described by
clinical data. The distance measure used to find the kimpute
nearest neighbors is the Heterogeneous Euclidean-Overlap
Metric [48]. Interestingly, authors show that the application
of knn-imputation allows improving the performance of all
the classifiers.

In [49] authors propose a knn-imputation method which
exploits a novel ‘‘hybrid’’ distance measure integrating the
Pearson correlation and the Euclidean distance, while in [50]
authors design an iterative knn-imputation scheme for filling
missing data in a trash pickup logistics management system.
The iteration is devoted to the recomputation of an ad-hoc
distance, namely the Grey Relational Grade [51], between
samples after each missing attribute is imputed. Finally,
in [52] the authors use knn-imputation to fill missing values
in miRNA expression profiles of patients, but they substitute
the measure between expression profiles with the Euclidean
distance between the clinical patient data.

Other studies concentrate on the choice of the best kimpute
value. Preliminary works in the field of scene analysis,
when the data is sparse and its variability is high [53], sug-
gested to use the square root of the number of complete
cases, rounded to the nearest odd integer, and such pro-
posal was confirmed by the study reported in [54], where
knn-imputation was applied to questionnaires using Likert
scales from 0 to 5 for collecting answers. However, as the
kimpute value gets bigger the computational time required for

26640 VOLUME 8, 2020

B. R. Barricelli et al.: Human DT for Fitness Management

searching the neighbors increases. Moreover, the neighbors
used for computing the missing value are much more dif-
ferent, which implies that the imputed value could be less
accurate [52]. To finally propose trustable values for kimpute,
in [44] authors performed exhaustive experiments on both
simulated and real datasets. The achieved results showed that,
whatever the experimental framework, 1NN was the only
method capable of preserving the data structure, and data
distortion was neglectable only when relatively small values
of kimpute (kimpute ≤5) neighbors were considered. However,
in case of noisy data, 1NNmeans that noise will have a higher
influence on the computed results. For this reason, and given
the results of their experimental evaluation, authors suggest
that the value of kimpute = 3 is a reasonable choice for several
classification problems.

Other works propose iterative versions of the knn
imputation scheme. In particular, a notable iterative
knn-imputation method has been proposed in [55]. The
proposed knn-imputation framework initially split the input
data (genes) into an ‘‘incomplete’’ and ‘‘complete’’ set, which
contain, respectively, missing and not missing values. The
genes in the incomplete set are sorted according to the
percentage of missing values and are imputed by the order
of missing rate. After the missing values on genes with less
missing values are imputed through 1NN imputation, such
imputed gene are moved into the complete set and used for
the imputation of the rest of genes in incomplete set.

Since this method works on subsampled complete set, its
time consumption is reduced in case of datasets composed
by many samples. Indeed, subsampling is the sometimes the
preferred choice both when the knn search is performed in
datasets with high cardinality and when unbalanced datasets
must be treated [46], [56].

3) knn CLASSIFIERS AND SUPPORT VECTOR
MACHINES FOR PREDICTION
When missing data have been imputed different DTs must
generally perform prediction of future conditions, to eventu-
ally propose repairing actions.

In the particular case of human DTs, most of the times
such prediction regards the classification of health conditions.
In this context, several state-of-the art works [57], [58],
perform classification by exploiting ‘‘network-based’’
approaches, which construct graphs of patients and exploit
their relationships to perform classification. Among such
methods, a simple and effective approach for performing
classification in a constructed ‘‘patient space’’ is the knn
algorithm [59], which is essentially based on the exploration
of the graphs constructed on the basis of some similarity
between patients.

knn [59], [60] is a non-parametric instance-based learning
method used for classification and regression. Due to its
simplicity and efficacy, it is one of the most relevant methods
in the machine learning and data mining fields [61].

Briefly, given a set of training samples and an unla-
beled (test) instance, whose prediction must be computed,

knn builds the patient graphs based on the patient similarity,
and assigns the class to the test instance as the most frequent
label in the group of the k nearest training instances. Essen-
tially, to classify an unlabeled sample, knn simply evaluates
its distance to every training samples, finds the k closest ones
and uses their labeling to select the class to be assigned to the
test sample.

Due to the knn search, two major factors influence the
prediction performance (see the drawback list mentioned for
knn-imputation): the choice of an appropriate metric to eval-
uate the distance between samples and the choice of the num-
ber of nearest neighbors (k). For the former, a few out of the
possible choices are Euclidean distance, Minkowsky distance
or Mahalanobis distance and their variants. Unfortunately,
the choice of an appropriate metrics is highly dependent from
the problem [64]. For the latter, the parameter k is usually
fixed and does not take into account the actual distribution of
the dataset. For this reason, some approaches have proposed
to dynamically assign an appropriate value of k for each test
sample based on the training set distribution [65].

Anyhow, at the state of the art, some techniques have been
using simple knn classifiers, e.g. to classify EEG signals
for predicting depression [62] or Paroxysmal Atrial Fibril-
lation [63], while some other authors have combined sev-
eral knn classifiers, each characterized by a different value
of parameter k, into an ensemble classifier, whose predic-
tion is generally performed by aggregating the classification
of all the classifiers in the ensemble through a majority
vote [66], [67].

Other approaches have been using knn techniques as the
final judges at the end of cascading systems, e.g. for the
classification of diabetic patients [68] or for the classification
of marker pixels [69] from histochemical images.

Other classification approaches achieved promising results
in classification of patient data, are those exploiting support
vector machines (svm) [70], [71]. Svms [72] are supervised
machine learning methods developed to solve binary classi-
fication problems. Briefly, the algorithm tries to identify the
optimal hyperplane that separates data points in the correct
classes by maximizing the margins between the vectors of the
two classes. The so-called support vectors are the data points
that are closer to the separating hyperplane and influence the
position and orientation of the hyperplane.

Since not all problems are linearly separable, the applica-
tion of a suitable kernel (e.g. Gaussian, polynomial, or linear)
is generally employed to implicitly map the input data into a
higher dimensional feature space where the dataset may be
separable [73].

In their original formulation, svms were meant to be
applied to balanced datasets, which means that the distri-
butions of the classes in the dataset are similar. However,
when dealing with real datasets, the negative class is often
the mostly represented, and, as we already mentioned, this
may introduce a bias in the accuracy of the classifier [46]
and may particularly decrease the performance of svm clas-
sifiers [74]. To tackle this problem, some authors oversample

VOLUME 8, 2020 26641

B. R. Barricelli et al.: Human DT for Fitness Management

the under-represented class before training the classical svm
classifiers by generating synthetic samples [75], other works
subsample the over-represented class [46], [56], and some
other authors apply both approaches at the same time[76]
before training the svms. Though some promising results
have been reported, it is well-known that the generation of
synthetic samples must address the critical choice of a data
model driving the sample synthetization [77]. Models which
are too close to the original data may cause overtraining,
while too general models introduce distortion in the under-
lying data distribution. On the other hand, the simple random
under sampling of the majority class may cause the loss of
potentially useful information to build the classifier and the
choice of meaningful ‘‘informed under sampling’’ techniques
is required to overcome this issue [78].

For these reasons, most approaches [70], [79], [80]
obtain promising results by exploiting cost-sensitive svm
approaches.

Precisely, cost-sensitive learning methods introduce a cost
of misclassification to weigh differently the classification
errors in different classes [78]. In particular, in this paper
we applied the cost-sensitive svm, also known as ‘‘biased
penalties svm’’ [81]. More in detail, in the framework of
the svm optimization problem, two regularization parameters,
θ+ and θ−, were introduced to be able to adjust the cost of
misclassification of negative and positive samples.

Since svm machines are binary classifiers, before applying
them to perform multiclass classification, they are generally
combined into ensemble techniques. In particular, several
state-of-the-art works have shown that the best results are
computed by ensemble methods using ‘‘binarization’’ strate-
gies [82]. They divide the original data set into two-class
subsets, learn a different binary model for each new subset,
and then compose the predictions of the binary classifiers,
according to different aggregation schemes.

In this work, we have chosen to use error-correcting output
code (ECOC) models, which are ensemble methods specifi-
cally designed to handle multiclass classification problems.
The basis of the ECOC framework is to decompose a mul-
ticlass problem into a larger number of n binary problems,
according to a coding design2. In this way, each classi-
fier is trained on a binary meta-class problem, where each
meta-class consists of some combinations of the original
classes, according to some coding design. Since each binary
classifier has output 0 or 1, each class is then represented by
the expected n-dimensional codeword (string) which contains
the expected output of each binary classifier. When a novel
point must be classified, the n binary classifiers are evaluated
to obtain an n-dimensional string representing the point, and
the class whose codeword is the closest to x’s output string is
chosen as the predicted label. In our case, the distance among
two codewords is the Hamming distance.

2For a list of all the possible coding designs see the MATLAB documen-
tation at: https://it.mathworks.com/help/stats/fitcecoc.html

ECOC improves the generalization performance of the
base binary classifiers [83], and reduces their bias and
variance errors [84]–[86].

4) EXPLAINING PREDICTION AND PROVIDING
SUGGESTIONS WITH COUNTERFACTUAL
EXPLANATIONS
One of the main features desirable especially for human
DTs regards the ability of explaining the computed predic-
tions. With the aim of opening the so-called ‘‘black-boxes’’,
a great deal of research work have been recently devoted
to the development of automatic techniques for explaining
the predictions computed by machine learning methods, and
the growing literature about this subject has indeed gener-
ated a novel field of research called ‘‘interpretable machine
learning’’ [87]–[91].

Among the different techniques for explaining the clas-
sifiers’ decision, counterfactual explanations are sometimes
preferred because they explain the output of the classifier for
the specific input point.

Counterfactual Explanations are defined as statements tak-
ing the form [92]: ‘‘Score p was returned because variables V
had values (v1,v2,. . .) associated with them. If V instead had
values (v1’, v2’,. . .), and all other variables had remained
constant, score p’ would have been returned’’.

In the field of pattern classification, counterfactual expla-
nations explain the trained model by showing how the input
parameters allow obtaining specific classification results, or,
in other words, how to change the values of the input data to
obtain a desired classification result. Therefore, by comput-
ing counterfactual explanations we may provide prescriptive
suggestions. Essentially, thinking in counterfactuals requires
imagining a hypothetical reality that contradicts the observed
facts, hence the name ‘‘counterfactual’’.

The ability to derive counterfactual explanations is nowa-
days becoming a problem of paramount importance, espe-
cially in the clinical field, where classifications from ‘‘black
boxes’’ are not useful at all.

In [93], authors present a theoretical approach for finding
counterfactual explanations. Essentially, if the trained classi-
fier model computes function f̂ () and y

′

is the desired class,
they suggest finding the counterfactual x̃ that minimizes the
following loss:

L(x,x
′

, y
′

, λ) = λ(f̂ (x
′

)− y
′

)
2
+ d(x,x

′

) (2)

where the first term is the quadratic distance between the
model prediction for the counterfactual x’ and the desired
outcome y’, d(x,x’) is a distance function measuring the
difference between the analyzed point x and the counterfac-
tual x’, λ is a user-set parameter balancing the distance in
prediction (first term) against the distance in feature values
(second term).

Given an input point x, a desired outcome y’, a trained
classifier model (that is, a function f̂ ()), a value for the

26642 VOLUME 8, 2020

B. R. Barricelli et al.: Human DT for Fitness Management

parameter λ, and a distance function d(), the loss func-
tion in Equation 6 becomes a function of the counterfac-
tual x’. Therefore, the best counterfactual x̃ is found as: x̃ =
argminx′∈X(L(x

′)), where X is the input space and function
argmin(L) returns the argument that minimizes the loss L.

Though this theoretical approach is sound and convinc-
ing, function minimizations are often misled by local min-
imums and might require high computational costs, which
are not acceptable when the need is to develop real time
applications.

Therefore, some authors find counterfactuals by apply-
ing ‘‘smart’’ iterative procedures in the input space [94] or
search the counterfactual in a (growing) neighborhood of
the starting point x; the neighborhood is enlarged until a
counterfactual that allows to obtain the desired output is
obtained [95]. Of note, some authors provide classifier inter-
pretations that, though opposite to counterfactual explana-
tions, allow anyway to interpret the classifier and provide
counterfactuals. As an example, in [96], authors find anchor
explanations. An anchor explanation is a rule that sufficiently
‘‘anchors’’ the prediction locally, such that changes to the rest
of the feature values of the instance do not matter. In other
words, for instances on which the anchor holds, the pre-
diction is (almost) always the same. Though the definition
of anchors is opposite to counterfactuals, once anchors are
found, the counterfactuals can be found by identifying the
anchor values that allow obtaining the desired predictions,
without looking at the not-anchor features.

5) THE ‘‘HUMAN-IN-THE-LOOP’’ ECOSYSTEM
As stated by Shneiderman [97], the so-called ‘‘old comput-
ing’’ was the one focused on what computers can do for their
users; the ‘‘new computing’’, instead, is meant to be about
the users’ activities and what they can achieve by using com-
puters. The continuous evolution of users from being passive
consumers of data into active producers of information and
even of software is deeply changing the way interaction and
systems in general are designed [98], [99].

Especially in IoT design, the possibility of connecting
devices over the Internet offers great opportunities and does
not only enrich the way the users interact with technology
and manage their personal data, but also gives the chance of
sharing data with other people who can be family members,
friends, colleagues, or others.

However, data sharing in the long term leads to the creation
of a large quantity of data; this calls for integration of rec-
ommending, intelligent, and distributed systems to support
domain experts, who are not necessarily technical experts,
in dealing with such large amount of data and to help them in
making sense of it. Success in designing and developing tools
and services based on IoT – and DTs are the most complete
example – requires a broad approach that includes expertise in
sensing and hardware, networked systems, human-computer
interaction, usability, and data management.

Essentially a DT, or a generic IoT environment, can
be viewed as a ‘‘Human-in-the-Loop’’ [9] ecosystem of

elements (hardware and software) that exchange data through
the Internet and act and react in a semi-automatic or automatic
way according to events, and/or to preferences, rules, or deci-
sion of domain experts’ (users’) which are at the center of the
ecosystem (the Loop) [100], [101]. Especially in case of a
human DT, at the center of this ecosystem stands the user,
the one who generates (or contributes to) the data, manages
the IoT elements in the ecosystem, and unwittingly develops
in the IoT environment defining the interactions among the
elements and the elements’ behavior [100], [101]. In this
scenario, the users find themselves at the center of a complex
ecosystem that they need to manage in efficient, effective,
satisfactory, and aware manner.

While in [102] the elements of the ecosystem have been
categorized into five groups, which are sensors, applications,
social media, recommendation systems, and other users,
the contribution of this work is to introduce a sixth element in
the ecosystem: a team of humans’ digital twins that interact
with the end users (at the center of the eco-system) to predict
their future statuses and provide suggestions for improving
their fitness experience and their wellness in general.

