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ABSTRACT In the present work, based on the generalized principal component analysis, we propose
a new approach to decompose the subspace of fault deviations, which is used for reconstruction-based
fault diagnosis through principal component analysis (PCA) monitoring system. The proposed method is
advanced since it lightens the computational burden by eliminating the irrelavant information and simplifying
the fault subspace. The fault effects are extracted through analyzing the generalized principal components
of the normal operating data and the fault data. The significant fault deviations that cause the alarming
monitoring statistic are calculated. This is achieved by designing a two-part feature decomposition procedure.
In the first part, the normal operating subspace is extracted through analyzing the generalized principal
components of both the historical normal data and fault data. The fault-free part of the data is eliminated
by projecting the data into the normal operating subspace. In the second part, principal component analysis
is performed on the remaining part of the data, where the largest fault deviation directions are decomposed
in order. By the two-part decomposition, an integrated fault subspace for all monitoring statistic indices is
obtained, which separates the measurement data into two different parts for fault reconstruction. One part is
related to the normal operating subspace, which is deemed to follow normal rules, and thus insignificant to
remove alarmingmonitoring statistics. The other is related to the fault subspace, which contributes to the out-
of-control signals. Theoretical support is constructed and the related statistical characteristics are analyzed.
Its feasibility and performance are illustrated with the data from the Tennessee Eastman (TE) benchmark
process.

INDEX TERMS Subspace decomposition, generalized principal component analysis, fault diagnosis, fault
reconstruction.

I. INTRODUCTION
In modern industrial processes, fault detection and diagno-
sis [1]–[11] have become one of the most critical areas of
research in process control over the past decades, and an
essential element in the operation of modern engineering
systems to avoid serious consequences and reduce the main-
tenance costs. Since the manufacturing processes often have
a large number of measured variables, and the measured vari-
ables have a high correlation, dimensionality reduction tech-
niques have been widely used for process data analysis and
process improvements. Some representatives are principal
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component analysis (PCA) [12], partial least square (PLS)
[13], [14], Fisher discriminant analysis (FDA) [15], etc.,
which provides a refined and low-dimensional analysis space
by projecting measurement data onto a low-dimensional
latent space. These techniques extract basic features from
measured data and define the normal operating areas by
adapting to acceptable changes. When a process moves out-
sides the normal operation regions, it is hoped that the
operator can immediately detect it, diagnose an attributable
cause for the deviation, and take necessary corrective
actions to restore the process to a normal state. Although
fault-detection methods have been researched very much,
extensive research on fault isolation still requires in-depth
consideration.
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Generally, data driven-based fault diagnosis methods have
caught great attention from since they require less pro-
cess knowledge and are more inflexible to implement.
Data driven-based fault diagnosis methods diagnose faults
through analyzing the historical data and current data. There
are two major strategies, reconstruction-based methods and
classification-based methods. Classification-based methods,
such as Fisher discriminant analysis [16], [17], focus on dis-
criminant feature extraction and matching. Reconstruction-
based methods extract the fault subspace and utilize it as a
reconstruction model which can eliminate alarming signals
and then obtain the diagnostic results. Dunia and Qin [18]
designed a model of fault deviations to estimate the fault-
free part of the measurement data and they were the first to
define the concept of fault reconstruction. The conventional
reconstruction methods are based on PCA. These algorithms
extract the general fault information from the input data and
may not be able to discriminate fault patterns well from
normal conditions. To some extent, the dependence of the
fault reconstruction on the monitoring statistics limits the
improvement of the reconstructionmethod to a high level. For
reconstruction, input data can be separated into the normal
operating part and the fault part. A normal operating data
has a large portion of the normal operating part and nearly
no portion of the fault part. In contrast, a fault data has a little
portion of the normal operating part and an out-of-control
portion of the fault part which can cause alarming statistics in
monitoring systems. To our best knowledge, the generalized
principal component analysis (GPCA), which can capture
the most common variations of two input data sequences,
attracted significant attentions in recent years [19]–[21]. If the
two input sequences of GPCA are the fault data set and the
normal operating data set respectively, then the generalized
principal components (GPCs) extracted by GPCA can rep-
resent the normal operating part of the fault data set. Here,
we name the subspace composed of these GPCs as the normal
subspace. Using the normal subspace, we can eliminate the
normal operating part from the fault data set to obtain the
fault part. It is easy to conclude that we can look for the fault
subspace through processing the fault part of the fault data
set.

