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ABSTRACT In this paper, a novel disturbance-observer-based approximate dynamic inversion (ADI)
approach is developed for pure-feedback nonaffine-in-control nonlinear systems (PFNNSs) in the presence
of both high-order mismatched disturbances and actuator saturation. Finite-time disturbance observers
(FTDOs) are utilized to estimate the disturbances and their derivatives. Then, we rebuild the system with the
outputs of FTDOs. Thereafter, ADI is employed to derive the desired virtual and actual control of the nominal
system, where no disturbances and saturation are presented. Furthermore, an augmented intermediate
subsystem is constructed for the reduced slow subsystem to compensate for the difference between inputs
with and without saturation by approximating its inversion. The stability of the closed-loop system is studied
using Tikhonov’s theorem. The proposed method is applied to a numerical example and a one-link robotic
system with a brush DC motor. The simulation results demonstrate the validity of the presented approach.

INDEX TERMS High-order mismatched disturbances, actuator saturation, finite-time disturbance observer,
approximate dynamic inversion, singular perturbation theory.

I. INTRODUCTION
High-order mismatched disturbances are frequently encoun-
tered in control system design, such as wheeled inverted
pendulums [1], magnetic levitation suspension vehicles [2],
and robotic manipulators [3], etc. The presence of high-
order mismatched disturbances has to be explicitly taken into
consideration to design robust and high-performance tracking
schemes. On the other hand, actuator saturation is a common
issue in a number of practical systems, such as surface ves-
sels [4], robotic manipulators [5], and unmanned hydraulic
systems [6], etc. The appearance of actuator saturation may
lead to degradation of transient performance or destabilizing
the system [7]. Thus, the development of control schemes for
nonlinear systems with high-order disturbances and actuator
saturation has been considered as one of the most challenging
and attractive topics.

Up to present, many elegant control approaches, such
as H∞ control [8], sliding mode control (SMC) [9], and
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backstepping based method [10] have been proposed for
mismatched disturbances attenuation. Although the previous
methods have proved to be efficient, they handle the distur-
bances in a robust way, which suggests that the disturbance-
rejection is obtained at the cost of nominal performance [11].
The disturbance-observer-based control (DOBC) approach
can attenuate the disturbances through a faster dynamic
response [12]. Moreover, the feed-forward control compo-
nent of DOBC methods can directly compensate for dis-
turbances in the system. Thus, DOBC schemes are able to
achieve the robustness of the closed-loop system without
conflicting requirements between control performance [2].
In [13], a high-order sliding mode differentiator is presented
to estimate disturbances with high robustness and finite-
time convergent performance. Recently, finite-time distur-
bance observers (FTDOs) have been widely investigated in
the literature for nonlinear systems in the presence of high-
order mismatched disturbances. In [14], researchers develop
an FTDOs based SMC method to drive the system output
to the desired set-point asymptotically. In [11], a baseline
feedback control law is proposed with FTDOs for a class
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of nonlinear systems, whose nominal systems are feedback
linearizable. In [15], Fang and Liu employ an FTDOs based
continuous nonsingular terminal SMC scheme for a small-
scale helicopter with high-order mismatched disturbances.
Nevertheless, the disturbance-attenuation methods in [11],
[13]–[15] mainly focus on the affine-in-control nonlinear
systems, which limits the application scope of FTDOs.

The actuator saturation problem has gained a great amount
of attention during the past decades. Many studies have
focused on stability analysis of the control systems under
input saturation [16], [17], and extensive control schemes
have been developed. In [18], a fault tolerant controller is
designed for a class of uncertain networked control systems
under actuator saturation. In [19], the authors introduce a
H∞ output-feedback strategy for vehicle lateral dynamics
subjected to network-induced delay and tire force saturation.
In [20], Aouaouda and Chadli develop a fault tolerant con-
strained control method for a class of Takagi-Sugeno systems
under actuator saturation and state constraints. In [21], a com-
posite nonlinear feedback control design is proposed for input
saturated strict-feedback nonlinear systems.

However, to the best of our knowledge, the systems are
required to be affine-in-control to implement the aforemen-
tioned methods. Nonaffine-in-control nonlinear systems are
very common in practical engineering, such as flight vehi-
cles [22], hypersonic vehicles [23], and electromechanical
systems [24]. Some of the studies for nonaffine nonlinear
systems have utilized the neural network and fuzzy control
based methods, such as adaptive neural control [25], [26],
adaptive fuzzy control [27], adaptive neural dynamic sur-
face control [28], etc. Nevertheless, the heavy computational
burdens resulting from adaptive fuzzy or neural weights are
unacceptable in practical implementation [24].