B. SMARTFIT
SmartFit [6]–[8] is a framework helping coaches and athletic
trainers of non-professional sports teams to monitor and ana-
lyze data regarding the fitness and well-being of the athletes.

Through the use of specific rules, coaches and athletic
trainers can detect relevant and significant events that may
affect their athletes’ performances and that depend on data
such as the number of calories taken and burned or the number
of hours of sleep.

Unfortunately, the problem with this system is that the
coach/trainer is often ‘‘lost in the data sea’’ and does not
know which parameter each athlete must modify to improve
its fitness.

To help coaches and trainers in the monitoring task,
we have extended SmartFit with machine learning techniques
that enable predictions and we have developed a method,
based on counterfactual explanations, to compute suggestions
for improving athletes’ performance. Essentially, suggestions
are provided as instructions, or rules, that describe a change
in behavior.

SmartFit is therefore able to compute predictions and the
consequent rules, by extracting knowledge from the collected
measurements describing both the athletes’ performances and
the coachers/trainers’ feedbacks. In other words, SmartFit
provides an interpretable predicting and prescriptive system,
often said a ‘‘white-box’’ model [103], [104].

In particular, the developed machine learning approach
produces a set of readable and understandable IF-THEN
rules, which are easily interpretable and follow a similar
pattern to human thinking.

For example, if coaches/trainers/nutritionists, or any other
expert, want to trigger actions on athletes showing bad per-
formance, they could use the rules produced by the athletes’
DTs integrated in SmartFit to check if, e.g., too much intake

VOLUME 8, 2020 26643

B. R. Barricelli et al.: Human DT for Fitness Management

calories or too few hours of sleep are correlated to bad
performances during the training sessions. On the other side,
if coaches had no idea about the reasons of bad performance
during training, they could use the rules provided by the DTs
in SmartFit to trigger ‘‘optimization’’ rules, to modify the
athletes’ behavior. Thanks to SmartFit, while creating these
rules, the coaches/trainers must specify what happens when a
particular set of conditions is met/not met by defining a list of
actions to be performed, such as by specifying that a warning
needs to be sent via direct messages.

By using direct messaging system, coaches and trainers
have access to suggestions that can be shared among other
colleagues at a later time. Moreover, adjustable parameters
in the rules produced by the DTs allow to fine-tune them if
coaches/trainers are not satisfied with the recommendations.

To test SmartFit, we have used data collected in 2016,
obtained by monitoring for one month a non-professional
soccer team composed by 11 teenager athletes (all males and
all 19 years old).

The measurements related to each athlete have been
labeled by the trainer according to the performance of each
athlete in the training session following the D=3 days of
measurement.

Precisely, each athlete’s day is described by t= 22 features,
which record:

• The food income, described by 7 features: grams of
carbohydrates, fat, proteins, cholesterol, sodium, sugar
and fibers. These data were collected by inviting the
athletes to use the mobile application MyFitnessPal3 to
log their meals (breakfast, lunch, dinner and snacks).

• The calories intake relative to the day, which are: the
calories eaten, the basal calories, and the calories for
activities burnt in one day. All these data were produced
by the appMyFitnessPal on the basis of themeals logged
by the athletes.

• The activity of the day, described by: number of steps,
number of floors, walked distance, minutes of seating
activity, minutes of light activity, minutes of moderate
activity, and minutes of intense activity. These data were
collected using Fitbit Charge HR4, a wristband tracker
that detects physical activity, rest, sleep and heartbeat.

• The quality of the athlete’s rest, described by: minutes
of rest, minutes of sleep, minutes of wake, number of
awakenings. These data are collected by Fitbit Charge
HR too.

• The athletes’ mood, represented by an integer number
ranging from 0 (bad day) to 5 (happy). These data are
collected by inviting the athletes to log their mood on a
daily basis by using the mobile application for Android
Moodtrack Social Diary5. It has to be clarified that this
app has deeply changed over time and its interaction
has become way richer than it was at the time of our

3 https://www.myfitnesspal.com/
4 https://www.fitbit.com/
5 https://play.google.com/store/apps/details?id=com.moodtrak.diary

FIGURE 1. Athletes’ scores distribution. Note that the intra-patient score
distribution is quite variable.

data collection. In fact, in 2016, through the app the
users could just select one out of six moods that were
graphically represented by an emoticon hence the use of
the range 0-5 for our application.

Since the measurements are recorded for D=3 days, each
athlete’s condition is described by t=66 measurements.
After the three days, each athlete has a training session,

after which an expert in the field (e.g. the trainer or the
physiotherapist), evaluates both the quality of the athlete’s
training and their health with a number: 1 (poor), 2 (medium),
3 (excellent).

Since the athletes have been monitored for one month
(30 days), for each athlete, the process of 3-days mea-
surements plus training end evaluation has been repeated
for 10 times. In this way, we obtain a set containing
N=110 points (10 measurements, or sample points, per
A=11 athletes).
Precisely, the (quite unbalanced) dataset is composed of

Npoor = 19 points with fitness score ‘‘poor’’, Nmedium = 71
with fitness score ‘‘medium’’, Ngood = 20 with fitness score
‘‘good’’.

The boxplots in FIGURE 1 show, for each athlete, the min-
imum, the median, and the maximum score. This allows
observing that each athlete has a quite variable fitness
score distribution. Indeed, only two athletes have never been
assigned score excellent, one athlete has never been assigned
score poor, while others have been assigned each score at least
ones.

III. THE TEAM OF DTS
In this Section, we describe the system developed to create
the artificial intelligence (AI) of a DT, which monitors the
health status of a generic person (i.e. a physical twin, which is
an athlete in this case), described by a set of (fitness related)
parameters, and provides predictions about the fitness out-
come and suggestions to improve it.

More precisely, in Subsection III.A we firstly describe the
algorithms developed for analyzing the historical (training)
data, which contains the measurements describing N fitness

26644 VOLUME 8, 2020

B. R. Barricelli et al.: Human DT for Fitness Management

FIGURE 2. Architecture of the developed model.

conditions, each represented by a set of heath measurements,
and by a ‘‘known’’ fitness/health score provided by experts
(e.g. fitness trainers, coaches, medical doctors, or nutri-
tionists). After processing such data, and therefore forming
the memory, knowledge, and prediction capabilities of the
DT (III.A), when a novel set of measurements describing
the PT is provided (by the PT themselves, or by any other
expert monitoring the PT), the DT estimates the current PT’s
conditions, and then provides suggestions for improving the
PT’s health status (see Subsection III.B).

In our explanation, the training set X is composed by
N training points (measurements), that is X = {x(1), . . . ,
x(N)}. The training points will be also referred to as sam-
ples, sample points, or training points in the following. Each
x(m)=[x1,. . . xi, . . . , xτ] is represented by a feature set con-
taining t features describing the health status of one PT.

The label (ground truth) of the points in the training set is a
numeric, categorical fitness score, c∈C assigned by an expert
(e.g. a fitness trainer, a medical expert, or a nutritionist).

Note that, when real datasets are used, the class-
subsets have quite different cardinalities, thus resulting in
unbalanced datasets, which may pose problems when deal-
ing with both binary and multiclass classification prob-
lems [46], [105]–[107].Moreover, somemeasurementsmight
be missing for some samples, thus introducing the need of
appropriate approaches for handling not available data.

In Figure 2 the developed model architecture is depicted.
At first the SmartFit framework collects historical data

composed by the athletes’ measurements and by the train-
ers’ evaluation (ground truth), and stores it in the data
storage.

When enough historical data has been collected, the train-
ing phase starts (dashed box in Figure 2, described in detail in
Subsection III.A) to generate the DTs’ artificial intelligence.

Particularly, during training, the following tasks are exe-
cuted. At first, the missing data imputation model is automat-
ically selected and the missing historical data are imputed (as
explained in Subsection III.A.1). Simultaneously, the most
discriminative features are selected (see Subsection III.A.2),
the (imputed) historical data is coded by solely using them.
Next, by using the coded historical data, the optimal classifier
models are automatically selected and trained (as illustrated
in Subsection III.A.3). Finally, the resulting coded historical
data is re-sent to the data storage, to be stored for processing
novel data.

When the training phase ends, the team of DTs are ready
to process novel measurements, whose fitness score is not
yet known (SmartFit box in Figure 2, as described in Subsec-
tion III.B). Precisely, when novel measurements are provided,
they are coded by eventually imputing missing data and
by selecting only the most informative features (identified
during training). At this stage, they are input to the trained
classifier that provides a fitness score prediction and then
retrieves the coded historical data from the data storage to
compute suggestions for improving the predicted score.

The suggestions are then sent to the Rule Editor environ-
ment in SmartFit, to let trainers and coaches compose rules as
extensively explained in other publications (e.g. [6], [102]).

Note that, whenever some measurements with their ground
truth label are provided by the expert trainers, they are added
to the historical data and the training phase is repeated to
update the DTs knowledge with the novel labeled data.

VOLUME 8, 2020 26645

B. R. Barricelli et al.: Human DT for Fitness Management

A. TRAINING THE DT
In this Section, we describe the steps aimed at training the DT,
to form its AI (dashed box in Figure 2). Precisely, after
estimating the missing values with the knn-imputation algo-
rithm (see Subsection III.A.1), the most informative charac-
teristics, appropriately called the ‘‘right data’’ in [108], are
chosen through feature selection (see Subsection III.A.2),
and four different multiclass classifiers are then trained
(Subsection III.A.3).

1) MISSING DATA IMPUTATION
Since the measurements describing each person’s health are
manually recorded, they are sometimes forgotten, thus result-
ing in missing data. To fill the gap, the DT applies knn-
imputation [37] (see Section II.A).

Though being effective for several classification tasks
where datasets have a high percentage of missing values [40],
it must be noted that knn-imputation works well when the
feature vectors have the same type and take values in the
same range. However, in our problem, we treat health features
whose types are quite different from one another; they might
be both categorical variables (expressed by discrete number),
or continuous variables, and their ranges of variation are very
different between each other. For this reason, imputing miss-
ing values by searching for nearest features is not meaningful.
Based on this consideration, we estimate the missing values
by searching for the kimpute nearest samples, rather than the
kimpute nearest features. In practice, if the ith feature, xi(n),
for the nth point is missing, the imputed value is computed as
the weighted mean of the ith feature values of the k nearest
neighbors of x(n). In practice, we compute:

xi(n) =
∑

h=1,...,kimpute

wPNN(i,h)xi(NN (n, h))
kimpute

(3)

where wPNN(i,h) is the weight, directly proportional to the
normalized similarity SimNorm(x(n), x(NN(i,h))) (described
later in this Subsection) between sample x(n) and its hth

nearest neighbor whose index is NN(n,h).
As mentioned in Section II.A knn-imputation has four

main drawbacks which regard:
a) the choice of the metric used to gauge the similarity

between observations [45]. In our case we use the normal-
ized similarity measure between samples (described in the
following Subsection a)), which has been defined to work
on clinical patient data where each feature has a different
meaning.

b) the high computational cost required by the knn
search. To cope with this issue we subsample the training
set as explained in the following Subsection b).

c) the data unbalancing. To cope with this problem we test
two different techniques; the first one is the training set
subsampling described in Subsection b), while the second
is the use of cost sensitive support vector machines [81]
(see Subsection III.A.3).

d) the choice of the number of neighbors to be consid-
ered. To tackle this problem, we developed an automatic

knn-imputation model selection that automatically selects
the value of k maximizing the informativeness of the
imputed dataset.
In the following, we describe the similarity mea-

sure between point samples (Subsection a), the training
subsampling method (Subsection b), and the automatic
knn-imputation model selection technique we developed
(Subsection c).

a: NORMALIZED SIMILARITY BETWEEN POINT SAMPLES
To answer point a) in the previous drawbacks’ list, we use the
weighted normalized similarity measure (defined in [109]),
that has been specifically designed to evaluate the similarity
between patients described by discrete, categorical, clinical
features with differing semantic meaning and characterized
by different data types.

Precisely, as it is defined in [109], the normalized simi-
larity, SimNorm(x(1), x(3)), between points x(1) and x(3) is
computed as:

SimNorm (x (1) , x (2))

= 1−DistNorm

= 1−

∑t
f=1

|xf(1)−xf(3)|
max(f)−min(f)

t
, x(i) = [x1(i), . . . , xt(i)] (4)

where DistNorm is the normalized distance between x(1)
and x(3), and max(f) and min(f) are, respectively, the max-
imum and the minimum values of feature vector Ff. Note that
the difference |xf (1)-xf(3)| is neglected when one of, or both,
the two values xf(∗) is missing for feature f (in this case, the
mean is obviously computed over t-1 values).

The SimNorm(x(1), x(3)) distance works well when dis-
tances between points have the same importance. How-
ever, to improve the DT’s generalization capabilities, it must
receive and process historical data from both its PT and from
entities in the so-called ‘‘external environment’’. In this case,
such entities are the other team members, and their data are
their measurements and the achieved performance. Based
on the consideration that each individual is characterized by
personal conditions, attitudes, and reactions to events, the DT
must give more importance to data from its physical twin.
To this aim, we have introduced a weight (wInd) that gives
more importance to similarities between measurements from
the same individual, by lowering the normalized distance
between them:

SimWNorm (x (1) , x(3))

= 1−DistWNorm

= 1−
wInd∗

∑t
f=1

|xf(1)−xf(3)|
max(f)−min(f)

t
(5)

whereDistWNorm is the weighted normalized distance, and the
weight wInd =wsame, 0< wsame < 1, if x(1) and x(3) are
two measurements from the same individual, while wInd = 1,
otherwise (we recognize measurements from the same person
thanks to a unique identifier). Though we believe that a good
setting for wsame is wsame = 0.75, to analyze the influence

26646 VOLUME 8, 2020

B. R. Barricelli et al.: Human DT for Fitness Management

of its value on the computed results, in Section IV we show
results obtained by varying the value of wsame in the set
{0.5, 0.75, 1}. Note that this set comprises both an extreme
value (wsame = 0.5), which essentially neglects similarities
between different individuals, and the value wsame = 1,
which essentially deletes the effect of wInd for all the simi-
larities are weighted in the same way.

The normalized similarity measure is simple and effective
on clinical data [109].Moreover, it allows to avoid any dataset
normalization/standardization, since the resulting similarity
measure takes values in the continuous interval [0, 1].

b: SUBSAMPLING THE TRAINING WHEN
HAVING UNBALANCED DATA
To cope with problem (b) and (c), that is to avoid the bias
caused by data unbalancing and to reduce the high computa-
tional times and costs caused by searches in datasets with high
cardinality, before applying knn-imputation we subsample
the training set where the kimpute nearest neighbors must be
searched for. The subsampled set is formed by sampling each
class to select a smaller set of most representative points [46].
When opportunely designed, this procedure not only reduces
computational costs, but it could also increase the classifier
performances decreasing the risk of overfitting due to the
preferential prediction towards the majority class in unbal-
anced datasets [56].