Themain objective of this paper is to exploremore efficient
ways to model the fault information in order to correct the
fault more effectively. A GPCA model is built and imple-
mented to the normal operating data set and the fault data set,
and a PCA monitoring system is established with the normal
operating data set. Instead of modeling the fault data directly,
we give a detailed analysis on the normal operating part and
decompose it through a GPCA model, and the fault subspace
is obtained via a PCA on the remained part of the fault data
set. In the fault data set, those fault deviations that can cause
alarming monitoring statistics are separated from the others,
which is implemented in two steps. The first step is to find out
all the normal operating directions by applying GPCA on the
normal operating data set and the fault data set, and a normal
operating subspace is formed by adaptively selecting these

directions with a PCAmonitoring system. Clearly, in the fault
data set, the normal operating part is irresponsible for the
alarming statistics of the monitoring system whereas the fault
part is not. The second step is to extract the major responsible
fault deviations using the normal operating subspace for fault
reconstruction. In fact, the normal operating subspace can
actually adjust its size according to the complication of the
industrial process during the GPCs extraction, so that the fault
subspace can represent the fault deviations more accurately.
Moreover, since GPCA is independent of the monitoring
system, the proposed algorithm can improve its performance
by changing the fault detection algorithms. The fault effects
are accurately modeled based on the relevant alarming mon-
itoring statistics. Consequently, fault reconstruction can be
effectively achieved by paying attenion to the fault devia-
tions caused by the alarming monitoring statistics. Relevant
statistical analysis and discussions are carried out to further
understand the proposed solution.

The rest of the paper is organized as follows. First, based
on a review of the standard PCA algorithm used to detect
faults, it laid the groundwork for simple preparatory the-
oretical support. Subsequently, the proposed algorithm is
mathematically designed through statistical properties and
attribute analysis. Emphasis is placed on the suitability and
rationality of the algorithm. Then, based on data from the
well-known Tennessee Eastman (TE) benchmark chemical
process, the aforementioned recognition and argument are
verified. Discussions are carried out to analyze the presen-
tation results. Finally, the last section draws the conclusions.

II. PRINCIPAL COMPONENT ANALYSIS-BASED FAULT
DETECTION
This section describes the fault detection system based on
PCA. In general, it uses two subspaces (principal component
subspace, PCS and residual subspace, RS) to monitor dif-
ferent types of process variations. Two various monitoring
statistics, T 2 and SPE, are used, reflecting the abnormal
changes in each subspace.

Let X be an n× j-dimensional normal data matrix in which
the rows are the observations and the columns are process
variables. It is assumed that X is normalized to have zero
mean and unit variance. PCA is carried out to decompose the
systematic information and residuals from X :

T = XP (1)

X = TPT
+ E (2)

where P(j × r) is the loading matrix, and T (n × r) is the
principal scores, which is derived by P(j × r) from the
measurement data X. n and j are the row and column size of
X, and r denotes the principle components (PCs) size. In this
way, the systematic information in X is characterized by TPT

and separated from the residuals E, which is considered to be
noise. In the perspective of projection, an observation x can be
decomposed as x = x̂+ x̃ , where x̂ = PPTx is the projection
to the PCS and x̃ = (I − PPT)x is the projection to the RS.
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Similarly, if the projection subspace is separated into the
fault and fault-free parts, then an observation x can also be
decomposed as x = x∗+xf , where xf = 6f is the projection
to the fault subspace and x∗ = x − 6f is the projection
to the normal operating subspace. 6 denotes the fault direc-
tions which is an orthonormal matrix spanned by the fault
systematic subspace with a dimension of j × rf . rf denotes
the major fault directions along which the fault systematic
information varies. f represents the fault score in the fault
systematic subspace so that ‖f ‖ represents the magnitude of
the fault. For a given fault subspace 6, We can calculate the
fault score f by