Singular perturbation theory (SPT) is considered as an
effective method for multiple time-scale systems. Recently,
it has been adopted for various kinds of nonlinear con-
trol problems. In [29], semi-global practical stability of the
closed-loop system under dynamic surface control scheme is
studied by SPT. In [30], the authors employ SPT to design
acceleration estimator for multiple vehicles. In [31], SPT
is utilized to analyze the input-to-state multi-stable systems
evolving onRiemannianmanifolds. SPT is able to decompose
the complex system into several order-reduced subsystems,
which makes SPT a candidate solution to the control problem
of nonaffine-in-control nonlinear systems. In [32], an SPT
based control method, which is called ‘‘approximate dynamic
inversion’’ (ADI), is developed for a class of nonaffine-in-
control nonlinear systems to implement dynamic inversion.
In order to derive the explicit inversion of each nonaffine
functions, the authors in [32] establish a fast dynamic sub-
system and guarantee the stability of the closed-loop system
by SPT. In [33], ADI is utilized with backstepping to build
controller for pure-feedback nonaffine-in-control nonlinear
systems (PFNNSs). In [34], the authors employ ADI and
parameter separation technique for nonlinearly parameter-
ized pure-feedback systems. In [35], ADI is combined with

a class of existing disturbance attenuation methods. It should
be pointed out that the control input u evolves much faster
than the other states in the ADI based schemes in [32]–[35].
This may lead to a high amplitude of actual input.

Motivated by the above facts, this paper proposes a novel
FTDOs based ADI (FADI) control approach for PFNNSs
with high-order mismatched disturbance and actuator satura-
tion.With the outputs of FTDOs, the original system is recon-
structed to form an equivalent saturated PFNNSs. In order
to derive a controller for the nonaffine rebuilt system with
actuator saturation, wemodify theADI design procedurewith
an extra intermediate subsystem. In the previous research on
ADI [32]–[35], the controller is employed through a series
of augmented dynamical equations to establish a boundary-
layer subsystem (BLS). In our method, an additional interme-
diate subsystem is designed to compensate for the difference
between the actual controller with and without actuator satu-
ration. The entire system is separated into three subsystems,
and the stability of the closed-loop system is guaranteed by
Tikhonov’s theorem.

The proposed scheme has the following features:
1) In [2], [11], [13], [15], the DOBC schemes only con-

sider the affine-in-control nonlinear systems. In this paper,
the FTDOs based control law can be applied to complete
PFNNSs.

2) The ADI based controllers in [32]–[35] are developed
without any input limitation. In this paper, we provide a
modifiedADI approach in the presence of actuator saturation,
which makes the presented controller more practical.

3) In comparison with the traditional ADI methods
in [32]–[35], the presented novel ADI design structure creates
only one additional tuning parameter ε1. This implies good
feasibility from the perspective of application.

4) Both high-order mismatched disturbances and actuator
saturation are considered for PFNNSs in this paper.

The paper is arranged as follows. Section II describes
the problem formulation and presents some preliminaries on
SPT. Section III provides the FADI controller design proce-
dure. Section IV gives the main theorem and the stability
proof. The simulation results are illustrated in Section V.
Finally, some concluding remarks are given in Section VI.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. PROBLEM FORMULATION
Consider the following PFNNSs with high-order mismatched
disturbances and actuator saturation,

ẋi = fi(x̄i, xi+1)+ di,

ẋn = fn(x̄n, sat(u))+ dn,

y = x1, (1)

where i = 1, . . . , n − 1, x̄j = [x1, x2, . . . , xj]T ∈ Rj, and
u ∈ R are the states and control input, j = 1, . . . , n. Also,
dn is the matched disturbance, di are the mismatched high-
order disturbances enter the system via each channel with at
least (n− i)th-order bounded derivatives, fj are continuously
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differentiable nonlinear functions in their arguments, and
sat(·) is the saturation function defined as

sat(s) = sign(s) · min {M , |s|} , (2)

where M is a positive constant depending on the practical
system. In this paper, we define the nominal system of (1) as

ẋi = fi(x̄i, xi+1),

ẋn = fn(x̄n, u),

y = x1. (3)

Assumption 1: The reference signal yr and its higher-order
derivatives are available and bounded.
Assumption 2: For the nominal system in (3), (∂fi/∂xi+1)

and (∂fn/∂u) are bounded away from zero for x̄i+1 ∈ �x̄i+1 ⊂

Dx̄i+1 and (x̄n, u) ∈ �x̄n,u ⊂ Dx̄n × Du, where Dx̄i+1 ⊂ Ri+1,
Dx̄n ⊂ Rn, Du ⊂ R are domains containing their respective
origins, and�x̄i+1 ,�x̄n,u are compact sets; that is (∂fi/∂xi+1)
and (∂fn/∂u) are either positive or negative. Without losing
the generality, we assume (∂fi/∂xi+1) > 0 and (∂fn/∂u) > 0.
Remark 1: It is worth noting that this assumption is the

standard context in which ADI is utilized [32]–[35].
The control objective is to develop a disturbance-observer-

based method for the system in (1) to make y → yr in
any finite time interval despite the presence of high-order
mismatched disturbances and actuator saturation.

B. PRELIMINARIES ON SINGULAR
PERTURBATION THEORY
Consider the following nonlinear system [36],

ẋ = f (t, x, z, ε), x(0) = ξ (ε),

εż = g(t, x, z, ε), z(0) = η(ε), (4)

where 0 < ε � 1 is small positive constant, x ∈ Rn and
z ∈ Rm, the functions ξ (ε) and η(ε) are smooth, the functions
f and g are continuously differentiable in their arguments
for (t, x, z, ε) ∈ [0, t1] × Dx × Dz × [0, ε0], where t1 ∈
(0,∞), Dx ⊂ Rn and Dz ⊂ Rm, ε0 � 0. The system
described by (4) is in the ‘standard singular perturbed form’
(SSPF), if 0 = g(t, x, z, 0) has k ≥ 1 isolated real roots
z = hi(t, x), i = 1, 2, . . . , k for each (t, x) ∈ [0, t1] × Dx .
For convenience we choose one fixed parameter i ∈ 1, . . . , k ,
and drop the subscript i from h. Based on SPT [36], reduced-
order subsystems can be obtained by substituting ε = 0 in
slow time-scale t and fast time-scale τ = t