Precisely, we find the class Cmin with the lowest cardinality
(|Cmin|, where |S| is the cardinality of set S), and, for every
other class, we sample n points, where n=unbF ∗ |Cmin|, and
unbF is the maximum unbalancing factor, which limits the
total number of points and the unbalancing in the training set.

The sampling method is one the following:

• nearestToMin: sample the n points that are the nearest
to the points in Cmin. Points are sampled by computing
the pairwise normalized similarities between the points
in Cbig and the points in Cmin and by taking the n points
that are the most similar to some point of Cmin.

• farthestFromMin: works in the opposite way than near-
estToMin; it samples points that are the farthest from the
points in Cmin.

The afore-mentioned sampling methods have been
described and tested in the work of [46]. Precisely, they have
been used to form balanced training sets with limited cardi-
nality for training a knn classifier for information extraction
from the biomedical literature. Experimental results showed
that the best performing sampling method is nearestToMin.

In this work (see Section III.A.3) we tested values of
parameter unbF in the set {2, 3, 4} (see Section IV) to show
its effect on the computed results.

c: Knn-IMPUTATION MODEL: AUTOMATIC
MODEL SELECTION
As mentioned in Section II.A, the experimental results pro-
posed in [44] showed that, when performing knn-imputation,
the value kimpute = 1 should be avoided to guarantee

robustness to noise; at the same time, kimpute should be set to
low values to avoid biasing the data structure. Based on the
afore-mentioned considerations and given that some param-
eters in our data are manually recorded and might therefore
be quite noisy, our algorithm automatically chooses the best
kimpute in the range [2, . . . , 5].

Briefly, to perform automatic knn-imputation model selec-
tion, which regards the selection of both the training
subsampling method and the kimpute value, our algorithm
performs a grid search, which tries each of the eight com-
binations of training sampling method sub ∈ {nearestToMin,
farthestFromMin} and value of kimpute, kimp ∈ [2,. . . ,5], and
chooses the one that maximizes the discriminative power of
the imputed set.

Precisely, for each couple of values (sub, kimp), the training
set is subsampled by usingmethod sub, and knn-imputation is
performed by imputing each missing value as the average of
the corresponding values in the kimp nearest neighbors found
in the subsampled training set.

After imputing all the values, the feature selection method
presented in detail in the following Section III.A.2 is applied.
This method selects the most representative subset of features
and returns amean p-value, PSelF, which is inversely related to
the discriminative power of the selected feature set SelF (the
lower the value of PSelF, the highest the discriminative power
of the feature set, or, in other words, the inter-class separation
provided by the feature set).

The automatically chosen training sampling method and
value of kimpute are those that allow obtaining a selected
feature set minimizing PSelF (that is, maximizing the inter-
class separation).

2) FEATURE SELECTION
Feature selection has the aim of choosing the so-called
‘‘right data’’ [108] by selecting the most informative (dis-
criminating) features while discarding redundant informa-
tion. This problem has been extensively studied in litera-
ture [110], [111] since it allows reducing the computational
costs of the following algorithms, and it often improves
the performance of classifiers, which are not misled by
the (removed) uninformative or redundant information.

Informative features can be identified by applying statisti-
cal tests for measuring the difference in the class distribution
of each feature.

Precisely, each feature is firstly analyzed through the
Anderson-Darling’s test [112] for detecting whether the fea-
ture is normally distributed against the alternative hypothesis
that it is not normally distributed [113]. Features for which
the computed p-value is p<0.05 (95% confidence interval)
are normally distributed, while the others are considered as
not normally distributed.

After this step, the Bartlett’s test ([114], [115]) is applied
on normally distributed features to check whether they are
homoscedastic against the alternative hypothesis that they are
heteroscedastic. Features for which the Bartlett’s p-value is
p<0.05 (95% confidence interval) are homoscedastic.

VOLUME 8, 2020 26647

B. R. Barricelli et al.: Human DT for Fitness Management

In case of not normal distributions or heteroscedastic nor-
mal distributions, the multivariate Kruskal-Wallis’s test [116]
is applied to check if the feature distribution in different
classes have the samemean, against the alternative hypothesis
that they have different means. On the other side, when nor-
mal homoscedastic distributions are treated, ANOVA [117] is
the best statistical test for performing the same check.

After computing the p-values with Kruskal-Wallis or
ANOVA, we keep only features for which the feature dis-
tribution in different classes have different means, that is,
we keep the tSelF features for which the p-value allows to
discard the null hypothesis at 5% significance level, that
is p<0.05 (95% confidence). The p-values of the retained
(most discriminative) features are stored in a vector Pval =
[pi], i=1,. . . ,tSelF, where pi is the p-value (pi <0.05) of the
ith selected feature, computed either by Kruskal-Wallis or
ANOVA test.

The afore-mentioned statistical tests are effective in selec-
tive discriminative information but do not consider the inter-
features relationships. Consequently, if two discriminative
features are highly correlated, the redundant information is
anyway included in the selected feature set. To remove such
redundant information, we therefore compute the pairwise
Pearson linear correlation coefficient between each pair of
feature vectors and, for each couple of features obtaining an
absolute, statistically significant (pcorr < 0.05 [118]) Pearson
correlation coefficient, that is Pearson ≥ 0.5, we remove the
less discriminative feature, that is the feature for which the
corresponding p-value in Pval is higher.
In this way, we obtain the set of selected features, SelF,

with cardinality L = |SelF| and a vector of corresponding
p-values extracted from Pval. In the following, we will refer
to the mean of such p-values, as PSelF, and we will con-
sider it as the p-value of the (selected) feature set, which is
inversely related to the discriminative power of the selected
feature set.

3) THE MULTICLASS CLASSIFIERS
To deal with the multiclass classification problem we use
ECOC models [83], which have been shown to improve the
performance of multiclass classifiers by combining them into
an ensemble their binary versions [84]–[86].

To confirm this thesis, given the (imputed) training set
(built by using the selected feature set SelF, see Subsec-
tion III.A.2), we firstly subsample it by using the training
subsampling method (nearestToMin or farthestFromMin, see
Subsection III.A.1) automatically selected during the knn-
imputation phase (see Subsection III.A.1). This allows to
work with a ‘‘more balanced’’ and smaller training set TRED,
containing, for each class, unbF∗|Cmin| training points.
Using TRED, we compared the performance obtained by a

simple multiclass knn classifier [59], [60] referred to as knn
in the following, to those obtained by three ECOC models
differing for the employed training set and binary learners.
Precisely, two ECOC models, referred to as knn-ECOC and
svm-ECOC in the following, exploit, respectively, knn and

support vector machines (svms) as base classifiers, and are
trained on TRED.
The third ECOC model, referred to as svmCOST -ECOC

in the following, uses cost-sensitive svms [81] as binary
classifiers, and is trained on the whole unbalanced training
set. In particular, following the approach showed in [81],
in the experiments presented here, if the positive class is c+
and the negative class is c−, when a point of class c+ is
wrongly assigned to class c−, we set themisclassification cost
θ+ = (|c−|)/(|c+|). On the other side, the cost of negative
misclassifications is θ_= (|c+|)/(| c−|). Essentially θ+ and
θ− weight more misclassifications of points belonging to the
smallest class.

Note that all the classifiers are based on the computa-
tion of the distance between points. We therefore defined a
feature-weighted normalized distance, DistWWNorm, which
extends the weighted normalized distance DistWNorm defined
in Section III.A.1 (equation 4). Precisely, when comput-
ing DistWWNorm each feature vector Ff (f=1,. . . ,|SelF|) is
weighted by a weight wf = 1-pf, where pf is the p-value
computed for feature f (see Section III.A.2); the weight wf
is directly proportional to its discriminative power.

Essentially, the distance between two points x(1) and x(3)
is computed as:

DistWWNorm (x (1) , x (2))=wInd ∗

(∑L
f=1
|xf(1)−xf(2)|∗wf
max(f)−min(f)

)
L

(6)

where each point x(i) is an L-dimensional vector (L= |SelF|)
composed by the values of the L selected features, and we
recall that wInd is the weight used to lower the distances
between the same individual. Essentially, the fth element wf
(f=1,. . . ,|SelF|) of the weight vector influences the difference
between the corresponding fth elements in the two points.
The efficacy of this distance measure, e.g. when compared
to the classical Euclidean distance, is shown by the tsne
decomposition plots [119] reported in Appendix A.

A final note to be done is that each classifica-
tion model is defined by a set of parameters, which
are automatically selected by the Bayesian Optimization
procedure [120], [121], which attempts to minimize the clas-
sification error computed by assessing the trained classifier
with an internal Leave-One-Out cross-validation (LOOCV).
Precisely, the parameters defining each classifier model are
the following:
• the knn-based classifiers are defined by the number of
nearest neighbors (k);

• the svm-based classifiers are defined by the employed
kernel function, K(x,y), and by its parameters;

• the ECOC models are defined by the coding design.
Moreover, though the feature set SelF has been com-

posed by selecting discriminative and not redundant features,
we decided to perform a greedy search to choose, among
features in SelF, the minimal set of features that obtains the
best classification performance. To this aim, we employ a

26648 VOLUME 8, 2020

B. R. Barricelli et al.: Human DT for Fitness Management

TABLE 1. Top: manual parameters of our model. Bottom:
hyper-parameters automatically chosen by bayesian optimization. On the
left we report the (hyper-)parameter name, while the hyper-parameter
space is reported on the right. The bottom table is divided into blocks,
according to the automatic model selection criteria.

greedy method which sorts the selected features according to
their p-values (from the smallest to the highest), and, for each
classifier, chooses the first t̂ features which allow to minimize
the classification error computed through LOOCV. In our
multiclass problem, the classification error on the training set
is simply computed as the ratio of the number of wrongly
classified points divided by the number of points, regardless
of their label.

For clarity of explanation, Table 1 lists all the parameters
used in our algorithm, their optimizing set. Note that, all the
parameters but two (wsame and unbF) are automatically set in
order to achieve the best classification performance.

Regarding the two manually set parameters, in the experi-
mental results of Section IV we show their influence on the
results achieved by either knn-based classifiers or svm-based
classifiers. In this way we may provide our suggestions for
setting their values.

B. TREATING NOVEL MEASUREMENTS TO PROVIDE
SUGGESTIONS BASED ON COUNTERFACTUAL
EXPLANATIONS
After using the historical (training) data to form its artificial
intelligence, the DTs are ready to process new data coming
from their physical twin to estimate their conditions and pro-
vide suggestions for improvement (SmartFit Box in Figure 2).

Precisely, when the physical twin (or an expert) provides
a novel vector of measurements, xnovel, that is a set of
t-dimensional points whose fitness score is unknown, the first
step regards data imputation, if some data is missing. In this
case, missing data are imputed by using knn-imputation,
which works on the subsampled training data by searching
for kimpute neighbors (where the method for training set sub-
sampling and the value of kimpute are chosen as described in
the previous Section).

Next, xnovel is described by using only the minimal set of
features chosen while training, and its fitness score is esti-
mated by one of the multiclass classifiers trained as described
in Section III.A.3 (the experimental evaluation reported in
Section IV allows choosing the best performing learner).

Finally, the training data is used to compute prescriptive
suggestions for improving the fitness status of the physical
twin, based on the computation of the so-called counterfac-
tual explanations.

In our work, after predicting the fitness score for a novel
measurement x, the DT computes counterfactuals in a way
similar to that used in [95].

Precisely, let {scmin, . . . , scmax} be the sorted fitness scores,
where scmin corresponds to bad performance, while scmax cor-
responds to good performance, and suppose that the predicted
score for xnovel is sc.

The DT provides suggestions to get higher fitness scores,
that is, to get fitness scores scdesired = {sc+1, . . . , scmax}.
To this aim, for each desired score scdesired, the DT find

the nearest point, xWish, whose fitness score is scdesired, where
the distance is the DistWNorm used by the multiclass classi-
fiers (see Section III.A.3). Using xWish as the starting point,
a dichotomic procedure is applied to find the point, xDESIRE,
which is the nearest to xnovel in the segment joining xnovel and
xWish and whose predicted fitness score is scdesired.

Precisely, setting x1=xnovel and xDESIRE = xWish,
the dichotomic procedure computes the point xMed =

(x1+xDESIRE)/2, which is the point at half distance from x1
and xDESIRE. The id of xMed is set to be equal to that of
xnovel (we recall that the id is used in DistWNorm) and the
score scMed of xMed is then predicted. If scMed = scdesired,
then xDESIRE = xMed, otherwise x1 = xMed. The iterative
process stops when the distance between x1 and xDESIRE is
less than 10−10, that is when DistWNorm(xDesire, x1) < 10−10,

VOLUME 8, 2020 26649

B. R. Barricelli et al.: Human DT for Fitness Management

meaning that the points are similar, or when a maximum
of 10000 iterations has been performed. Note that, in all
our experiments, the dichotomic procedure always stopped
because the first condition was met (the number of iterations
was never bigger that 2051).

Once xDESIRE has been found, suggestions for improving
the outcome are easily computed as the difference between
xDESIRE and xnovel and are shown to the DT user (whichmight
be the physical twin or an expert), as text. An example of
output of the prescriptive algorithm is shown at the end of
Section IV.

IV. EXPERIMENTAL RESULTS
In this Section we describe the experimental evaluation of a
team of DTs used by trainers for supervising the activity and
fitness level of a team of 11 athletes.

A. MATERIALS
The athletes’ data we treat in this work are described at the
end of Section II.B.

For each of the 11 athletes, we have a set of 10 labeled
vectors, each of which composed by t = 66 measurements
describing the athlete’s behavior for three days. Each vector
has been labeled by the trainer according to the athlete’s
performance during the training session following the three
days of measurements.

To choose the best input-data representation, in this
Section we show the experimental comparison we performed
by coding the 66-dimensional vectors in three different ways,
thus obtaining three different input datasets.

Precisely, the used datasets are listed in the following:
1) Dataset Y1 contains only the 22 measurements recorded

in the last day before training. This dataset has been
created to check whether it is the last day before training
that influences the athlete’s outcome.

2) Dataset Y3AVG is created by averaging each measure-
ment over the three days. This dataset contains 22 fea-
tures, each being the average of the same measurement
over the three days (e.g. average number of steps, aver-
age calories, average activity, and so on). This dataset is
based on the consideration that the average behavior in
the preceding days is the factor influencing the outcome.

3) Dataset Y3 is composed by all the feature vectors, and
it is therefore a 66-dimensional dataset containing, for
each athlete, the detailed measurements of the three
days.

We recall that our datamay containmissing values. Though
we tackle this problem by using knn-imputation, before pro-
cessing each dataset, we decided to remove those points
which have a number of missing values bigger than 1/3 of
the dataset dimensionality.

In this way, we deleted points from dataset Y1 and
dataset Y3, while from dataset Y3AVG we removed no
points because the average over the three days is computed
by neglecting missing values; in other words, only the
not-missing data is used to compute each mean.