f = (6)†XT (3)

where (·)† is a generalized inverse operator. For a fault obser-
vation, ‖f ‖ is out of line. And for a fault-free observation, ‖f ‖
is very small. Therefore, the common information of a fault
and fault-free observation is normal operating subspace.

In the PCS and RS, two popular statistical indices [22] are
used by the statistical process monitoring for fault detection,
which are Squared Prediction Error (SPE) and Hotelling’s
statistic. The SPE index is defined as the squared norm of
the residual vector x̃ ,

SPE ≡ −‖x̃‖2

= [(I − PPT)(x∗ +6f )]T[(I − PPT)(x∗ +6f )] (4)

with a control limit δ2 = gSPEχ2
αh

SPE with confidence level
(1− α)× 100% , α a significance factor of an F-distribution

[23], gSPE = θ2
θ1

, hSPE =
θ21
θ2

, and θ1 =
∑n

i=l+1 λi, θ2 =∑n
i=l+1 λ

2
i , and λi the i

th eigenvalue of the data covariance.
And the Hotelling’s T 2 measures the variation in the PCS and
defined as

T 2
= [PTx]T3−1PTx= [PT(x∗+6f )]T3−1PT(x∗+6f )

(5)

The process is normal if T 2
≤ τ 2, where τ 2 = χ2

α(l) with
confidence level (1−α)×100%, α is a significance factor of
a weighted Chi-squared distribution [24], 3 = T TT/(n− 1)
denotes second-order statistics of principal part in the normal
training data.

III. SUBSPACE EXTRACTION APPROACH OF
RESPON-SIBLE FAULT DEVIATIONS
The proposed method is presented to develop a unified
fault reconstruction model for any monitoring statistics. This
method is applied for the decomposition of the responsible
fault effects in two parts, which are introduced in 3.1 and
3.2. Before the method is implemented, two data sets are
prepared, y ∈ Rn×j and x ∈ Rnf×j, each being composed of
the same number of variables and maybe different number of
samples. y denotes the normal data, and x denotes one data set
collected under one fault status. To develop PCA monitoring
models [25], the normal data set is centered and scaled to
be zero mean and unit standard deviation. Then, the data
preprocessing information of y is used to normalize x. So that

the preprocessed x can cover the fault deviation information
relative to the normal center.

A. GENERALIZED PRINCIPAL COMPONENT EXTRACTION
ALGORITHM
The generalized principal components (GPCs) are referred as
the generalized eigenvectors corresponding to the r largest
generalized eigenvalues of the autocorrelation matrix pencil
composed of two data vectors, where r referred as the number
of the GPCs. The techniques, which can accomplish the task
of extracting the GPCs from input signals, are called general-
ized principal component analysis (GPCA). The concept can
be given as follows [26],

Rxv = λRyv (6)

where Ry and Rx are two n × n symmetric positive definite
matrices. The positive scalar λ and the vector v are called
the generalized eigenvalue and the corresponding general-
ized eigenvector of the matrix pencil (Ry, Rx), respec-
tively. According to the matrix theory [27], the matrix pencil
(Ry, Rx) has n positive generalized eigenvalues λi(i =
1, 2, . . . , n), and the corresponding Ry-orthonormal general-
ized eigenvectors vi(i = 1, 2, . . . , n), i.e.