ε
. The ‘reduced

slow subsystem’ (RSS) is described by

ẋ = f (t, x, h(t, x), 0), x(0) = ξ0, (5)

and the ‘boundary-layer subsystem’ (BLS) is

dv
dτ
= g(t, x, v+ h(t, x), 0), v(0) = η0 − h(0, ξ0), (6)

where v = z − h(t, x), and ξ0 = ξ (0), η0 = η(0) are treated
as fixed numbers.
Lemma 1 (Theorem 11.1 in [36]): Consider the singular

perturbation problem of (4), and let z = h(t, x) be an isolated

root of 0 = g(t, x, z, 0). Assume that the following conditions
are satisfied for all (t, x, z− h(t, x), ε) ∈ [0, t1]×Dx ×Dv×
[0, ε0] for t1 ∈ (0,∞), and some domains Dx ⊂ Rn, Dv ⊂
Rm, which contain their respective origins.
(A1) The functions f , g, their first partial derivatives

with respect to (x, z, ε), and the first partial derivative of
g with respect to t are continuous; the function h(t, x) and
[∂g(t, x, z, 0)/∂z] have continuous first partial derivatives
with respect to their arguments; the initial data ξ (ε) and η(ε)
are smooth functions of ε.
(A2) The reduced problem (5) has a unique solution xs(t) ∈

S, for t ∈ [t0, t1], where S is a compact subset of Dx .
(A3) The origin is an exponentially stable equilibrium point

of the BLS (6), uniformly in (t, x). Let Rv ⊂ Dv be the region
of attraction of (6), and �v be a compact subset of Rv.
Then there exists a positive constant ε∗ > 0, such that for

all t0 ≥ 0, ξ0 ∈ �x , η0 − h(t0, ξ0) ∈ �y, and 0 < ε ≤ ε∗,
the system (4) has a unique solution x(t, ε), z(t, ε) on [t0, t1],
and

x(t) = xs(t)+ O(ε),

z(t) = h(t, xs)+ vf (t/ε)+ O(ε), (7)

hold uniformly for t ∈ [t0, t1], where O(·) denotes the order
of magnitude notation, and vf (τ ) is the solution of BLS (6).
Lemma 2 (Definition 11.1 in [36], Ch. 11): The equi-

librium point v = 0 of the boundary-layer system (6) is
exponentially stable, uniformly in (t, x) ∈ [0,∞)×Dx , if the
Jacobian matrix [∂g/∂v] satisfies the eigenvalue condition

Re
[
λ

{
∂g
∂v

(t, x, h(t, x), 0)
}]
≤ −c < 0, (8)

for all (t, x) ∈ [0,∞)× Dx .
Lemma 1 has been known as the Tikhonov’s theorem.

It reveals that important stability information about the full
singularly perturbed system can be obtained by studying the
RSS and the BLS through the approximation in (7) in any
finite time interval.

III. CONTROLLER DESIGN
A. FTDOs AND MODEL RECONSTRUCTION
Since the effect of the mismatched disturbances cannot be
eliminated completely from the state variables [11], we first
reconstruct the PFNNSs in (1) with the outputs of the FTDOs.

Inspired by [2], [11], [13], we employ FTDOs to estimate
the disturbances as well as their time derivatives,

żi0 = vi0 + fi(x̄i, xi+1),

vi0 = −λi0|z
i
0 − xi|

ri
ri+1 sign(zi0 − xi)+ z

i
1,

żij = vij,

vij = −λij|z
i
j − v

i
j−1|

ri−j
ri−j+1 sign(zij − v

i
j−1)+ z

i
j+1, (9)

where zi0 are the estimates of states xi, zij (j = 1, . . . , ri; i =
1, . . . , n − 1) are the estimates of the disturbances and their
derivatives d (j−1)i . The superscript ‘(j−1)’ represents the (j−
1)th-order derivative of the variable with respect to t . Also,
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ri = n− i+ 1 represent the orders of FTDOs, ziri+1 = 0, and

λij = λ
i
jL

( 1
ri−j+1

)

i are the designed parameters of the observers,
λij > 0 are some positive designed coefficients, Li are the

Lipschitz constants of d (ri)i .
The estimate errors are defined as ei0 = zi0 − xi, e

i
j = zij −

d (j−1)i , enj = znj − d (j−1)n , eiri+1 = 0. The error dynamics of
FTDOs are derived as in [11],

ėi0 = −λi0|e
i
0|

ri
ri+1 sign(ei0)+ e

i
1,

ėij = −λij|e
i
j − ė

i
j−1|

ri−j
ri−j+1 sign(eij − ė

i
j−1)+ e

i
j+1. (10)

As in [11], [13], the estimate errors eij(t) will converge to the
origin in finite time. This implies that there is a time constant
tf > 0 such that eij(t) = 0 for all t > tf . Moreover, after a
finite time of tf , the following equality is true: zij = vij−1.
Remark 2: The parameters of λij can be chosen accord-

ing to [13], [14]. The observer gains should be assigned
large values to ensure a fast convergence of the estimation
error. However, this may introduce high frequency noise and
degrade the tracking performance. Thus, designers have to
compromise between these aspects to achieve a satisfactory
performance.