TABLE 2. Dataset Cardinality and Class Distribution After Points Deletion.
N∗ refers to the cardinality of the whole dataset.

Precisely, in Table 2, for each dataset, we show the dataset
cardinality and the class distribution after deleting points with
toomanymissing values. Figures 3-A, 3-B, and 4 respectively
show the histogram of missing values in dataset Y1, Y3AVG
and Y3, before (purple color) and after (yellow) deletion
(obviously for dataset Y3AVG the two histograms overlap).

B. ANALYSIS OF COMPUTED RESULTS
Given one of the afore-mentioned datasets, to test the algo-
rithm, we apply a LOOCV procedure. Precisely, we con-
sider each sample point as a novel (test) sample, for which
prediction and suggestions must be computed. All the other
samples are considered as historical (training) samples, which
are used to form the DT’s artificial intelligence as described
in Section III.A. For each test sample, the DT is trained
on (learns from) the historical (training) data, and it is then
used to classify the test sample (with one of the classifiers
described in Section III.A.3), and to compute advices aimed
at obtaining higher scores as detailed in Section III.B. Note
that, during each training process, Bayesian optimization,
which is used to perform automatic model selection (see
Section III.A.3), minimizes the classification loss computed
by applied an internal LOOCV on the training set.

When the LOOCV has iterated over all the points in the
dataset, the classifiers are assessed in terms of classification
Loss. Precisely, the Loss is defined as:

Loss =

∑
n=1,..,N

∣∣ŷ(n)− y (n)
∣∣

N
(7)

where ŷ(n) is the label predicted for the nth point and y(n) is
its ground truth label. Note that this loss function weighs the
error by considering the L1 distance (amount of error in clas-
sification) between the predicted class and the actual class; in
this way, errors where measurements with excellent fitness
are wrongly classified as poor (or viceversa) are weighted
more than errors where measurements with excellent fitness
are wrongly classified as average (or viceversa).

The classifier performance provides an indirect evalua-
tion of the advices, which are computed after classification.
Indeed, the changes needed for improving the outcome are
computed on the basis of the classifier’s predictions. For
this reason, the lowest the classification error is, the more
trustable the computed advices are.

Before analyzing the DT performance, we recall that,
though the proposed DT needs some parameters to be set,
only two of them must be manually chosen, while the others

26650 VOLUME 8, 2020

B. R. Barricelli et al.: Human DT for Fitness Management

FIGURE 3. 3-A, 3-B. Histograms of missing values before (purple) and after (yellow) deletion of points with more than 1/3 of missing values. a: deletion
of missing samples is performed on dataset y1. b: no points are deleted from dataset Y3AVG. Note that the features in Y3AVG are mean values, which
have been computed by neglecting missing values. For this reason, Y3AVG contains less missing values when compared to Y1 and Y3 datasets.

are automatically selected in order to maximize the classifi-
cation accuracy on the training set. The two manually chosen
parameters are:
• the ratio unbF, which is used for the training point sam-
pling;

• the value of weight wsame, which is used to lower the
distance between points describing measurements from
the same athlete.

Moreover, in Section III.B.3 we have described 4 different
classifiers that may be used by the DT to compute predictions
and subsequent advices, while in Subsection IV.A we have
described three different Y1, Y3AVG, Y3 datasets, which may
be used to code the input-data.

In this Section, for each of the three input-datasets
(Y1, Y3AVG, Y3), we initially report the knn-imputation
results achieved on the three datasets after running 3x3 differ-
ent LOOCV experiments, by varying the values of parameter
unbF in the set {2, 3, 4}, the value of parameter wsame in
the set {0.5, 0.75, 1.0}. The analysis of such results, not only
provides hints about the discriminative power of the imputed

sets, but also shows that the system is stable with respect to
different settings of parameters wsame and unbF, whose choice
is therefore not critical.

Note that, to check whether knn-imputation is relevant
to increase performance, while running the knn-imputation
tests we also tested the case kimpute = 0, which means
that knn-imputation should not be performed and the algo-
rithm should deal with missing data. To this aim, we sim-
ply modified the normalized similarity measures between
points, which are DistWNorm (Section III.A.1, equation 4) and
DistWWNorm(Section III.A.3, equation 5), in order to neglect
the differences among corresponding feature values when one
or both of them are missing.

Next, we compare the classification performance achieved
by the four multiclass classifiers and show examples of com-
puted advices. All the comparative evaluations reported in
this Section are supported by the Wilcoxon signed rank test
at the 0.01 significance level.

During knn-imputation, the DT chooses the training sub-
sampling method and the value of parameter kimpute that

VOLUME 8, 2020 26651

B. R. Barricelli et al.: Human DT for Fitness Management

FIGURE 4. Deletion of points with too many missing data is performed on dataset y3. in this case, the black line identifies the end of one day.

26652 VOLUME 8, 2020

B. R. Barricelli et al.: Human DT for Fitness Management

FIGURE 5. The first three plots show, for each dataset, the histogram (e.g. the normalized frequency) of
chosen kimpute values. The last plot shows the histogram of all the kimpute values. When k=0,
knn-imputation is not performed.

allows creating the most informative imputed dataset, com-
posed by a set of most discriminative features.

Regarding the training subsampling methods (nearest-
ToMin or farthestFromMin, see III.A.1.b), our results are
different from those reported in [46]. Indeed, in our experi-
ments, for the 31.4% of the times nearestToMin and farthest-
FromMin achieved the same PSelF value (that is the mean
p-value of the selected features set), on the 22.4% of the times
nearestToMin was chosen for being the subsampling method
which minimize the PSelF value, while the remaining 46.2%
of the times farthestFromMin was the optimal choice. This
suggests that, in our problem, farthestFromMin is the best
performing subsampling method.

Before analyzing the distributions of the kimpute values
chosen during the LOOCV, we note that the value of kimpute
obviously affects the discriminative power of the imputed
set. Indeed, if the value of kimpute is such that all the kimpute
neighbors (or at least the majority of them) belong to the
class of the point to be imputed, the resulting imputed point
may increase the class separation since the imputation of its

missing values would ‘‘move’’ the points towards points in
its same class. On the contrary, if the majority of the kimpute
neighbors belong to classes that differ from that of the point
to be imputed, the class separation after imputation could be
diminished because that point would be ‘‘moved’’ towards
other classes. Therefore, the automatically chosen kimpute
values is related to the size of the neighborhoods so that the
majority of neighborhoods are composed of points belonging
to the same class.

In Figure 5, we show the histograms of the chosen kimpute
values. TheA, B, C plots show, for each dataset, the histogram
of the kimpute values chosen during all the LOOCV repeti-
tions, that is by all the couples (wsame, unbF). The D plot
summarizes the preceding (per-dataset) histograms by show-
ing the histogram of all kimpute values automatically chosen
over all the datasets and all the LOOCV iterations. We recall
that the value kimpute = 0 refers to the case where no knn-
imputation is performed. In all the cases, the mostly chosen
kimpute values are kimpute > 0 and kimpute ≤ 3, thus confirm-
ing the results reported in [44]. Moreover, we note that the

VOLUME 8, 2020 26653

B. R. Barricelli et al.: Human DT for Fitness Management

FIGURE 6. Comparison between the discriminative power of each dataset, when feature selection is applied before and after knn-imputation. Each
plot shows, on the left (BEFORE), a boxplot visualizing the distributions of the PSelF values achieved when applying feature selection before
knn-imputation. The boxplot on the right (AFTER) shows the distribution of the PSelF values computed by applying feature selection after
knn-imputation.

value kimpute = 0 has never been chosen, thus suggesting
that knn-imputation effectively helps the following prediction
task by increasing the discriminative power of the selected
feature set. To confirm this hypothesis and to investigate the
influence of knn-imputation on the discriminative power of
the input dataset, we observed how the discriminative power
of each dataset changes after imputation. To this aim, for each
iteration of the LOOCV, we have run feature selection (on the
training set) before and after knn-imputation. Recalling that
each application of feature selection results in a PSelF value
inversely related to the discriminative power of the dataset
under analysis (see Section III.A.2), for each dataset, we used
the Wilcoxon signed rank test at the 0.01 significance level to
compare the two distributions of the PSelF values computed
before and after knn-imputation6.
The before (BEFORE) and after (AFTER) PSelF distri-

butions computed over the three datasets are visualized by

6Each distribution contains all the PSelF values computed by all the
LOOCV procedures, obtained by varying wsame in the set {0.5, 0.75, 1} and
unbF in the set {2, 3, 5}.

the boxplots shown in Figure 6. In particular, each boxplot
shows: the median PSelF value of the distribution with a tick
red horizontal line. The 25th percentile (q1) and the 75th

percentile (q2) are the limits of the blue tick rectangle, while
the horizontal black segments delimit the distribution spread.
Precisely, the distribution spread is composed by points p
such that q1 – 1.5 × (q3 – q1) ≤ p ≤ q3 + 1.5 × (q3 – q1).
All the other points, visualized through red dots, are consid-
ered as outliers.

The visual comparison provided by the boxplots highlight
that, on all the three datasets, knn-imputation effectively
fills missing values by increasing the inter-class separations.
For all the three datasets, the Wilcoxon test confirms the
differences in the distributions off the PSelF values com-
puted before and after knn-imputation. From the boxplots in
Figure 6 it can also be noted that, both before and after knn-
imputation, dataset Y3AVG seems to be the less discriminative
among the three datasets. Applying theWilcoxon signed rank
test (at the 0.01 significance level) to compare the means
of the PSelF distributions characterizing the three datasets

26654 VOLUME 8, 2020

B. R. Barricelli et al.: Human DT for Fitness Management

FIGURE 7. Distributions of PSelF for varying values of parameter unbF.

before and after knn-imputation, we could see indeed that
the visible differences are statistically significant. Precisely,
dataset Y3AVG is characterized by the highest mean of the
PSelF distribution, both before and after knn-imputation. Pre-
cisely, the mean of the PSelF values computed over dataset
Y3AVG before (0.0208) and after (0.0154) knn-imputation is
1.43 and 1.55 times bigger than the mean PSelF achieved over
Y1 before (0.0145) and after (0.0099) knn-imputation, and
2.19 and 1.93 times bigger than the mean PSelF achieved over
Y3 before (0.0095) and after (0.008) knn-imputation. This
low discriminative power may be due to the fact that the
average over the three days has neglected the missing values.

Essentially, some points have been coded by averaging
over three values, while some other points are computed as
the average of one or two values. This variability may be the
cause of disturbance.

Given its lower discriminative power even after imputing
its missing values, we have discarded dataset Y3AVG and,
in the following, we report only results achieved with the
Y1 and the Y3 datasets.

Next, to checkwhether differing values of parameters unbF
and wsame produce a great change in the distribution of the
PSelF values, we also analyzed the distributions of PSelF val-
ues computed when the two parameters change their values.
Again, we used Wilcoxon signed rank test (at the 0.01 sig-
nificance) to detect statistically significant differences in the
means of the distributions.

In Figure 7 and Figure 8, the distributions of PSelF values
for varying values of parameters unbF and wsame are shown.

FIGURE 8. Distributions of the PSelF values for varying values of
parameter wsame.

When considering parameter unbF (see Figure 7), in both
datasets the Wilcoxon test detected no significant differ-
ences in the means of the PSelF distributions. Therefore,
the automatic selection of the knn-imputation model is robust
with respect to differing values of parameter unbF. Anyhow,
we decided to set unbF=3, which is a good tradeoff between
the requirement of having a limited unbalancing factor and
the need of having a training set with a number of samples
able to capture the population variability.

When considering parameter wsame (Figure 8), in dataset
Y1 the Wilcoxon test found no statistically significant differ-
ences. In Y3, as expected, the Wilcoxon test found statisti-
cally significant differences when comparing the distribution
obtained with wsame = 0.5 to the other two distributions,
while it found no statistically significant differences when
comparing the distributions achieved when wsame = 0.75 and
wsame = 1. We expected these results since we believe that
the setting wsame = 0.5 is extreme. This motivates our choice
of setting, wsame = 0.75. Anyhow, in Appendix B we report
the classification results we obtained with different values of
parameter wsame.

To finally choose the best input dataset and the best per-
forming classifier, we have compared the classification losses
achieved by the four classifiers when applying LOOCV to the
Y1 dataset and the Y3 dataset.

We recall that, through Bayesian optimization, the team
of DTs choose the classifiers’ models, while the number
of most discriminative features to be used for classification
is defined by a greedy search. Since we perform LOOCV
testing, we have N∗ chosen classifier models and feature
set dimensionalities (where N∗ is the number of samples

VOLUME 8, 2020 26655

B. R. Barricelli et al.: Human DT for Fitness Management

TABLE 3. TOP: classifiers loss computed through loocv on Y1 (top table)
and Y3 (bottom table) datasets.

per dataset, listed in Table 2). Table 3 reports for dataset
Y1 (top) and dataset Y3 (bottom): the mean classification
losses achieved by each classifier (highlightedwith bold text),
the mostly chosen coding scheme used by the ECOC models
(column coding), the mostly chosen (over all the LOOCV
repetitions) neighborhood size in case of knn-based classi-
fiers or the mostly chosen svm-kernels in case of svm-based
classifiers (column parameters), the mostly chosen number of
features used for classification (# Feat) and in round brackets
the minimum and maximum offset.

When analyzing and comparing the results achieved by
knn classifiers (knn vs knn-ECOC), we firstly note that the
statistically significant difference in performance on both
the Y1 and the Y3 dataset, confirm results reported in
in [83]–[86], where authors showed that ECOC models are
generally better performing models when dealing with mul-
ticlass classification tasks. Regarding the automatic model
selection performed on knn-based models we note that, on all
the NY1+NY3 = 107+ 108 LOOCV repetitions, the chosen
neighborhood size has been: k = 1 for the 0.02 (5 times
on 107+108), k=3 for the 0.1 of the times (21/(107+108)),
and k = 2 for the remaining of the times 0.88 of the
107+108 times. Note that such results are coherent with
the neighborhood size mostly chosen by the automatic knn-
imputation model selection.

Regarding svm-classifiers, we firstly note that the cost-
sensitive svm classifier is the best performing classifier in Y1,
while in Y3 there is no difference between its performance
and that of svm-Ecoc (both of them committed no error).
However, on all the LOOCV repetitions svm-Ecoc generally
chooses an higher number of features, thus requiring higher
computational time for training. Moreover, svmCOST-Ecoc
has the advantage of viewing all the training set and therefore
covering all the training set variability. Given such consider-
ations, when using svm models in our unbalanced problem,
we believe that weighting the classification cost might be a

TABLE 4. Results achieved by the classifiers when knn-imputation is
avoided and the data contains missing data. TOP: classifiers loss
computed through loocv on Y1 (top table), which contains the 10.57% of
missing data and Y3 (bottom table) datasets, which contains the 25.51%
of missing data.

better choice than subsampling the training set [70]. Regard-
ing the chosen kernel, the Bayesian search has almost never
chosen the linear kernel (on the 0.8% of the cases), while,
in the remaining cases, the Bayesian kernel has selected the
Gaussian kernel in the 6% of the cases, and the polynomial
kernel for the 93.2% of the cases. Precisely, in both the
datasets, the polynomial kernels of order 4 are the mostly
selected for svm-Ecoc, while svmCOST-Ecoc has favoured the
polynomial kernel of order 2.