Rxvi = λRyvi (7)

vTi Ryvj = δi,j (i, j = 1, 2, . . . , n) (8)

where δi,j the Kronecker delta function. If the generalized
eigenvalues of the matrix pencil (Ry, Rx) are arranged in a
descending order, i.e. λ1 > λ2 > · · · > λr > · · · > λn > 0,
the generalized eigenvectors corresponding to the first r gen-
eralized eigenvalues (λ1, i = 1, 2, . . . , r) are referred as
the GPCs of the matrix pencil (Ry, Rx). The matrix pencil
(Ry, Rx) is composed of two autocorrelation matrices Ry and
Rx . In this paper, Ry = E(yTy) is the autocorrelation matrix
of the fault data, and the Rx = E(xTx) is the autocorrelation
matrix of the historical normal data. The common variations
of two input data sequences are captured by generalized
eigenvectors and the common degrees are evaluated accord-
ing to the corresponding generalized eigenvalues.

Based on the AMEX criterion [28], we proposed a gen-
eralized information criterion for estimating the GPC of the
matrix pencil (Ry, Rx), which is given by,

w∗ = arg max J (w)

J (w) = 1
2 tr[ln(w

TRyw)− (wTRxw)] (9)

where w ∈ Rj×1. Then, the gradient of J (w) with respect to
w is given by

∇J (w) = Ryw(wTRyw)−1 − Rxw (10)

After some discretization operations, we can rewrite (10)
into the following nonlinear stochastic learning rule

w(k + 1) = w(k)− η[Rxw(k)− Ryw(k)(w(k)TRyw(k))−1]

(11)

VOLUME 8, 2020 34179



B. Du et al.: Generalized Principal Component Analysis

FIGURE 1. Relationship between the normal operating subspace and the fault subspace.

FIGURE 2. Flow of the fault subspace extraction.

where η ∈ (0, 1] is the learning rate. The iteration result w is
obtained as the generalized principal component of thematrix
pencil (Ry, Rx), when the difference of w between iterations
is less than a threshold δ.
Remark 1: From Eq. (6), it is obvious that the general-

ized principal eigenvector v is the common projection matrix
where the projection of Rx and Ry have the strongest linear
correlation. Therefore, we can obtain the common part of the
input data x and y. If we regard x as the fault data, and y
as the normal operating data, then the generalized principal
eigenvector(s) and its (their) complementary subspace can
represent the normal operating subspace and the fault sub-
space of the industrial process, respectively.

Due to the complexity of the industrial process, the number
of the generalized eigenvectors is easily determined. How-
ever, we can obtain the exact number of generalized eigenvec-
tors through the PCAmonitoring model. In detail, the normal
operating subspace would be exactly extracted when the data
reconstructed by the generalized eigenvector(s) are under the
normal operating condition.

B. FAULT RECONSTRUCTION STRATEGY
Before introducing the strategy, we explain the relationship
between the normal operating subspace and the fault sub-
space in Fig. 1. From the perspective of fault reconstruction,
the input data are considered to be composed of two parts,
the normal operating part and the fault part. For the normal
operating part, a common subspace Wn can be extracted
and each individual input data can be represented by its
corresponding vector fn. And the normal operating part of
the individual data equals to Wn multiplied by fn. For the
fault part, a common subspaceWf can be extracted and each
individual input data can be represented by its corresponding
vector ff . And the fault part of the individual data equals
to Wf multiplied by ff . Clearly, for one industrial process,

the normal operating subspace is unique, i.e. Wn, and the
fault subspaces can be various with different faults, i.e.Wf 1,
Wf 2,. . . , Wfr . A normal operating data has the negligible
small ff and nonnegligible fn whereas both ff and fn of a
fault data are nonnegligible. The fault reconstruction strategy
is to find the fault subspaces corresponding to different faults,
which makes the reconstruction models correct the fault data
yielding no alarming signals in the PCA monitoring system,
then the model constructed by the fault subspace can detect
the corresponding fault in the online operation.