The system in (1) can be reconstructed with the outputs of
the FTDOs in (9). Define new states as x̂1 = x1, x̂2 = x2+z11,
x̂3 = x3+ z12+ z

2
1,. . . , x̂n−1 = xn−1+ z1n−2+ z

2
n−3+· · ·+ z

n−2
1

and x̂n = xn+ z1n−1+ z
2
n−2+ · · · + z

n−1
1 . The system in (1) is

represented as the following equivalent system,

˙̂x1 = f1(x1, x2)+ d1

=

[
f1(x1, x2)+ z11

]
+ (d1 − z11)

= f̂1(x̂1, x̂2, z11)+ (d1 − z11)

= f̂1(x̂1, x̂2, z11)− e
1
1,

˙̂x2 = f2(x̄2, x3)+ d2 + v11

=

[
f2(x̄2, x3)+ z12 + z

2
1

]
+

[
(v11 − z

1
2)+ (d2 − z21)

]
= f̂2( ¯̂x2, x̂3, z11, z

1
2, z

2
1)+

[
(ė11 − e

1
2)− e

2
1

]
,

...

˙̂xi = f̂i( ¯̂xi, x̂i+1, z̄i)+ [(ė1i−1 − e
1
i )+ (ė2i−2 − e

2
i−1)+

· · · + (ėi−11 − e
i1
2 )− e

i
1],

...

˙̂xn = f̂n( ¯̂xn, sat(u), z̄n)+
[
(ė1n−1 − e

1
n)+ . . .− e

n
1

]
, (11)

where ¯̂xj = [x̂1, . . . , x̂j]T and z̄j = [z11, . . . , z
1
j , z

2
1, . . . , z

j
1]
T

are vectors of appropriate dimensions, j = 1, . . . , n. Rewrite
(11) as the following compact form,

˙̂x = f̂ ( ¯̂xn, sat(u), z̄n)+ ê, (12)

where ê = [ê1, . . . , ên]T ∈ Rn is the estimate error vector.
The components of ê are defined by ê1 = −e11, ê2 = (ė11 −
e12)− e

2
1,. . ., ên = (ė1n−1 − e

1
n)+ · · · − e

n
1.

B. MODIFIED ADI CONTROLLER DESIGN
Consider the nominal system of (12)

˙̂x = f̂ ( ¯̂xn, u, z̄n). (13)

The controller is designed in n steps. The first n − 1 steps
are the same as the ADI based backstepping controller design
procedure in [33]–[35]. In the last step, an extra variable ω is
introduced and an augmented intermediate subsystem is built
to attenuate the effect of the actuator saturation.

Step 1. Consider the first equation in (13),

˙̂x1 = f̂1(x̂1, x̂2, z̄1). (14)

Substituting e1 = x̂1 − α0 = x1 − yr , we have

ė1 = f̂1(x̂1, x̂2, z̄1)− α̇0. (15)

We consider x̂2 as a control variable according to backstep-
ping design procedure. Then the virtual controller is defined
as α1 = x̂2 − e2, and its dynamic is designed as

εα̇1 = −sign
(
∂Q1

∂α1

)
Q1, (16)

where ε > 0 is a designed singular perturbation parameter,
and Q1 is a function defined as

Q1(ē2, α1, z̄1) = k1e1 + f̂1(x̂1, e2 + α1, z̄1)− α̇0, (17)

where k1 > 0 is a positive feedback gain, ē2 = [e1, e2]T ∈
R2. Let h1(ē2, z̄1) be an isolated root of Q1(ē2, α1, z̄1) = 0,
the system in (15) and (16) can be written in the SSPF,

ė1 = f̂1(x̂1, e2 + (y1 + h1), z̄1)− α̇0,

εẏ1 = −sign
(
∂Q1

∂α1

)
Q1 − εḣ1, (18)

where y1 = α1 − h1. Based on SPT, as ε → 0, the BLS of
(18) can be derived as

dy1
dτ
= −sign

(
∂Q1

∂α1

)
Q1, (19)

and the corresponding RSS of (18) is

ė1 = f̂1(x̂1, e2 + h1, z̄1)− α̇0 = −k1e1, (20)

where τ = t
ε
. It can be seen that the fast state α1 will be

driven to the desired manifold h1, which works as a pseudo
controller and stabilizes RSS.

Step i. Repeat the aforementioned procedure, and rewrite
the ith equation in (13) with ei = x̂i − αi−1,

ėi = f̂i( ¯̂xi, x̂i+1, z̄i)− α̇i−1. (21)

Consider x̂i+1 as the control variable, the virtual controller is
defined as αi = x̂i+1 − ei+1. The dynamic of αi is written as

εα̇i = −sign
(
∂Qi
∂αi

)
Qi, (22)

where Qi is a function defined as

Qi(ēi+1, αi, z̄i) = kiei + f̂i( ¯̂xi, ei+1 + αi, z̄i)− α̇i−1, (23)
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where ki > 0 is the positive feedback gain, ēi+1 =
[e1, . . . , ei+1]T ∈ Ri+1. Let hi(ēi+1, z̄i) be an isolated root
of Qi(ēi+1, αi, z̄i) = 0, the system in (21) and (22) can be
written in SSPF,