One final note is that the only coding schemes chosen by
Bayesian optimization for the Ecoc models have been the
‘onevsall’ or ‘onevsone’ coding schemes.

Appendix B shows results achieved for all the values of
wsame = {0.5, 0.75, 1}. The reported results show that,
while knn based classifiers achieve better performance when
wsame ≥ 0.75, both the svm-based classifiers, and particu-
larly the svmCOST-Ecoc classifier, are robust with respect to
different values of parameter wsame.

Note that, to objectively assess whether knn-imputation is
effectively helpful in improving the classifier performance,
we run the classification tests by avoiding the imputation
of missing data. In Table 4 for dataset Y1 (top) and dataset
Y3 (bottom): the mean classification losses achieved by each
classifier (highlighted with bold text), the mostly chosen
coding scheme used by the ECOC models (column coding),
the mostly chosen (over all the LOOCV repetitions) neigh-
borhood size in case of knn-based classifiers or the mostly
chosen svm-kernels in case of svm-based classifiers (column
parameters), the mostly chosen number of features used for
classification (# Feat) and in round brackets theminimum and
maximum offset.

The achieved results confirm that knn-imputation has
the effect of improving performance by decreasing the

26656 VOLUME 8, 2020

B. R. Barricelli et al.: Human DT for Fitness Management

classifier loss. We believe that these results are a direct
consequence of the fact that the selected feature set not
only has a lower cardinality, but it is also composed by
less discriminative features (that is, their PSelF is lower,
see Figure 6).

Moreover, the observation of the selected classifier mod-
els evidences the increased model complexity with respect
to the classifier models selected for the imputed data (see
Table 3). Indeed, the number of neighbors needed by the
knn-based classifiers is near to N/2, while the kernels chosen
by the svm-based classifiers are either the polynomial kernel
with order 6, which is the maximum admissible polynomial
order, or the Gaussian kernel with a scale which is ten times
bigger than that chosen for the svm-based kernels working
on imputed data. This behavior is generally happening when
dealing with classification problems where the classes to be
discriminated are highly overlapping.

For what regards the comparison between different clas-
sifiers’ models, we note that, the knn-based classifiers are
the better performing classifiers, which suggest that such
classifier models are more robust with respect to missing
data. Again, the knn-Ecoc models perform better that the
knn model, thus providing a further confirmation of what
reported in [83]–[86]. On the other side, when comparing the
performance achieved by the svm-based classifiers we note
that the cost-sensitive models confirm their superior ability
to deal with unbalanced data.

Regarding the coding scheme chosen for ECOC models,
we noted that the ‘onevsone’ scheme has been preferred most
of the times.

Regarding the computed advices, in the following we show
examples of suggestions computed for improving an athlete’s
(predicted) outcome.

In this first example, the athlete’s data belong to dataset
Y1 (which contains 22 dimensional vectors), and the two
parameters wsame and unbF are set to wsame = 0.75 and
unbF = 3. The DT exploits the best performing classifiers
knn-ECOC and svmCOST-ECOC. The athete’s data, in this
case, has no missing value.

After performing knn-imputation on the historical data,
the selected feature set contains 18 features, which are
(in increasing order of PSelF): ‘mood at day 3’, ‘Minutes of
Moderate Activity at day 3’, ‘Carbohydrates (g) at day 3’,
‘Minutes of Rest at day 3’, ‘Minutes Intense Activity at
day 3’, ’Burnt Calories at day 3’, ‘Number of Awakenings
at day 3’, ‘Proteins (g) at day 3’, ‘Distance (km) at day 3’,
‘Minutes of Sleep at day 3’, ‘Minutes Awake at day 3’, ‘Fats
(g) at day 3’, ‘Sugars (g) at day 3’, ‘# Floors at day 3’,
‘Calories burnt with Activity at day 3’, ‘Number of Steps at
day 3’, ‘Minutes Light Activity at day 3’, ‘Fibers (g) at day 3’.

During learning with knn-ECOC, Bayesian optimization
has chosen a neighborhood size k = 2, while the greedy
algorithm has chosen to use the first five most discriminative
features for classification.

During learning with svmCOST-ECOC, Bayesian optimiza-
tion has chosen the linear kernel, while the greedy algorithm

FIGURE 9. Suggestions for athlete with score poor. The computed
suggestions are shown in text format.

has chosen to use the first most discriminative 12 features for
classification.

Since the athlete’s score is (correctly) classified as poor
by both the classifiers, required changes are computed to
increase the athlete’s score from poor to medium, and then
from medium to good.

Suggestions are visualized in the text format shown
in Figure 9.

VOLUME 8, 2020 26657

B. R. Barricelli et al.: Human DT for Fitness Management

When the same athlete is coded by using data in dataset Y3,
which is 66 dimensional, the number of required changes
is greater. This is because the selected feature set after
knn-imputation contains 40 features and the greedy search
chooses to perform classification by either using 28 features,
when the learner is knn-ECOC (where the neighborhood size
chosen by Bayesian optimization is still k=2), or 14 fea-
tures when the learner is an svmCOST-ECOC model (where
Bayesian optimization has chosen the polynomial kernel of
order 2). To improve visibility, the computed suggestions for
dataset Y1 and dataset Y3 are reported in Appendix C.

Note that the procedure described in this Section is general
and might be applied to any data whose status must be clas-
sified, independent from the label meaning. In other words,
there is no binding to the health applications.

The described software has been implemented in
MATLAB (R2019b). The code is highly parameterized to
allow easy changes in the parameter settings.

V. CONCLUSION
In this paper we have presented an extension to SmartFit,
a computational framework exploiting wearable sensors and
internet applications to allow monitoring a team of athletes,
by collecting measurements describing their behavior (activ-
ity, sleep, food income, mood, etc. . .).

The extension regards a team of human DTs which are
aimed at mirroring the athletes’ conditions (physical twins)
and behaviors, with the aim of predicting their condition dur-
ing training and then suggest changes in behavior to increase
performance and health conditions.

Usage of SmartFit has highlighted one the drawback
related to humanDTs, which is the fact that not all the (human
related) data describing the PT status can be continuously col-
lected via Wi-Fi connected sensors, but it must be manually
signed by experts or by the PT themselves. Due to lack of
attention or distractions, the human related data, such as that
treated in our problem, often contains missing and/or noisy
data. Each human DT must therefore be designed in order
to cope with such problems. In this paper, missing data have
been imputed by knn-imputation data, where the value of k
(neighborhood size) has been automatically set in order to
guarantee robustness to noisy data and maximize the data
informativeness.

After data imputation the DT exploits machine learning
methods to provide trustable predictions and prescriptions.
To choose the most appropriate parameter settings and the
best classifier models among four different proposals, which
we considered as the most appropriate given the multiclass
problem under investigation and the unbalanced dataset we
are treating, we have conducted tests by using three different
datasets and by performing experiments to evaluate how dif-
ferent parameter settings influence the achieved performance.
Our results show that the only manual parameter having
some influence on the achieved results is parameter wsame
(see Section III.A.1). Regarding such parameter, svm-based
classifiers are more robust w.r.t. the differing values of wsame,

while knn-based classifiers achieve the best performance
when wsame = 0.75. A strength of our approach relies in the
usage of automatic model selection techniques for both the
knn-imputation method and the employed classifiers, which
allow achieving promising performance without requiring the
tuning of critical parameters.

Moreover, we highlight that all the algorithms integrated
in the team of DTs have been developed in order to process
any dataset, without any specific requirement. Moreover,
the generalization capabilities of the machine learning appli-
cations used by the DTs make the proposed work a human
monitoring framework that could be exploited by any expert
wishing to monitor the conditions of persons being described
by measurements collected through IoT connected devices.
As an example, SmartFit could be used by cardiologists to
monitor the electrical activity of the hearts of patients with
cardiac problems, which may be collected by wireless Holter
machines.

We highlight that, considering the limited cardinality of
the dataset we have used in our experiments, in future works,
we aim at using smartFit for collecting an historical dataset
with a larger cardinality from a professional team of athletes.
This will allow developingmore complex, and probably more
stable, classifier models (e.g. by using deep learning models).

Moreover, our system has one drawback; whenever some
novel ground truth (historical) data is available, all the ground
truth data is processed again by the machine learning algo-
rithm (svm or knn) to increase knowledge. This means that,
when the training historical data will have a huge cardinality
(e.g. after years of data collection), the training process will
take too much time. For this reason, our future works will
be aimed at investigating/developing an incremental learning
method. Incremental learning refers to situations as the one
we are facing, where learning is performed on ‘‘streaming
data’’ arriving over time. Incremental learning techniques are
desirable because they are specifically developed to account
for limited memory resources and real-time processing, with-
out sacrificing model accuracy [122].

Moreover, we will continue our research investigations for
extending the method currently used to compute counterfac-
tual explanations.

Finally, we are now working to provide suggestions in
a visual form, e.g. by developing a web application where
PTs can view their historical data, their performance, and the
suggestions their DTs compute to improve their performance.

APPENDIXES
APPENDIX A
TSNE DECOMPOSITIONS AND VISUALIZATIONS
In this Appendix, for dataset Y1 (Figure 10) and dataset Y3
(Figure 11), we plot the dataset points after projecting them
on the first two components computed by the t-sne decompo-
sition [119]. In particular, in the left, the t-sne decomposition
exploits the Euclidean distance, while, in the right, t-sne
decomposition uses our DistWWNorm distance. Note that,
while both the distances cannot well separate the points, when

26658 VOLUME 8, 2020

B. R. Barricelli et al.: Human DT for Fitness Management

FIGURE 10. t-sne decomposition of points in dataset Y1. Left: t-sne is computed by using the euclidean distance. Right:
t-sne is computed by using the DidtWWNorm distance.

FIGURE 11. t-sne decomposition of points in dataset Y3. Left: t-sne is computed by using the euclidean distance. Right: t-sne
is computed by using the DidtWWNorm distance.

using DistWWNorm, the separation between points of different
classes is increased and, if two points belonging to different
classes are near, also their classes are near. In other words,
while with the Euclidean distance it happens that some points
of class ‘‘poor’’ are the nearest to points of the (farthest)
class ‘‘good’’ (and viceversa). On the contrary, when using
DistWWNorm it never happens that points of class ‘‘poor’’ are
the nearest to points of class ‘‘good’’ (and viceversa)

APPENDIX B
CLASSIFIERS PERFORMANCE FOR DIFFERENT
VALUES OF PARAMETER Wsame
In this appendix we show all the results we achieved by vary-
ing the value of parameter wsame in the set = {0.5, 0.75, 1}.
In Table 5, for dataset Y1 (top table) and dataset Y3 (bot-
tom table) we show, for each classifier, the classification
loss achieved by LOOCV (column Loss), the neighbor-
hood size chosen the majority of the times in case of knn
based classifiers, the mostly chosen svm kernels and their

parameters, and the mostly chosen feature dimensionalities
(with their offsets).

Results show that, while in Y1 the value of wsame clearly
influences the classifier performance, which (as expected) are
maximized when wsame = 0.75, on dataset Y3 results differ
when the base classifier model are knns or svms. Precisely,
the performance of the knn-based classifiers increase together
with the value of wsame, while the classification losses of svm
based classifier always achieve a null, or anyway very low
(0.01), classification loss. Therefore, svm-based classifiers
seem robust with respect to differing values of wsame.

APPENDIX C
EXAMPLES OF DT’S SUGGESTIONS FOR IMPROVING
ATHLETES’ PERFORMANCE
In this Section, we firstly show the required changes sug-
gested by the DT, computed by the knn-Ecoc and the
svmCOST-Ecoc models, on an athlete’s represented by the

VOLUME 8, 2020 26659

B. R. Barricelli et al.: Human DT for Fitness Management

TABLE 5. Results achieved for different values of parameters wsame.

22 features in dataset Y1 (these are the suggestions visualized
in Figure 9). The athlete has an initial outcome which is
‘‘poor’’, and suggestions are therefore computed to reach
class ‘‘medium’’ and then ‘‘good’’.

- -
compute suggestions with classifier: knn Ecoc
Athlete 7, measurement 9: you will get score poor
To get vote medium you must:
decrease Minutes of Moderate Activity at day 3 of 14 units
increase Carbohydrates (g) at day 3 of 3 units
increase Minutes of Rest at day 3 of 16 units
decrease Minutes of Intense Activity at day 3 of 107 units

To get vote good you must:
increase Minutes of Moderate Activity at day 3 of 12 units
decrease Carbohydrates (g) at day 3 of 4 units
increase Minutes of Rest at day 3 of 229 units
decrease Minutes of Intense Activity at day 3 of 92 units

compute suggestion with classifier: svmCOST-Ecoc
Athlete 7, measurement 9: you will get score poor

To get vote medium you must:
decrease Minutes of Moderate Activity at day 3 of 14 units
increase Carbohydrates (g) at day 3 of 3 units
increase Minutes of Rest at day 3 of 16 units
decrease Minutes of Intense Activity at day 3 of 107 units
decrease Burnt Calories at day 3 of 1376 units
increase # Awakenings at day 3 of 4 units
increase Proteins (g) at day 3 of 1 units
decrease Distance (km) at day 3 of 6 units
increase Minutes of Sleep at day 3 of 118 units
increase Minutes Awake at day 3 of 17 units

To get vote good you must:
increase Minutes of Moderate Activity at day 3 of 24 units
increase Carbohydrates (g) at day 3 of 6 units
increase Minutes of Rest at day 3 of 269 units
decrease Minutes of Intense Activity at day 3 of 143 units
decrease Burnt Calories at day 3 of 919 units
increase # Awakenings at day 3 of 11 units
decrease Proteins (g) at day 3 of 7 units
decrease Distance (km) at day 3 of 7 units
increase Minutes of Sleep at day 3 of 141 units
increase Minutes Awake at day 3 of 11 units
decrease Fats (g) at day 3 of 2 units
The following are the required changes suggested when the

athlete is represented by all the 66 measurements collected in
the three days (dataset Y3).