To our best knowledge, the conventional algorithms devel-
oped the fault reconstruction model to blame for two different
monitoring statistics. Thus, they need to heavily depend on a
specific monitoring system, such as PCA based monitoring
system to build the model. As shown in Fig. 2, the proposed
algorithm is presented for the development of the different
fault reconstruction models with any monitoring systems.
Here, the PCA based monitoring system is used only for its
fault detection, which is the basic function of any monitoring
systems. The flow of the fault subspace extraction is shown
in the Fig. 2, whose details are introduced in the following
steps.

First, the normal data y and the fault data set x are inputted
into the GPCA model (11), where the autocorrelation matri-
ces of the normal and fault data are respectively estimated as

Rx(k + 1) =
k

k + 1
Rx(k)+

1
k + 1

xT(k)x(k) (12)

Ry(k + 1) =
k

k + 1
Ry(k)+

1
k + 1

yT(k)y(k). (13)

then the generalized eigenvectors wi, i ∈ (1, j) are obtained.
The wis are arranged in the descending order of the cor-
responding generalized eigenvalues. The largest general-
ized eigenvalue stands for the variation direction which
contributes most to the normal operating condition. If the
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generalized eigenvalue is significantly larger than one,
it means that the projection of the fault data in the correspond-
ing eigenvector has a strong linear relation with that of the
normal operating data. In terms of the fault reconstruction,
the linear relations are closely related to the common pattern
between the fault data and the normal operating data. There-
fore, we can find out all the strong linear relations to compose
a subspace to represent the common pattern. This subspace
can be defined as the normal subspace, which is initialized
asW = [].
Second, the normal subspace is estimated by

W = [W wi]. The fault-free part xc of the fault data is
obtained by double-projecting the fault data set x into the
normal subspaceW ,

xc = WWTx (14)

Here, the first projecting is WTx, which is only related to
the normal operating condition, and the pattern of the fault
data closely related to the fault condition is eliminated by this
operation. The second projecting is W (WTx), which is used
to re-project the projection related to the normal operating
condition, then the fault-free part xc of the fault data is
obtained. To be noted, if the results (4) and (5) of the PCA
monitoring model are ‘‘fault’’, then operate i = i + 1, W =
[W wi] and Eq. (14). The PCA monitoring model is used
to judge whether the obtained normal operating subspace can
sufficiently describe all the normal operating information of
the fault data.

Third, the PCA monitoring model, which is previously
built based on the normal data y through the (1) and (2),
is used to detect the fault-free data set xc. In the PCA moni-
toring model, two statistical indices, Hotelling’s T 2 and SPE,
are calculated. If the results of statistical indices indicate that
the fault-free data set xc is ‘‘fault’’, go back to the second step.
If it is ‘‘normal’’, go to the next step.

Forth, eliminate the fault-free part xc from the fault data set
x, and we have xf which is almost the pure fault part of the
fault data set x,

xf = x− xc (15)

The autocorrelation matrix of the fault part xf is Rf =
E(xf xTf ). The principal components, which are the eigenvec-
tors associated with largest eigenvalues of the autocorrelation
matrix Rf , contain the key fault information of the fault data.
Therefore, by analyzing the principal components of xf we
can obtain the fault subspace W f . The column size of W f is
determined by the complexity of the fault. Define a thresh-
old value and maintain the direction of their corresponding
eigenvalues greater than the predefined threshold value. The
number of principal directions is nf .

Following the above four steps, we can obtain a fault
subspace of one fault data set. The fault data set y refers to
one fault when it is used in one circle of the four steps. Then
we can obtain another fault subspace through the proposed
method by selecting another fault data set and processing
the fault data set with a circle of four steps again. One by

one, following the above procedure, subspaces for all types
of faults can be obtained using different types of fault data
sets. Based on these fault subspaces, a fault library which
can identify different types of fault, is constructed. When
the proposed algorithm is used in the real industrial process,
the fault data set, which is immediately collected after a fault
is detected through a monitoring system, is inputted into the
above four steps, and the fault subspace Ŵ f is obtained.
Then all the inner products of the Ŵ f and the candidate fault
subspaces in the fault library are calculated. The fault sub-
space corresponding to the most significant inner product can
be diagnosed as the fault occurred in the industrial process.
Moreover, the amplitude of the fault can also be calculated
by the fault subspace to illustrate the degree of the fault over
time.