ėi = f̂i( ¯̂xi, ei+1 + (yi + hi), z̄i)− α̇i−1,

εẏi = −sign
(
∂Qi
∂αi

)
Qi − εḣi, (24)

where yi = αi − hi. As ε → 0, the corresponding BLS and
RSS can be deduced as

dyi
dτ
= −sign

(
∂Qi
∂αi

)
Qi, (25)

and

ėi = f̂i( ¯̂xi, ei+1 + hi, z̄i)− α̇i−1 = −kiei. (26)

Remark 3: It can be seen that the time derivative of virtual
control input in the ith step, as α̇i in (22), is already calculated
in the (i − 1)th step. Therefore the problem of ‘explosion of
complexity’ in backstepping design is avoided.

Step n. In the nth step, the dynamic of the actual control
input u can be designed as

εu̇ = −sign
(
∂Qn
∂u

)
Qn, (27)

where Qn is a function defined as

Qn(ēn, u, z̄n, ω) = knen + f̂n( ¯̂xn, u, z̄n)− α̇n−1 + ω, (28)

where f̂n is the nth element of f̂ in (13), kn > 0 is the nth
positive feedback gain, ēn = [e1, . . . , en]T ∈ Rn, en = x̂n −
αn−1, and ω will be defined later.
Now we add actuator saturation to the nominal system.

Then the nth equation under actuator saturation can be
expressed in the error coordinate as

ėn = f̂n( ¯̂xn, sat(u), z̄n)− α̇n−1 − εḣn
+ f̂n( ¯̂xn, u, z̄n)− f̂n( ¯̂xn, u, z̄n)

= f̂n( ¯̂xn, u, z̄n)− α̇n−1 − εḣn

+

[
f̂n( ¯̂xn, sat(u), z̄n)− f̂n( ¯̂xn, u, z̄n)

]
, (29)

where yn = u− hn.
Then, we design ω to compensate [f̂n( ¯̂xn, sat(u), z̄n) −

f̂n( ¯̂xn, u, z̄n)] in (29),

ε1ω̇ = −sign
(
∂Qω
∂ω

)
Qω, (30)

where ε1 is a designed parameter satisfying

0 < ε � ε1 � 1, (31)

and Qω is a function designed as

Qω(ēn, u, z̄n, ω) = f̂n( ¯̂xn, sat(u), z̄n)− f̂n( ¯̂xn, u, z̄n)−ω. (32)

This completes the controller design procedure.

IV. STABILITY ANALYSIS
The main result of this work can be summarized from the
following theorem.
Theorem 1: Consider the PFNNSs in (1) with high-

order mismatched disturbances and actuator saturation.
The nominal system in (3) satisfies Assumptions 1 and 2.
Let hn(ēn, z̄n, ω) and hω(ēn, u, z̄n) be the isolated roots of
Qn(ēn, u, z̄n, ω) = 0 and Qω(ēn, u, z̄n, ω) = 0. Assuming the
following conditions hold for all [ēj+1, yj, yω] ∈ Dēj+1×Dyj×
Dyω for some domains Dēj+1 ⊂ Rj+1, Dyj ⊂ R, and Dyω ⊂ R
which contain their respective origins, where yn = u − hn,
yω = ω− hω, ēn+1 = ēn, Dēn+1 = Dēn , αn = u, j = 1, . . . , n.
(B1) The functions Qj, Qω, ḣj, ḣω, and their first partial

derivatives with respect to their arguments and t are con-
tinuous; hj, hω, [∂Qj/∂αj], [∂Qω/∂ω] have continuous first
partial derivatives with respect to their arguments.
(B2) (ēj+1, yj) 7→ (∂Qj/∂αj) and (ēn, yω) 7→ (∂Qω/∂ω)

are bounded below by some positive constant for all
ēj+1 ∈ Dēj+1 .
Then, under the controller designed by (16), (22), (27),

and (30) with the FTDOs in (9), there exists two tuning
parameters ε, ε1 such that the system output y will track the
desired signal yr , and the error states ēn will remain bounded
uniformly for any finite time interval in spite of the pres-
ence of high-order mismatched disturbances and actuator
saturation.

Proof: Under the controller in (16), (22), (27) and
(30), the reconstructed PFNNSs in (11) can be written in the
closed-loop form in error coordinate,

ė1 = f̂1(x̂1, e2 + (y1 + h1), z̄1)− α̇0 + ê1,

...

ėi = f̂i( ¯̂xi, ei+1 + (yi + hi), z̄i)− α̇i−1 + êi,

...

ėn = f̂n( ¯̂xn, yn + hn, z̄n)+ [f̂n( ¯̂xn, sat(yn + hn), z̄n)

− f̂n( ¯̂xn, yn + hn, z̄n)]− α̇n−1 + ên,

ε1ẏω = −sign
(
∂Qω
∂ω

)
Qω − ε1ḣω,

εẏ = 0q− εḣ, (33)

where y = [y1, . . . , yn]T ∈ Rn, h = [h1, h2, . . . , hn]T ∈ Rn,
q = [Q1,Q2, . . . ,Qn]T , and

0 =


−sign

(
∂Q1

∂α1

)
. . .