- -
compute suggestion with classifier: knn Ecoc
Athlete 7, measurement 9: you will get score poor
To get vote medium you must:
decrease Minutes Awake at day 2 of 6.2569 units
increase Minutes Seating Activity at day 3 of
179.7969 units
decrease Minutes Moderate Activity at day 3 of
8.5039 units
decrease Proteins (g) at day 1 of 1.2148 units
increase Minutes Intense Activity at day 2 of 10.3262 units
increase Carbohydrates (g) at day 3 of 1.8223 units
increase Minutes of Rest at day 3 of 9.7188 units
increase Proteins (g) at day 2 of 0.60742 units
decrease Burnt Calories at day 1 of 686.9941 units
decreaseMinutes SeatingActivity at day 2 of 51.0234 units
increase #Awakenings at day 3 of 2.4297 units
decrease #Awakenings at day 1 of 2.558 units
increase mood at day 1 of 0.60742 units
decrease Minutes of Intense Activity at day 3 of
64.9941 units
decrease Burnt Calories at day 3 of 835.8125 units
decrease Calories burnt with Activity at day 1 of
403.9355 units
increase Minutes of Sleep at day 3 of 71.6758 units
increase Calories burnt with Activity at day 2 of
142.7441 units
increase Minutes Seating Activity at day 1 of 2.4297 units
decrease Distance (km) at day 3 of 3.6445 units

26660 VOLUME 8, 2020

B. R. Barricelli et al.: Human DT for Fitness Management

decrease Fibers (g) at day 2 of 1.8223 units
increase Minutes Moderate Activity at day 2 of
13.3633 units
decrease Fats (g) at day 2 of 0.60742 units
decrease # Floors at day 1 of 1.8223 units
increase Minutes Awake at day 3 of 10.3262 units

To get vote good you must:
increase mood at day 3 of 0.84766 units
increase Minutes Awake at day 2 of 19.9832 units
increase Minutes Seating Activity at day 3 of
479.1917 units
increase Minutes Moderate Activity at day 3 of
38.5443 units
decrease Proteins (g) at day 1 of 4.4234 units
increase Minutes Intense Activity at day 2 of 6.6591 units
increase Carbs (g) at day 3 of 7.0589 units
increase Minutes of Rest at day 3 of 282.0548 units
decrease Proteins (g) at day 2 of 4.9934 units
increase Cholesterol (mg) at day 1 of 20.3438 units
decrease Burnt Calories at day 1 of 595.4522 units
increase mood at day 2 of 1.6953 units
decrease Minutes Seating Activity at day 2 of
287.4997 units
increase #Awakenings at day 3 of 10.542 units
increase #Awakenings at day 1 of 1.1266 units
increase mood at day 1 of 0.94019 units
decrease Minutes Intense Activity at day 3 of
120.0968 units
decrease Burnt Calories at day 3 of 751.2058 units
decrease Calories burnt with Activity at day 1 of
700.6699 units
increase Minutes Sleep at day 3 of 139.7631 units
increase Calories burnt with Activity at day 2 of
189.5821 units
decreaseMinutes SeatingActivity at day 1 of 42.0127 units
decrease Distance at day 3 of 7.3365 units
decrease Fibers (g) at day 2 of 2.8206 units
increase Minutes Moderate Activity at day 2 of
69.0007 units
decrease Fats (g) at day 2 of 1.7878 units
decrease # Floors at day 1 of 4.5159 units
increase Minutes Awake at day 3 of 20.2216 units
- -
compute suggestion with classifier: svmCOST-Ecoc
Athlete 7, measurement 9: you will get score poor
To get vote medium you must:
decrease Minutes Awake at day 2 of 0.020119 units
increase Minutes SeatingActivity at day 3 of 0.57813 units
decrease Minutes ModerateActivity at day 3 of
0.027344 units
decrease Protein (g) at day 1 of 0.0039063 units
increase Minutes IntenseActivity at day 2 of
0.033203 units
increase Carbs (g) at day 3 of 0.0058594 units
increase Minutes of Sleep at day 3 of 0.03125 units

increase Protein (g) at day 2 of 0.0019531 units
decrease Burnt Calories at day 1 of 2.209 units
decreaseMinutes SeatingActivity at day 2 of 0.16406 units
increase #Awakenings at day 3 of 0.0078125 units

To get vote good you must:
increase mood at day 3 of 0.84668 units
increase Minutes Awake at day 2 of 11.5958 units
increase Minutes Seating Activity at day 3 of
563.1306 units
decrease Minutes Moderate Activity at day 3 of
12.7044 units
decrease Proteins (g) at day 1 of 5.0807 units
increase Minutes Intense Activity at day 2 of 7.6252 units
increase Carbohydrates (g) at day 3 of 5.081 units
increase Minutes of Rest at day 3 of 269.2489 units
decrease Proteins (g) at day 2 of 5.0798 units
decrease Cholesterol (mg) at day 1 of 0.84668 units
decrease Burnt Calories at day 1 of 1616.6502 units
decrease Minutes Seating Activity at day 2 of
60.9861 units
increase #Awakenings at day 3 of 8.468 units
- -

ACKNOWLEDGMENT
The author would like to thank Prof. D. Fogli, Prof. A. Rizzi,
and Prof. G. Valentini for their invaluable support.

REFERENCES
[1] M. Grieves. (2015). Digital Twin: Manufacturing Excellence Through

Virtual Factory Replication. [Online]. Available: https://research.fit.
edu/media/site-specific/researchfitedu/camid/documents/1411.0
_Digital_Twin_White_Paper_Dr_Grieves.pdf

[2] Q. Qi and F. Tao, ‘‘Digital twin and big data towards smart manufac-
turing and industry 4.0: 360 degree comparison,’’ IEEE Access, vol. 6,
pp. 3585–3593, 2018, doi: 10.1109/access.2018.2793265.

[3] F. Tao and M. Zhang, ‘‘Digital twin shop-floor: A new shop-
floor paradigm towards smart manufacturing,’’ IEEE Access, vol. 5,
pp. 20418–20427, 2017, doi: 10.1109/access.2017.2756069.

[4] B. R. Barricelli, E. Casiraghi, and D. Fogli, ‘‘A survey on digital
twin: definitions, characteristics, applications, and design implications,’’
IEEE Access, vol. 7, pp. 167653–167671, 2019, doi: 10.1109/access.
2019.2953499.

[5] J. Vachàlek, L. Bartalsky, O. Rovny, D. Sìsmìsovà, M. Morhàç, and
M. Loksk, ‘‘The digital twin of an industrial production line within the
industry 4.0 concept,’’ in Proc. 21st Int. Conf. Process Control (PC),
Bratislava, Slovakia, 2017, pp. 258–262.

[6] B. R. Barricelli and S. Valtolina, ‘‘A visual language and interactive
system for end-user development of Internet of Things ecosystems,’’
J. Vis. Lang. Comput., vol. 40, pp. 1–19, Jun. 2017, doi: 10.1016/
j.jvlc.2017.01.004.

[7] L. Zhu, P. Mussio, B. R. Barricelli, and C. Iacob, ‘‘A habitable space
for supporting creative collaboration,’’ in Proc. Int. Symp. Collabo-
rative Technol. Syst. (CTS), 2010, pp. 617–622, doi: 10.1109/CTS.
2010.5478455.

[8] L. Zhu, B. R. Barricelli, and C. Iacob, ‘‘A meta-design model
for creative distributed collaborative design,’’ Int. J. Distrib.
Syst. Technol., vol. 2, no. 4, pp. 1–16, 2011, doi: 10.4018/jdst.
2011100101.

[9] G. Shirner, D. Erdogmus, K. Chowdhury, and T. Padir, ‘‘The future of
human-in-the-loop cyber-physical systems,’’ Computer, vol. 46, no. 1,
pp. 36–45, 2013, doi: 10.1109/MC.2013.31.

[10] NASA. The Ill-Fated SpaceOdyssey of Apollo 13. Accessed: Feb. 4, 2020.
[Online]. Available: https://er.jsc.nasa.gov/seh/pg13.htm

VOLUME 8, 2020 26661

http://dx.doi.org/10.1109/access.2018.2793265
http://dx.doi.org/10.1109/access.2017.2756069
http://dx.doi.org/10.1109/access.2019.2953499
http://dx.doi.org/10.1109/access.2019.2953499
http://dx.doi.org/10.1016/j.jvlc.2017.01.004
http://dx.doi.org/10.1016/j.jvlc.2017.01.004
http://dx.doi.org/10.1109/CTS.2010.5478455
http://dx.doi.org/10.1109/CTS.2010.5478455
http://dx.doi.org/10.4018/jdst.2011100101
http://dx.doi.org/10.4018/jdst.2011100101
http://dx.doi.org/10.1109/MC.2013.31

B. R. Barricelli et al.: Human DT for Fitness Management

[11] C. Mandolla, A. Messeni Petruzzelli, G. Percoco, and A. Urbinati,
‘‘Building a digital twin for additive manufacturing through the exploita-
tion of blockchain: A case analysis of the aircraft industry,’’Comput. Ind.,
vol. 109, pp. 134–152, 2019, doi: 10.1016/j.compind.2019.04.011.

[12] S. H. Chowdhury, F. Ali, and I. K. Jennions, ‘‘A methodology for the
experimental validation of an aircraft ECS digital twin targeting system
level diagnostics,’’ in Proc. Annu. Conf. PHM Soc., vol. 2019, vol. 11,
no. 1. [Online]. Available: https://www.phmpapers.org/index.php/
phmconf/article/view/888, doi: 10.36001/phmconf.2019.v11i1.888.

[13] O. Hazbon, L. Gutierrez, C. Bil, M. Napolitano, and M. Fravolini, ‘‘Dig-
ital twin concept for aircraft system failure detection and correction,’’ in
Proc. AIAA Aviation Forum, 2019, p. 2887, doi: 10.2514/6.2019-2887.

[14] C. Zhang, W. Xu, J. Liu, Z. Liu, Z. Zhou, and D. T. Pham, ‘‘A recon-
figurable modeling approach for digital twin-based manufacturing sys-
tem,’’ Procedia CIRP, vol. 83, pp. 118–125, 2019, doi: 10.1016/
j.procir.2019.03.141.

[15] Q. Qi, F. Tao, T. Hu, N. Anwer, A. Liu, Y. Wei, L. Wang, and
A. Y. C. Nee, ‘‘Enabling technologies and tools for digital twin,’’
J. Manuf. Syst., to be published, doi: 10.1016/j.jmsy.2019.10.001.

[16] Q. Liu, H. Zhang, J. Leng, and X. Chen, ‘‘Digital twin-driven rapid
individualised designing of automated flow-shop manufacturing sys-
tem,’’ Int. J. Prod. Res., vol. 57, no. 12, pp. 3903–3919, Jun. 2019,
doi: 10.1080/00207543.2018.1471243.

[17] Y. Lu, C. Liu, K. I.-K. Wang, H. Huang, and X. Xu, ‘‘Digital twin-
driven smart manufacturing: Connotation, reference model, applications
and research issues,’’ Robot. Comput.-Integr. Manuf., vol. 61, Feb. 2020,
Art. no. 101837, doi: 10.1016/j.rcim.2019.101837.

[18] J. Guo, N. Zhao, L. Sun, and S. Zhang, ‘‘Modular based flexible digital
twin for factory design,’’ J. Ambient Intell. Humanized Comput., vol. 10,
no. 3, pp. 1189–1200, Mar. 2019, doi: 10.1007/s12652-018-0953-6.

[19] R. Kharat, V. Bavane, S. Jadhao, and R. Marode, ‘‘Digital twin: Manu-
facturing excellence through virtual factory replication,’’ Global J. Eng.
Sci. Res., vol. 18, pp. 6–15, Nov. 2018, doi: 10.5281/zenodo.1493930.

[20] R. Stark, C. Fresemann, and K. Lindow, ‘‘Development and operation
of digital twins for technical systems and services,’’ CIRP Ann., vol. 68,
no. 1, pp. 129–132, 2019, doi: 10.1016/j.cirp.2019.04.024.

[21] J. Guo, N. Zhao, L. Sun, and S. Zhang, ‘‘Modular based flexible digital
twin for factory design,’’ J. Ambient Intell. Humanized Comput., vol. 10,
no. 3, pp. 1189–1200, Mar. 2019, doi: 10.1007/s12652-018-0953-6.

[22] G. E. Modoni, E. G. Caldarola, M. Sacco, andW. Terkaj, ‘‘Synchronizing
physical and digital factory: Benefits and technical challenges,’’ Procedia
CIRP, vol. 79, pp. 472–477, 2019, doi: 10.1016/j.procir.2019.02.125.

[23] K. Polyniak and J. Matthews. (2016). The Johns Hopkins Hospital
Launches Capacity Command Center to Enhance Hospital
Operations. John Hopkins Medicine. [Online]. Available: https://www.
hopkinsmedicine.org/news/media/releases/the_johns_hopkins_hospital
_launches_capacity_command_center_to_enhance_hospital_operations

[24] S. Scharff. (2010). From Digital Twin to Improved Patient Experi-
ence. Siemens Healthineers. [Online]. Available: https://www.siemens-
healthineers.com/news/mso-digital-twin-mater.html

[25] A. Karakra, F. Fontanili, E. Lamine, and J. Lamothe, ‘‘HospiT’Win:
A predictive simulation-based digital twin for patients pathways in hos-
pital,’’ in Proc. IEEE EMBS Int. Conf. Biomed. Health Inform. (BHI),
Chicago, IL, USA, May 2019, pp. 1–4, doi: 10.1109/BHI.2019.8834534.

[26] K. Bruynseels, F. S. di Sio, and J. van den Hoven, ‘‘Digital twins in
health care: Ethical implications of an emerging engineering paradigm,’’
Frontiers Genet., vol. 9, p. 31, Feb. 2018, doi: 10.3389/fgene.2018.00031.

[27] Genetics HomeReference. (2019).What is PrecisionMedicine? [Online].
Available: https://ghr.nlm.nih.gov/primer/precisionmedicine/definition

[28] The Precision Medicine Initiative. (2015). Data-Driven
Treatments as Unique as Your Own Body. [Online]. Available:
https://obamawhitehouse.archives.gov/blog/2015/01/30/precision-
medicine-initiative-data-driven-treatments-unique-your-own-body

[29] G. Clapworthy, M. Viceconti, P. V. Coveney, and P. Kohl, ‘‘The vir-
tual physiological human: Building a framework for computational
biomedicine,’’ Philos. Trans. Roy. Soc. A, vol. 366, no. 1878,
pp. 2975–2978, 2008, doi: 10.1098/rsta.2008.0103.

[30] M. Holtmannspotter, M. Martinez-Galdamez, M. Isokangas, R. Ferrara,
and M. Sanchez, ‘‘Simulation in clinical practice: First experience
with Sim&Cure before implantation of flow diverter (pipeline)
or Web-device for the treatment of intracranial aneurysm,’’ in
Proc. ABC/WIN, 2017. [Online]. Available: https://sim-and-
cure.com/wp-content/uploads/2018/01/91aa70_01fd87e567ec49e9907
a061bd780c76b.pdf

[31] Dassault Systèmes. (2019). The LivingHeart Project. [Online]. Available:
https://www.3ds.com/products-services/simulia/solutions/life-sciences/
the-living-heart-project.