C. COMMENTS AND PROPERTY ANALYSES
1) THE MODEL STRUCTURE
By comparing the conventional fault reconstruction algorithm
with the proposed algorithm, they extracted the directions
of fault variation from different aspects. On the one hand,
the conventional fault reconstruction algorithm focuses on
general major variations overall the fault data space. On the
other hand, the proposed algorithm focuses on the relative
variations from normal to fault, i.e., the main fault effects that
are responsible for alarming signals, and the common vari-
ations between normal and fault, i.e., the normal operating
conditions that are responsible for avoiding alarming signals.
Ever since the monitoring statistic issue alarms, it means
significant changes of the industrial process have happened.
The GPCA model is used to identify what has and has not
significant changed in the industrial process, revealing the
relative changes from the normal case and the fault case.

2) THE FAULT SUBSPACE W f IS PART OF COMPLEM-ENTARY
SUBSPACE OF THE NORMAL OPERATING SUBSPACE W
For the proposed algorithm, the alarming-responsible data set
and the alarming-irresponsible data set are comprised of the
fault data set,

x = WWTx+ (I j −WWT)x (16)

then, combining the definition of Rf , we have

Rf = E[(I j −WWT)x[(I j −WWT)x]T]

= E[(I j −WWT)xxT(I j −WWT)T]

= (I j −WWT)Rx(I j −WWT)T (17)

Let P denote the eigenvectors of Rx , combining the
definition of W f , W f is enveloped by P(I j − WWT).
Since WT(I j − WWT) = 0, which means that
I j −WWT is the complementary subspace of W , we draw
the conclusion that the fault subspace W f is part
of complementary subspace of the normal operating
subspaceW .
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FIGURE 3. Flow chart of tennessee eastman process.

3) THE NUMBER OF RETAINED RECONSTRUCTION
DIRECTIONS
With regard to the conventional algorithms, a higher-
dimensional reconstruction model may correct the fault data
overmuch which a lower-dimensional reconstruction model
may not remove the fault effects sufficiently. In the proposed
algorithm, all possible directions, also the columns ofW , with
equal variations to normal are obtained through the GPCA
model. The column number of the W is actually determined
by the monitoring system, thus the reconstruction model built
by W is adaptive to the industrial process. Moreover, it is
possible that rank(W f ) + rank(W ) < j, which means that
the final dimension only needs the least number of direc-
tions to restore the alarming statistics to normal. This may
result from such a fact that some directions obtained as the
complementary subspace of W may not necessarily cause
alarming signals even though they show increased variations
than normal. These insignificant directions can be ignored.

IV. ILLUSTRATION AND DISCUSSION
A. TENNESSEE EASTMAN BENCHMARK PROCESS
In this subsection, the proposed fault reconstruction method
is evaluated by examining the application of the proposed
method in the well-known Tennessee Eastman (TE) bench-
mark chemical process. Since the first introduction by Downs
and Vogel [33], the TE process has been widely used to test
and evaluate various process monitoring and fault diagnosis
methods [29]–[32]. As is illustrated in Fig. 3, the TE process
is consists of five main operating units: a reactor, a product
condenser, a vapor–liquid separator, a recycle compressor,

and a product stripper. It contains two process variables
blocks: 41 measured variables and 11 manipulated variables.
There are four gaseous reactants A, C, D, E and two liquid
products G and H and one by-product F. In this process,
21 faults data are also available for simulation, which include
sixteen known faults and five unknown faults. The details on
the process description can be found in [31].