−sign
(
∂Qn
∂u

)
 . (34)

As ε→ 0, the BLS and the RSS of (33) can be derived as

dy
dτ
= 0q, (35)
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and

ėi = −kiei + êi,

ėn = −knen + f̂n( ¯̂xn, sat(hn), z̄n)− f̂n( ¯̂xn, hn, z̄n)

−ω + ên,

ε1ẏω = −sign
(
∂Qω
∂ω

)
Qω − ε1ḣω. (36)

Follow [32]–[35], the local exponential stability of BLS in
(35) is achieved with Lemma 2, Assumption 2 and (B2), since

sign
(
∂Qi
∂αi

)
> 0, (37)

sign
(
∂Qn
∂u

)
> 0. (38)

This suggests that we can use RSS in (36) to approximate
the closed-loop system in (33) based on Tikhonov’s theorem
and (7). Thus, we have

ēn = ēs + O(ε), (39)

where ēs ∈ Rn denotes the solution vector of RSS
in (36). Observe that RSS in (36) is in SSPF. Meanwhile,
ω evolves slower than u, which is treated as a fixed point
hn in (36). We can use ω to compensate the perturbation
term [f̂n( ¯̂xn, sat(hn), z̄n)−f̂n( ¯̂xn, hn, z̄n)] in RSS. The relatively
fast and slow subsystem of (36) can be derived, respectively,
as ε1→ 0,

dyω
dτ1
= −sign

(
∂Qω
∂ω

)
Qω, (40)

and

˙̄ess = Aēss + ê, (41)

where ēss ∈ Rn represents the solution vector of rel-
atively slow subsystem (41), τ1 =

t
ε1
, and A =

diag(−k1,−k2,−k3, . . . ,−kn) is a Hurwitz matrix.
Linearize (40) at the equilibrium yω = 0, the correspond-

ing eigenvalue is λω = −1. Thus the local exponential
stability of (40) can also be obtained with Lemma 2. There-
fore, we can use the relatively slow subsystem in (41) to
approximate RSS in (36).

As in [11], a finite-time bounded (FTB) function can be
defined for (41) as

V (ēss) =
1
2
ēTssēss. (42)

Differentiate (42) along the trajectory of (41),

V̇ (ēss) = ēTssAēss + ē
T
ssê

≤ ēTssAēss +
1
2
(ēTssēss + ê

T ê)

≤

(
λmax(A)+

1
2

)
ēTssēss +

1
2

∥∥ê∥∥2 , (43)

where λmax(A) denotes the largest eigenvalue of A. Since
A is Hurwitz, it follows from [11] that once the finite-time
stability of FTDOs in (9) is obtained in finite time, the output

yss of the relatively slow subsystem in (41) will be driven
to yr asymptotically and the error states ēss will remain
bounded.

Based on the Tikhonov’s theorem and (7), the output of
closed-loop system can be approximated in any finite time
interval by the output of the relatively slow subsystem,

y(t) = yss(t)+ O(ε)+ O(ε1), (44)

which can be shorten as

y(t) = yss(t)+ O(ε1), (45)

since ε � ε1.
It can then be concluded that the output y will track the

desired signal yr in any finite time interval and the error states
ēn = [e1, . . . , en]T will remain bounded despite the pres-
ence of the high-order mismatched disturbances and actuator
saturation. �
Remark 4: The closed-loop system is approximated by

the relatively slow subsystem. Thus the feedback gains of
FTDOs are related with tracking and stability performance.
It is known that the FTDOs can achieve finite time fast
convergence property, whose dynamics can be designed
much faster than the dynamics of the asymptotic disturbance
observer [11]. Thus, the FTDOs gains should be assigned
large enough to achieve fast convergence. However, the val-
ues of the gains of FTDOs can not be too large to avoid
resulting in an excessive transient peaking.
Remark 5: The singular perturbation parameters ε, ε1

should be tuned to ensure the effectiveness of the time-scale
split of the closed-loop system, which indicates that they
should be assigned to satisfy (31). Meanwhile, both ε and ε1
should be small enough to ensure that BLS and the relatively
fast subsystem evolve faster than the FTDOs, which work in
the relatively slow subsystem.
Remark 6: The proposed control law is specific to

single-input-single-output systems, so multi-input-multi-
output (MIMO) systems are not considered in this paper.
For MIMO nonaffine-in-control nonlinear systems with high-
order mismatched disturbances and input saturation, some
topics should be further investigated. For instance, the struc-
ture of the MIMO nominal system, the form of the controller
and observers, the stability of the closed-loop system, etc.,
should all be taken into account.

V. SIMULATION
In order to demonstrate the effectiveness of the proposed con-
trol method, two simulation examples are presented. In the
first example, a second order PFNNSs in [34] is utilized
to validate the stabilization performance of the proposed
scheme. In the second example, we apply FADI control law
to a real world application system in [37], [38]. To highlight
the merits of the FADI control approach, the ADI based
backstepping (ABB) controller in [33], [34] is applied to both
examples without actuator saturation.
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A. NUMERICAL EXAMPLE
Consider the following system in [34],

ẋ1 = 0.4x2 +
x32
2
+ ln

(
1+ (γ1x1)2

)
+ d1,

ẋ2 = x22sat(u)+ tanh (sat(u))+
γ2x21

(1+ γ1x2)2 + x22
+ d2,

y = x1, (46)

where γ1 = 2.5, γ2 = 1.6, the disturbances are d1 = 15 +
x1 + sin(5t), d2 = 3 + 5 sin(5t), and the input limitation is
M = 10. To implement the FADI method, the FTDOs can be
designed as