[32] J. Ospel, G. Gascou, V. Costalat, L. Piergallini, K. Blackham, and
D. Zumofen, ‘‘Comparison of Pipeline embolization device sizing based
on conventional 2D measurements and virtual simulation using the
Sim&Size software: An agreement study,’’ Amer. J. Neuroradiol., vol. 40,
no. 3, pp. 524–530, 2019, doi: 10.3174/ajnr.A5973.

[33] R. Martinez-Velazquez, R. Gamez, and A. E. Saddik, ‘‘Cardio twin:
A digital twin of the human heart running on the edge,’’ in Proc. IEEE Int.
Symp. Med. Meas. Appl. (MeMeA), Istanbul, Turkey, Jun. 2019, pp. 1–6,
doi: 10.1109/MeMeA.2019.8802162.

[34] Y. Feng, X. Chen, and J. Zhao, ‘‘Create the individualized digital twin
for noninvasive precise pulmonary healthcare,’’ Significances Bioeng.
Biosci., to be published.

[35] Y. Liu, L. Zhang, Y. Yang, L. Zhou, L. Ren, F. Wang, R. Liu, Z. Pang, and
M. J. Deen, ‘‘A novel cloud-based framework for the elderly healthcare
services using digital twin,’’ IEEE Access, vol. 7, pp. 49088–49101, 2019,
doi: 10.1109/access.2019.2909828.

[36] L. F. Rivera, M. Jiménez, P. Angara, N. M. Villegas, G. Tamura, and
H.A.Müller, ‘‘Towards continuousmonitoring in personalized healthcare
through digital twins,’’ in Proc. 29th Annu. Int. Conf. Comput. Sci. Softw.
Eng., 2019, pp. 329–335.

[37] T. Hastie, R. Tibshirani, G. Sherlock,M. Eisen, P. Brown, andD. Botstein,
‘‘Imputing missing data for gene expression arrays,’’ Division Biostatis-
tics, Stanford Univ., Stanford, CA, USA, Tech. Rep., 1999.

[38] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie,
R. Tibshirani, D. Botstein, and R. B. Altman, ‘‘Missing value estimation
methods for DNA microarrays,’’ Bioinformatics, vol. 17, no. 6, pp. 520–
525, Jun. 2001.

[39] T. Speed, Statistical Analysis of Gene Expression Microarray Data.
London, U.K.: Chapman & Hall, 2003.

[40] G. Batista and M. C. Monard, ‘‘A study of K-nearest neighbour as an
imputation method,’’ Hybrid Intell. Syst., Frontiers Artif. Intell. Appl.,
vol. 87, no. 46, pp. 251–260, 2002.

[41] C. J. Merz and P. M. Murphy. (1998). UCI Repository of Machine
Learning Datasets. [Online]. Available: http://www.ics.uci.edu/
mlearn/MLRepository.html

[42] J. R. Quinlan, C4.5 Programs for Machine Learning. San Mateo, CA,
USA: Morgan Kaufmann, 1988.

[43] P. Clark and T. Niblett, ‘‘The CN2 induction algorithm,’’ Mach Learn,
vol. 3, no. 4, pp. 261–283, Mar. 1989.

[44] L. Beretta and A. Santaniello, ‘‘Nearest neighbor imputation algorithms:
A critical evaluation,’’ BMCMed. Informat. Decis. Making, vol. 16, no. 3,
pp. 197–208, 2016, doi: 10.1186/s12911-016-0318-z.

[45] S. Yenduri and S. S. Iyengar, ‘‘Performance of imputation methods for
incomplete datasets,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 17, no. 1,
pp. 127–152, 2007.

[46] J. Zhang and I. Mani, ‘‘KNN approach to unbalanced data
distributions: A case study involving information extraction,’’ in
Proc. Workshop Learn. Imbalanced Datasets II, 2003. [Online].
Available: http://www.site.uottawa.ca/~nat/Workshop2003/jzhang.pdf?
attredirects=0

[47] P. J. García-Laencina, P. H. Abreu, M. H. Abreu, and N. Afonoso, ‘‘Miss-
ing data imputation on the 5-year survival prediction of breast cancer
patients with unknown discrete values,’’ Comput. Biol. Med., vol. 59,
pp. 125–133, Apr. 2015, doi: 10.1016/j.compbiomed.2015.02.006.

[48] G. E. A. P. A. Batista andM. C.Monard, ‘‘An analysis of fourmissing data
treatment methods for supervised learning,’’ Appl. Artif. Intell., vol. 17,
nos. 5–6, pp. 519–533, May 2003, doi: 10.1080/713827181.

[49] M. Chattopadhyay, S. Chattopadhyay, C. Das, and S. Bose, ‘‘A novel
distance-based iterative sequential KNN algorithm for estimation of miss-
ing values in microarray gene expression data,’’ Int. J. Bioinf. Res. Appl.,
vol. 12, no. 4, pp. 312–342, 2016, doi: 10.1504/ijbra.2016.10001720.

[50] M. Zhu and X. Cheng, ‘‘Iterative KNN imputation based on GRA for
missing values in TPLMS,’’ in Proc. 4th Int. Conf. Comput. Sci. Netw.
Technol. (ICCSNT), Harbin, China, 2015, pp. 94–99, doi: 10.1109/ICC-
SNT.2015.7490714.

[51] C. Zhang, X. Zhu, J. Zhang, Y. Qin, and S. Zhang, ‘‘GBKII: An imputa-
tion method for missing values,’’ in Advances in Knowledge Discovery
and Data Mining (Lecture Notes in Computer Science), vol. 4426,
Z. H. Zhou, H. Li, and Q. Yang, Eds. Berlin, Germany:
Springer, 2007.

26662 VOLUME 8, 2020

http://dx.doi.org/10.1016/j.compind.2019.04.011
http://dx.doi.org/10.36001/phmconf.2019.v11i1.888
http://dx.doi.org/10.2514/6.2019-2887
http://dx.doi.org/10.1016/j.procir.2019.03.141
http://dx.doi.org/10.1016/j.procir.2019.03.141
http://dx.doi.org/10.1016/j.jmsy.2019.10.001
http://dx.doi.org/10.1080/00207543.2018.1471243
http://dx.doi.org/10.1016/j.rcim.2019.101837
http://dx.doi.org/10.1007/s12652-018-0953-6
http://dx.doi.org/10.5281/zenodo.1493930
http://dx.doi.org/10.1016/j.cirp.2019.04.024
http://dx.doi.org/10.1007/s12652-018-0953-6
http://dx.doi.org/10.1016/j.procir.2019.02.125
http://dx.doi.org/10.1109/BHI.2019.8834534
http://dx.doi.org/10.3389/fgene.2018.00031
http://dx.doi.org/10.1098/rsta.2008.0103
http://dx.doi.org/10.3174/ajnr.A5973
http://dx.doi.org/10.1109/MeMeA.2019.8802162
http://dx.doi.org/10.1109/access.2019.2909828
http://dx.doi.org/10.1186/s12911-016-0318-z
http://dx.doi.org/10.1016/j.compbiomed.2015.02.006
http://dx.doi.org/10.1080/713827181
http://dx.doi.org/10.1504/ijbra.2016.10001720
http://dx.doi.org/10.1109/ICCSNT.2015.7490714
http://dx.doi.org/10.1109/ICCSNT.2015.7490714

B. R. Barricelli et al.: Human DT for Fitness Management

[52] A. Suyundikov, J. R. Stevens, C. Corcoran, J. Herrick, R. K. Wolff,
and M. L. Slattery, ‘‘Accounting for dependence induced by weighted
KNN imputation in paired samples, motivated by a colorectal cancer
study,’’ PLoS ONE, vol. 10, no. 4, Apr. 2015, Art. no. e0119876,
doi: 10.1371/journal.pone.0119876.

[53] P. E. Duda and R. O. Hart, Pattern Classi cation and Scene Analysis.
New York, NY, USA: Wiley, 1973.

[54] P. Jonsson and C. Wohlin, ‘‘An evaluation of k-nearest neighbour imputa-
tion using likert data,’’ in Proc. 10th Int. Symp. Softw. Metrics, Chicago,
IL, USA, 2004, pp. 108–118, doi: 10.1109/METRIC.2004.1357895.

[55] K. Kim, B. Kim, andG.Yi, ‘‘Reuse of imputed data inmicroarray analysis
increases imputation efficiency,’’ BMC Bioinf., vol. 5, no. 1, p. 160, 2004,
doi: 10.1186/1471-2105-5-160.

[56] J. L. Leevy, ‘‘A survey on addressing high-class imbalance in big
data,’’ J. Big Data, vol. 42, no. 5, p. 42, 2018, doi: 10.1186/
s40537-018-0151-6.

[57] K. Graim, ‘‘Revealing cancer subtypes with higher-order correlations
applied to imaging and omics data,’’ BMCMed. Genomics, vol. 10, no. 1,
2017, Art. no. 20, doi: 10.1186/s12920-017-0256-3.

[58] Gliozzo, ‘‘Network modeling of patients’ biomolecular profiles for clin-
ical phenotype/outcome prediction,’’ Sci. Rep., to be published.

[59] E. Fix and J. L. Hodges, ‘‘Discriminatory analysis, nonparametric dis-
crimination,’’ USAF School Aviation Med., Randolph Field, Tex, Project
21-49-004, Tech. Rep. 4, 1951.

[60] N. S. Altman, ‘‘An introduction to kernel and nearest-neighbor non-
parametric regression,’’ Amer. Statistician, vol. 46, no. 3, pp. 175–185,
Aug. 1992, doi: 10.1080/00031305.1992.10475879.

[61] X. Wu, ‘‘Top 10 algorithms in data mining,’’ Knowl. Inf. Syst., vol. 14,
no. 1, pp. 1–37, 2008, doi: 10.1007/s10115-007-0114-2.

[62] B. Hosseinifard, M. H. Moradi, and R. Rostami, ‘‘Classifying depres-
sion patients and normal subjects using machine learning techniques
and nonlinear features from EEG signal,’’ Comput. Methods Programs
Biomed., vol. 109, no. 3, pp. 339–345, Mar. 2013, doi: 10.1016/
j.cmpb.2012.10.008.

[63] B. Pourbabaee, M. J. Roshtkhari, and K. Khorasani, ‘‘Deep convolu-
tional neural networks and learning ECG features for screening parox-
ysmal atrial fibrillation patients,’’ IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 48, no. 12, pp. 2095–2104, Dec. 2018, doi: 10.1109/
tsmc.2017.2705582.

[64] Y. Qin, S. Zhang, X. Zhu, J. Zhang, and C. Zhang, ‘‘Semi-parametric
optimization for missing data imputation,’’ Appl. Intell., vol. 27, no. 1,
pp. 79–88, Jun. 2007, doi: 10.1007/s10489-006-0032-0.

[65] S. Zhang, X. Li, M. Zong, X. Zhu, and D. Cheng, ‘‘Learning k for kNN
Classification,’’ ACM Trans. Intell. Syst. Technol. (TIST), vol. 8, no. 3,
2017, Art. no. 43, doi: 10.1145/2990508.

[66] R. J. Samworth, ‘‘Optimal weighted nearest neighbour classifiers,’’ Ann.
Statist., vol. 40, no. 5, pp. 2733–2763, 2012, doi: 10.1214/12-AOS1049.

[67] A. Gul, A. Perperoglou, Z. Khan, O. Mahmoud, M. Miftahuddin,
W. Adler, and B. Lausen, ‘‘Ensemble of a subset of kNN classifiers,’’
Adv. Data Anal. Classification, vol. 12, no. 4, pp. 827–840, 2018,
doi: 10.1007/s11634-015-0227-5.

[68] A. G. Karegowda and A. S. Manjunath, ‘‘Cascading K-means clustering
and K-nearest neighbor classifier for categorization of diabetic patients,’’
Int. J. Eng. Adv. Technol., vol. 1, no. 3, pp. 147–151, 2012.

[69] E. Casiraghi, V. Huber, and M. Frasca, ‘‘A novel computational method
for automatic segmentation, quantification and comparative analysis of
immunohistochemically labeled tissue sections,’’ BMC Bioinf., vol. 19,
no. 10, 2018, Art. no. 357, doi: 10.1186/s12859-018-2302-3.

[70] P. Campadelli, E. Casiraghi, and D. Artioli, ‘‘A fully automated method
for lung nodule detection from postero-anterior chest radiographs,’’
IEEE Trans. Med. Imag., vol. 25, no. 12, pp. 1588–1603, Dec. 2006,
doi: 10.1109/tmi.2006.884198.

[71] L. Demidova, I. Klyueva, Y. Sokolova, N. Stepanov, and N. Tyart, ‘‘Intel-
lectual approaches to improvement of the classification decisions quality
on the base of the SVM classifier,’’ Procedia Comput. Sci., vol. 103,
pp. 222–230, 2017, doi: 10.1016/j.procs.2017.01.070.

[72] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995.

[73] M. N. Murty and R. Raghava, ‘‘Kernel-Based SVM,’’ in Support Vector
Machines and Perceptrons (SpringerBriefs in Computer Science). Cham,
Switzerland: Springer, 2016, pp. 57–67, doi: 10.1007/978-3-319-41063-
0_5.

[74] Y. Tang, Y.-Q. Zhang, N. Chawla, and S. Krasser, ‘‘SVMs modeling for
highly imbalanced classification,’’ IEEE Trans. Syst., Man, Cybern. B,
vol. 39, no. 1, pp. 281–288, Feb. 2009.

[75] Z. Cai, Z. Yu, H. Zhou, and Z. Gu, ‘‘The early stage lung cancer prognosis
prediction model based on support vector machine,’’ in Proc. IEEE 23rd
Int. Conf. Digit. Signal Process. (DSP), Shanghai, China, Nov. 2018,
pp. 1–4, doi: 10.1109/ICDSP.2018.8631657.

[76] D. C. Li, C. W. Liu, and S. C. Hu, ‘‘A learning method for the class
imbalance problem with medical data sets,’’ Comput. Biol. Med., vol. 40,
no. 5, pp. 509–518, 2010, doi: 10.1016/j.compbiomed.2010.03.005.

[77] M. Kächele, P. Thiam, G. Palm, and F. Schwenker, ‘‘Majority-class
aware support vector domain oversampling for imbalanced classification
problems,’’ in Artificial Neural Networks in Pattern Recognition (Lecture
Notes in Computer Science), vol. 8774. Cham, Switzerland: Springer,
2014.

[78] H. Haibo and E. A. Garcia, ‘‘Learning from imbalanced data,’’
IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284,
2009.

[79] H.-Y. Lo, C.-C. Yen, S.-D. Lin, C.-M. Chang, T.-H. Chiang, C.-Y. Hsiao,
A. Huang, T.-T. Kuo, W.-C. Lai, M.-H. Yang, and J.-J. Yeh, ‘‘Learning
to improve area-under-FROC for imbalanced medical data classification
using an ensemblemethod,’’ SIGKDDExplor. Newsl., vol. 10, no. 2, p. 43,
Dec. 2008.