Tennessee Eastman process (TEP) provides an excellent
simulation platform to verify the fault diagnosis performance
of the proposed method. Process measurements are sampled
with interval of 3 min. Nineteen composition measurements
are sampled with time delays that vary from six minutes to
fifteen minutes. Four hundred and eighty normal samples
are used for the development of monitoring models. Twelve
known faults are identified as described in [31] since they can
be clearly detected by at least one monitoring statistic. They
include four different fault types. Faults 1–6 are associated
with step changes in different process variables, e.g., in the
A/C feed ratio, D feed temperature. Faults 7–10 are associated
with random variations in certain variables, e.g., an increase
in the variability of reactor cooling water inlet temperature.
For Fault 11, there is a slow drift in the reaction kinetics. For
Fault 12, two cooling water valves are stuck.

All variables in the normal data space are centered on
the mean and scaled to the unit variance. First, a GPCA
model is developed, including an information criterion and
an extraction algorithm. The gradient descending method is
used to derive the extraction algorithm from the information
criterion. We have also developed PCA monitoring mod-
els, including a systematic subspace of dimension 27 and a
residual subspace dimension 15. The number of the PCs is
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TABLE 1. GPCA based fault diagnosis technology.

determined by cumulative explained variance rate (CVER) to
maintain 90% process variability. The monitoring system is
used for online monitoring of the 12 faults, all of which can
be clearly detected. Then the normal operating subspace is
extracted as the GPCA is implemented in the normal operat-
ing data set and the fault data. The number of directions in
the normal operating subspace is determined by the detection
results of the PCA monitoring models. The fault part of the
fault data set is separated by eliminating the normal operating
part. The fault subspace is obtained through applying PCA on
the fault part of the fault data set. To improve the fault diag-
nosis performance immediately at the beginning of process
disturbance, only the first 100 fault samples are used. For
the concerned 12 faults, the fault space is decomposed into

TABLE 2. Modeling results using the proposed algorithm.

different parts according to their relative changes with respect
to normal case. The modeling results are shown in Table 2,
where the most common parts under the fault conditions and
normal conditions are evaluated by the maximal values of T 2

and SPE.
In contrast, directly using the conventional PCA algorithm

to process the fault data, it is also possible to develop a
reconstruction model and use it for fault diagnosis. Com-
pared with the proposed algorithm, the main difference of the
conventional PCA modeling method is that the relative fault
effects that cause the signals outside of the control are not
collected before PCA modeling. The reconstruction models
developed by the proposed algorithm are then placed into
an online application to correct the faulty data for both T 2

and SPEmonitoring statistics. Data samples of faults 2, 8 are
taken as examples to show the reconstruction results in Figs.
4-5. The X-axes of all subfigures in these figures are all
the samples. The Y-axes of the above subfigures in these
figures are the Hotelling’s T 2 statistics, and that of the below
subfigures in these figures are the SPE statistics.

As shown in left subfigures of Fig. 4, the monitoring
system detects the fault 2 around the 10th samplewhere the T 2

and SPE monitoring statistics break the control limit. In the
right subfigures of Fig. 4, all the dots are under the control
limit, which means all the input data after reconstruction
are brought back to the normal operating region. Similarly,
in Fig. 5, the monitoring system detects the fault 8 around
the 15th sample where the T 2 and SPE monitoring statistics
break the control limit. In the right subfigures of Fig. 5,
all the dots are under the control limit, which means all
the input data after reconstruction are brought back to the
normal operating region. This illustrates the effectiveness of
the proposed algorithm. Clearly, faults 2 and 8 have quite
different fault patterns, which are shown by the T 2monitoring
statistics in the top left subfigures of Figs. 4 and 5. However,
this difference has little impact on the reconstruction results.

The reconstruction results vary with the different numbers
of fault directions. The reconstruction models developed by
the proposed algorithm are applied online to correct the 12th
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FIGURE 4. Monitoring and reconstruction results for Fault 2 where solid
line denotes the monitoring statistics before reconstruction, dotted line
denotes the monitoring statistics after reconstruction, and red dashed
line denotes 95% monitoring confidence limit.