ż10 = v10 +

(
0.4x2 +

x32
2
+ ln

(
1+ (γ1x1)2

))
,

v10 = −λ10|z
1
0 − x1|

2
3 sign(z10 − x1)+ z

1
1,

ż11 = v11,

v11 = −λ11|z
1
1 − v

1
0|

1
2 sign(z11 − v

1
0)+ z

1
2,

ż12 = v12,

v12 = −λ12sign(z
1
2 − v

1
1),

ż20 = v20 +

(
x22sat(u)+ tanh(sat(u))+

γ2x21
(1+ γ1x2)2 + x22

)
,

v20 = −λ20|z
2
0 − x2|

1
2 sign(z20 − x2)+ z

2
1,

ż21 = v21,

v21 = −λ21sign(z
2
1 − v

2
0), (47)

where z10 and z20 are the estimates of x1 and x2, z11 and z21
are the estimates of d1 and d2, z12 is the estimate of ḋ1.
With the outputs of FTDOs (47), the system in (46) can be
reconstructed as

˙̂x1 = f̂1( ¯̂x2, z̄1)+ ê1

= 0.4(x̂2 − z11)+
(x̂2 − z11)

3

2
+ ln

(
1+ (γ1x̂1)2

)
+ z11 + ê1,

˙̂x2 = f̂2( ¯̂x2, sat(u), z̄2)+ ê2
= (x̂2 − z11)

2sat(u)+ tanh(sat(u))

+
γ2x̂21

(1+ γ1x̂2 − γ1z11)
2 + x22

+ z12 + z
2
1 + ê2. (48)

Then the controllers can be designed as

Q1 = k1e1 + f̂1( ¯̂x2, z11)− ẏr ,

Q2 = k2e2 + f̂2( ¯̂x2, u, z̄2)− α̇1 + ω,

Qω = f̂2( ¯̂x2, sat(u), z̄2)− f̂2( ¯̂x2, u, z̄2)− ω,

εα̇1 = −sign
(
∂Q1

∂α1

)
Q1,

εu̇ = −sign
(
∂Q2

∂u

)
Q2,

ε1ω̇ = −sign
(
∂Qω
∂ω

)
Qω. (49)

FIGURE 1. Trajectories of x1 and z1
0 .

FIGURE 2. Trajectories of x2 and its estimate z2
0 .

FIGURE 3. Trajectories of d1 and its estimate z1
1 .

FIGURE 4. Trajectories of d2 and its estimate z2
1 .

The initial conditions are set as x1(0) = 10, x2(0) = −5,
u(0) = 0, the reference signal is yr = 0. As mentioned in
the Remark 4, the gains of the FTDOs are λ10 = 10 × 15

1
3 ,

λ11 = 4 × 15
1
2 , λ12 = 4 × 15, λ20 = 10 × 15

1
2 , λ21 =

2 × 15. The feedback gains of the controllers are chosen as
k1 = 2, k2 = 3, and the singular perturbation parameters are
ε = 0.001, ε1 = 0.01.
As shown in Fig. 1, the output of the system under FADI

converges to the origin within 1 second. By comparison,
the ABB controller causes large tracking error and makes the
output vibrate permanently in the presence of high-order mis-
matched disturbances. Fig. 1 - Fig. 4 depict that the FTDOs
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FIGURE 5. Time response of ABB controller without actuator saturation.

FIGURE 6. Time response of FADI controller with actuator saturation.

FIGURE 7. Trajectories of x1 with and without MN.

estimate the states and disturbances accurately and timely
for the nonaffine-in-control nonlinear system in (46). This
validates that the application scope of FTDOs is extended by
the proposed control law. As can be observed in Fig. 5 - Fig. 6,
the amplitude of ABB controller is almost 600, whereas the
actual input of FADI controller is restricted within the desired
region. This implies that the presented modified ADI control
technique successfully attenuates the influence of actuator
saturation.

To further illustrate the performance of the presented
scheme, we assume the states of (46) are also corrupted by
the measurement noises (MN): d1m = 0.2 + 0.1 sin t and
d2m = 0.1 cos2 3t . For comparison, other conditions and
parameters are the same.

Fig. 7 and Fig. 8 present the evolutions of states of the
system (46) under both controllers. Observe that the FADI
controller retains perfect stabilization performance despite
the erroneous MN. In contrast, the trajectories of the states
under ABB controller are obviously affected by MN. Fig. 9
demonstrates that the input signal of FADI remains in the
designated region.

FIGURE 8. Trajectories of x2 with and without MN.

FIGURE 9. Time response of input of FADI with MN.