[80] T. Razzaghi, O. Roderick, I. Safro, and N. Marko, ‘‘Multilevel weighted
support vector machine for classification on healthcare data with missing
values,’’ PLoS ONE, vol. 11, no. 5, May 2016, Art. no. e0155119,
doi: 10.1371/journal.pone.0155119.

[81] A. Iranmehr, H. Masnadi-Shirazi, and N. Vasconcelos, ‘‘Cost-sensitive
support vector machines,’’ Neurocomputing, vol. 343, pp. 50–64,
May 2019, doi: 10.1016/j.neucom.2018.11.099.

[82] M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and
F. Herrera, ‘‘An overview of ensemble methods for binary classifiers in
multi-class problems: Experimental study on one-vs-one and one-vs-all
schemes,’’ Pattern Recognit., vol. 44, no. 8, pp. 1761–1776, Aug. 2011,
doi: 10.1016/j.patcog.2011.01.017.

[83] T. Dietterich and G. Bakiri, ‘‘Solving multiclass learning problems via
error-correcting output codes,’’ J. Artif. Intell. Res., vol. 2, pp. 263–286,
Jul. 1995.

[84] E. Kong and T. Dietterich, ‘‘Error-correcting output coding corrects bias
and variance,’’ in Proc. 12th Int. Conf. Int. Conf. Mach. Learn., 1995,
pp. 313–321.

[85] E. B. Kong and T. G. Dietterich, ‘‘Why error-correcting output
coding works with decision trees,’’ Dept. Comput. Sci., Oregon
State Univ., Corvallis, OR, USA, Tech. Rep., 1995. [Online].
Available: http://web.engr.oregonstate.edu/~tgd/publications/ecc-why-
draft-1994.pdf

[86] T. Windeatt and R. Ghaderi, ‘‘Coding and decoding strategies for
multi-class learning problems,’’ Inf. Fusion, vol. 4, no. 1, pp. 11–21,
Mar. 2003.

[87] C. Molnar. (2019). Interpretable Machine Learning. A Guide for Making
Black Box Models Explainable. [Online]. Available: https://christophm.
github.io/interpretable-ml-book/

[88] H. Lakkaraju, S. H. Bach, and J. Leskovec, ‘‘Interpretable decision sets:
A joint framework for description and prediction,’’ in Proc. 22nd ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD), vol. 16, 2016,
pp. 1675–1684.

[89] B. Ustun and C. Rudin, ‘‘Supersparse linear integer models for optimized
medical scoring systems,’’ Mach. Learn., vol. 102, no. 3, pp. 349–391,
Mar. 2016, doi: 10.1007/s10994-015-5528-6.

[90] F. Wang and C. Rudin, ‘‘Falling rule lists,’’ in Proc. 18th Int. Conf. Artif.
Intell. Statist. (AISTATS), vol. 38, 2016, pp. 1013–1022,.

[91] T. Wang, C. Rudin, F. Doshi-Velez, Y. Liu, E. Klampfl, and P. MacNeille,
‘‘Or’s of and’s for interpretable classification, with application to context-
aware recommender systems,’’ 2015, arXiv:1504.07614. [Online]. Avail-
able: https://arxiv.org/abs/1504.07614

[92] S. Wachter, B. Mittelstadt, and C. Russell, ‘‘Counterfactual explanations
without opening the black box: Automated decisions and the GDPR,’’
Harvard J. Law Technol., vol. 31, p. 841, 2017.

[93] S. Watcher, B. Mittelstadt, and C. Russell, ‘‘Counterfactual explana-
tions without opening the black box: Automated decisions and the
GDPR,’’ 2017, arXiv:1711.00399. [Online]. Available: https://arxiv.org/
abs/1711.00399

VOLUME 8, 2020 26663

http://dx.doi.org/10.1371/journal.pone.0119876
http://dx.doi.org/10.1109/METRIC.2004.1357895
http://dx.doi.org/10.1186/1471-2105-5-160
http://dx.doi.org/10.1186/s40537-018-0151-6
http://dx.doi.org/10.1186/s40537-018-0151-6
http://dx.doi.org/10.1186/s12920-017-0256-3
http://dx.doi.org/10.1080/00031305.1992.10475879
http://dx.doi.org/10.1007/s10115-007-0114-2
http://dx.doi.org/10.1016/j.cmpb.2012.10.008
http://dx.doi.org/10.1016/j.cmpb.2012.10.008
http://dx.doi.org/10.1109/tsmc.2017.2705582
http://dx.doi.org/10.1109/tsmc.2017.2705582
http://dx.doi.org/10.1007/s10489-006-0032-0
http://dx.doi.org/10.1145/2990508
http://dx.doi.org/10.1214/12-AOS1049
http://dx.doi.org/10.1007/s11634-015-0227-5
http://dx.doi.org/10.1186/s12859-018-2302-3
http://dx.doi.org/10.1109/tmi.2006.884198
http://dx.doi.org/10.1016/j.procs.2017.01.070
http://dx.doi.org/10.1007/978-3-319-41063-0_5
http://dx.doi.org/10.1007/978-3-319-41063-0_5
http://dx.doi.org/10.1109/ICDSP.2018.8631657
http://dx.doi.org/10.1016/j.compbiomed.2010.03.005
http://dx.doi.org/10.1371/journal.pone.0155119
http://dx.doi.org/10.1016/j.neucom.2018.11.099
http://dx.doi.org/10.1016/j.patcog.2011.01.017
http://dx.doi.org/10.1007/s10994-015-5528-6

B. R. Barricelli et al.: Human DT for Fitness Management

[94] D. Martens and F. Provost, ‘‘Explaining data-driven document classifica-
tions,’’MISQuart., vol. 38, no. 1, pp. 73–100, 2014, doi: 10.25300/MISQ/
2014/38.1.04.

[95] T. Laugel, M. J. Lesot, C. Marsala, X. Renard, and M. Detyniecki,
‘‘Inverse classification for comparison-based interpretability in machine
learning,’’ 2017, arXiv:1712.08443. [Online]. Available: https://arxiv.
org/abs/1712.08443

[96] M. T. Ribeiro, S. Singh, C. Guestrin, C, ‘‘High-precision model-
agnostic explanations,’’ in Proc. 32nd AAAI Conf. Artif. Intell.
(AAAI), 2018. [Online]. Available: https://pdfs.semanticscholar.org/
1d8f/4f76ac6534627ef8a1c24b9937d8ab2a5c5f.pdf?_ga=2.106644992.
2083133979.1580812718-395322051.1573561033

[97] B. Shneiderman, Leonardo’s Laptop: Human Needs and the New Com-
puting Technologies. Cambridge, MA, USA: MIT Press, 2002.

[98] G. Fischer. (2002). Beyond ’Couch Potatoes’: From Consumers
to Designers and Active Contributors. [Online]. Available:
http://firstmonday.org/issues/issue7_12/fischer/

[99] B. R. Barricelli, G. Fischer, D. Fogli, A. Mørch, A. Piccinno, and
S. Valtolina, ‘‘Cultures of participation in the digital age: From ‘have
to’ to ‘want to’ participate,’’ in Proc. ACM Int. Conf. Ser., Oct. 2016,
Art. no. 128, doi: 10.1145/2971485.2987668.

[100] M. F. Costabile, P. Mussio, L. Parasiliti Provenza, and A. Piccinno,
‘‘End users as unwitting software developers,’’ in Proc. WEUSE, 2008,
pp. 6–10.

[101] B. R. Barricelli, F. Cassano, D. Fogli, and A. Piccinno, ‘‘End-user
development, end-user programming and end-user software engineering:
A systematic mapping study,’’ J. Syst. Softw., vol. 149, pp. 101–137,
Mar. 2019, doi: 10.1016/j.jss.2018.11.041.

[102] B. R. Barricelli and S. Valtolina, ‘‘Designing for end-user development
in the Internet of things,’’ End-User Development (Lecture Notes in
Computer Science: Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 9083. Cham, Switzerland: Springer, 2015,
pp. 9–24, doi: 10.1007/978-3-319-18425-8_2.

[103] L. Rokach and O. Z. Maimon, ‘‘Data mining with decision trees: Theory
and applications,’’ in Series in Machine Perception and Artificial Intelli-
gence, vol. 81. Singapore: World Scientific, 2015.

[104] M. Mitchell, Machine Learning. Burr Ridge, IL, USA: McGraw-Hill,
1997.

[105] P. Campadelli, E. Casiraghi, and G. Valentini, ‘‘Support vector
machines for candidate nodules classification,’’Neurocomputing, vol. 68,
pp. 281–288, Oct. 2005.

[106] Y. Sun, A. K. Wong, and M. S. Kamel, ‘‘Classification of imbalanced
data: A review,’’ Int. J. Pattern Recognit. Artif. Intell., vol. 23, no. 4,
pp. 687–719, 2009.

[107] A. Rozza, G. Lombardi, E. Casiraghi, and P. Campadelli, ‘‘Novel
Fisher discriminant classifiers,’’ Pattern Recognit., vol. 45, no. 10,
pp. 3725–3737, Oct. 2012.

[108] K. Warmefjord, R. Soderberg, L. Lindkvist, B. Lindau, and
J. Carlson, ‘‘Inspection data to support a digital twin for
geometry assurance,’’ in Proc. ASME, 2017. [Online]. Available:
https://asmedigitalcollection.asme.org/IMECE/proceedings-abstract/
IMECE2017/58356/V002T02A101/265583, doi: 10.1115/IMECE2017-
70398.

[109] S. Pai, S. Hui, R. Isserlin, M. A. Shah, H. Kaka, and G. D. Bader,
‘‘netDx: Interpretable patient classification using integrated patient sim-
ilarity networks,’’ Mol. Syst. Biol., vol. 15, no. 3, 2019, Art. no. e8497,
doi: 10.15252/msb.20188497.

[110] A. Rozza, G. Lombardi, and E. Casiraghi, ‘‘Novel IPCA-based classifiers
and their application to spam filtering,’’ in Proc. 9th Int. Conf. Intell. Syst.
Design Appl., 2009, pp. 797–802, doi: 10.1109/ISDA.2009.21.

[111] P. Campadelli, E. Casiraghi, C. Ceruti, and A. Rozza, ‘‘Intrinsic dimen-
sion estimation: Relevant techniques and a benchmark framework,’’
Math. Problems Eng., vol. 2015, Oct. 2015, Art. no. 759567, doi: 10.1155/
2015/759567.

[112] T. W. Anderson and D. A. Darling, ‘‘Asymptotic theory of certain ‘good-
ness of fit’ criteria based on stochastic processes,’’ Annals Math. Statist.,
vol. 23, pp. 193–212, Jun. 1952, doi: 10.1214/aoms/1177729437.

[113] M. A. Stephens, ‘‘EDF statistics for goodness of fit and some compar-
isons,’’ J. Amer. Stat. Assoc., vol. 69, no. 347, pp. 730–737, Sep. 1974,
doi: 10.1080/01621459.1974.10480196.

[114] M. S. Bartlett, ‘‘Properties of sufficiency and statistical tests,’’ in Proc.
Roy. Stat. Soc., vol. 160, pp. 268–282, May 1937.

[115] G.W. Snedecor andW. G. Cochran, Statistical Methods. Iowa State Univ.
Press, 1989. [Online]. Available: https://lib.dr.iastate.edu/press/

[116] W. H. Kruskal and W. A. Wallis, ‘‘Use of ranks in one-criterion variance
analysis,’’ J. Amer. Stat. Assoc., vol. 47, no. 260, pp. 583–621, Dec. 1952,
doi: 10.1080/01621459.1952.10483441.

[117] R. A. Fisher, ‘‘The correlation between relatives on the supposition of
mendelian inheritance,’’ Philos. Trans. Roy. Soc. Edinburgh, vol. 52,
no. 2, pp. 399–433 and 2337, 1918.

[118] J. D. Gibbons, Nonparametric Statistical Inference, 2nd ed. New York,
NY, USA: Marcel Dekker, 1985.

[119] L. Van der Maaten and G. Hinton, ‘‘Visualizing data using t-SNE,’’
J. Mach. Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

[120] J. Snoek, H. Larochelle, and R. P. Adams,‘‘Practical Bayesian optimiza-
tion of machine learning algorithms,’’ in Proc. 25th Int. Conf. Neural Inf.
Process. Syst. (NIPS), vol. 2, 2012, pp. 2951–2959.

[121] M. A. Gelbart, J. Snoek, and R. P. Adams, ‘‘Bayesian optimization with
unknown constraints,’’ inProc. 13th Conf. Uncertainty Artif. Intell. (UAI),
2014, pp. 250–259.

[122] A. Gepperth and B. Hammer, ‘‘Incremental learning algorithms and
applications,’’ in Proc. Eur. Symp. Artif. Neural Netw. (ESANN), Bruges,
Belgium, 2016, Art. no. hal-01418129.

26664 VOLUME 8, 2020

http://dx.doi.org/10.25300/MISQ/2014/38.1.04
http://dx.doi.org/10.25300/MISQ/2014/38.1.04
http://dx.doi.org/10.1145/2971485.2987668
http://dx.doi.org/10.1016/j.jss.2018.11.041
http://dx.doi.org/10.1007/978-3-319-18425-8_2
http://dx.doi.org/10.1115/IMECE2017-70398
http://dx.doi.org/10.1115/IMECE2017-70398
http://dx.doi.org/10.15252/msb.20188497
http://dx.doi.org/10.1109/ISDA.2009.21
http://dx.doi.org/10.1155/2015/759567
http://dx.doi.org/10.1155/2015/759567
http://dx.doi.org/10.1214/aoms/1177729437
http://dx.doi.org/10.1080/01621459.1974.10480196
http://dx.doi.org/10.1080/01621459.1952.10483441

	INTRODUCTION
	RESEARCH BACKGROUND
	LITERATURE REVIEW
	DIGITAL TWIN: FROM AVIATION TO HEALTHCARE
	MISSING DATA IMPUTATION METHODS
	knn CLASSIFIERS AND SUPPORT VECTOR MACHINES FOR PREDICTION
	EXPLAINING PREDICTION AND PROVIDING SUGGESTIONS WITH COUNTERFACTUAL EXPLANATIONS
	THE ``HUMAN-IN-THE-LOOP'' ECOSYSTEM

	 SMARTFIT

	THE TEAM OF DTS
	TRAINING THE DT
	MISSING DATA IMPUTATION
	FEATURE SELECTION
	THE MULTICLASS CLASSIFIERS

	TREATING NOVEL MEASUREMENTS TO PROVIDE SUGGESTIONS BASED ON COUNTERFACTUAL EXPLANATIONS

	EXPERIMENTAL RESULTS
	MATERIALS
	ANALYSIS OF COMPUTED RESULTS

	CONCLUSION
	REFERENCES