FIGURE 5. Monitoring and reconstruction results for Fault 8 where solid
line denotes the monitoring statistics before reconstruction, dotted line
denotes the monitoring statistics after reconstruction, and red dashed
line denotes 95% monitoring confidence limit.

faulty data for both T 2 and SPE monitoring statistics, which
are shown in Figs. 6 and 7, respectively. In both the prin-
cipal and residual subspaces, the reconstruction result with
only one direction has the largest varying from the original
monitoring statistics where the comparison of the result with
five and seven directions illustrates that the last direction
has the least varying. It means that only the correct fault
reconstruction models can be used to reconstruct statistics
outside the control so that the causes of the fault can be
properly diagnosed.

Besides, to reflect the difference between the proposed
method and the conventional method, another numerical
experiment to compare these two methods. In this table,
the proposed method and the conventional method are imple-
mented to model the faults for twelve known fault processes.

TABLE 3. The reconstructed results of different faults in TE industrial
process through the proposed method and conventional method.

FIGURE 6. T 2 Monitoring and reconstruction results for Fault 12 with
different numbers of fault directions (1, 3, 5, 7), where solid line denotes
the monitoring statistics before reconstruction, dotted line denotes the
monitoring statistics after reconstruction, and red dashed line denotes
95% monitoring confidence limit.

Both methods are capable of efficiently reconstructing the
faults. For the proposed method, the number of general-
ized principal components (GPC), which represents the nor-
mal operating subspace and the numbers of fault directions,
which represents the fault operating subspace, are recorded in
the second and third columns. For the conventional method,
the numbers of directions in principal subspace and the resid-
ual subspace are recorded in the four and fifth columns.
By comparing these numbers, we can see that in most fault
cases, fewer dimensions are needed to construct the fault
model by the proposed method than what are needed by the
conventional PCAmethod. This point illustrates the proposed
method has a lighter computational burden than the conven-
tional PCA method in dealing with the fault reconstruction
issues.
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FIGURE 7. SPE Monitoring and reconstruction results for Fault 12 with
different numbers of fault directions (1, 3, 5, 7), where solid line denotes
the monitoring statistics before reconstruction, dotted line denotes the
monitoring statistics after reconstruction, and red dashed line denotes
95% monitoring confidence limit.

B. DISCUSSIONS AND SUMMARY
According to the above findings, the proposed method can
better decompose all fault states, and so that the process can
be understood and the performance of fault diagnosis can be
improved. By combining the fault data with the normal data,
the influence of fault deviation with respect to normal state
are analyzed to develop reconstruction models.

In summary, the advantages of the proposed reconstruction
modeling and fault diagnosis analysis can be enumerated
below.

First, the generalized principal directions can be sorted
from the combination of the fault data and the normal data,
which can be used to illustrate the common directions. Then,
GPCs distribute the most significant fault effects associated
with them and are used effectively for fault diagnosis via
reconstruction. Therefore, a simple reconstruction structure
is expected.

Second, it is easy to think that the modeling method pro-
posed in this paper can be combinedwith other fault diagnosis
methods, such as reconsruction contribution plot, to disclose
those process variables that can reveal the most relative fault
deviations. That is, having sorted the common effects in both
the normal data and fault data and separated them from fault
data, critical variables that affect the fault effects can be
demonstrated.

V. CONCLUSION
In the present work, a new reconstruction modeling algorithm
is proposed through a two-stage subspace decomposition
procedure and its application is demonstrated on the fault
diagnosis. The common effects between the fault and normal
data are analyzed, so that the fault parts in the fault data
are decomposed and used effectively to rebuild the fault.
By extracting the most common variations and separating

them from the fault data, the underlying characteristics of
various faults are revealed. The feasibility of the proposed
algorithm was confirmed through an TE process. The method
proposed in this paper is based on the PCA monitoring sys-
tem, but in fact it can easily combine statistical monitoring
methods of various attributes. There may be many issues for
future investigation, but the results of this study provide the
basis for further work and improvement.
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