B. ONE-DOF LINK MANIPULATOR WITH BDC MOTOR
Consider the following one-link robotic system with a brush
DC (BDC) motor in [37], [38],

Dθ̈ + Bθ̇ + N sin(θ ) = τB,

L τ̇B + HτB + Kmθ̇ = V , (50)

where D = J
Kτ
+

mL20
3Kτ
+

M2
0

Kτ
+

2M0R20
5Kτ

, N =
mL20G
2Kτ
+

M0L0G
Kτ

,
and B = B0

Kτ
. The physical parameters of one-DOF link

manipulator with BDC motor are J = 1.625× 10−3 kg· m2,
m = 1kg, R0 = 0.023 m, M0 = 0.434 kg, L0 = 0.305 m,
B0 = 16.25×10−3 N·m·s/rad, L = 25.0×10−3 H, G = 9.8
m/s2, H = 5.0 �, and Kτ = Km = 0.9 N·m/A. Let x1 = θ ,
x2 = θ̇ , x3 = τB, u = V .
Then the system in (50) with high-order mismatched dis-

turbances and actuator saturation can be written as

ẋ1 = f1(x1, x2)+ d1,

ẋ2 = f2(x̄2, x3)+ d2,

ẋ3 = f3(x̄3, sat(u))+ d3,

y = x1, (51)

where f1(x1, x2) = x2, f2(x̄2, x3) = −
Bx2
D −

N sin x1
D +

x3
D ,

f3(x̄3, u) =
−Kmx2
L −

Hx3
L +

u
L . In this example, a time-

varying reference trajectory described as yr = 1 + sin π2 t
is designated for the system (51) to track. The high-order
mismatched disturbances are d1 = 1 + 0.2 sin(2t) + x1,
d2 = 3 + 0.1 cos t , d3 = 0.5 cos 35t . The input constraint
is M = 10. The initial conditions are x1(0) = 0, x2(0) = 2,
x3(0) = 1, u(0) = 0. The parameters of FTDOs are chosen as
λ10 = 20×30

1
4 , λ11 = 10×30

1
3 , λ12 = 5×30

1
2 , λ13 = 3×30,

λ20 = 10×30
1
3 , λ21 = 1×30

1
2 , λ22 = 1×30, λ30 = 10×30

1
2 ,
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FIGURE 10. Trajectories of x1, yr , and z1
0 .

FIGURE 11. Trajectories of x2 and its estimate z2
0 .

FIGURE 12. Trajectories of x3 and its estimate z3
0 .

FIGURE 13. Trajectories of d1 and its estimate z1
1 .

λ31 = 0.5 × 30. The feedback gains of both controllers are
set as k1 = 1, k2 = 3, k3 = 5. The singular perturbation
parameters are ε = 1/30, ε1 = 0.1.

Fig. 10 - Fig. 16 reveal the tracking performance of FADI
controller in the presence of high-order mismatched distur-
bances and actuator saturation. The trajectories of outputs are
plotted in Fig. 10, and the curves of other states are depicted
in Fig. 11 - Fig. 12. Observe that the output under FADI tracks
the time-varying desired signal more accurately than the
output under ABB. Additionally, x2 and x3 are still bounded
under FADI, which demonstrates the stability conclusion in

FIGURE 14. Trajectories of d2 and its estimate z2
1 .

FIGURE 15. Trajectories of d3 and its estimate z3
1 .

FIGURE 16. Time response of control inputs based on FADI and ABB.

Theorem 1. Fig. 10 - Fig. 15 illustrate that the estimates
of states and high-order mismatched disturbances catch the
objective signals immediately. Fig. 16 shows that the transient
amplitude of FADI controller keeps in the required region
during the entire tracking process. It can be concluded that the
system steered by the FADI controller performs better than a
system using the ABB controller, despite the input saturation.

VI. CONCLUSION
In this paper, we propose a novel disturbance-observer-based
approximate dynamic inversion (ADI) control law for pure-
feedback nonaffine-in-control nonlinear systems (PFNNSs)
with high-order mismatched disturbances and actuator satu-
ration. A modified ADI design method is developed taking
consideration of actuator saturation. The augmented interme-
diate subsystem is constructed to compensate the difference
between the input with and without saturation. The finite-
time disturbance observers (FTDOs) are successfully utilized
for the complete PFNNSs to estimate both states and high-
order mismatched disturbances accurately and timely. The
effectiveness of the proposed method is validated through the
simulation results. For further research, we will investigate
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approaches to extend the proposed control scheme to multi-
input-multi-output systems.

REFERENCES
[1] J. Huang, M. Zhang, S. Ri, C. Xiong, Z. Li, and Y. Kang, ‘‘High-

order disturbance-observer-based sliding mode control for mobile wheeled
inverted pendulum systems,’’ IEEE Trans. Ind. Electron., vol. 67, no. 3,
pp. 2030–2041, Mar. 2020.

[2] J. Yang, J. Su, S. Li, and X. Yu, ‘‘High-order mismatched disturbance com-
pensation for motion control systems via a continuous dynamic sliding-
mode approach,’’ IEEE Trans. Ind. Informat., vol. 10, no. 1, pp. 604–614,
Feb. 2014.

[3] W. Zheng and M. Chen, ‘‘Tracking control of manipulator based on high-
order disturbance observer,’’ IEEE Access, vol. 6, pp. 26753–26764, 2018.

[4] B. Qiu, G. Wang, Y. Fan, D. Mu, and X. Sun, ‘‘Robust adaptive trajectory
linearization control for tracking control of surface vessels with modeling
uncertainties under input saturation,’’ IEEE Access, vol. 7, pp. 5057–5070,
2019.

[5] W. He, Y. Dong, and C. Sun, ‘‘Adaptive neural impedance control of
a robotic manipulator with input saturation,’’ IEEE Trans. Syst., Man,
Cybern., Syst., vol. 46, no. 3, pp. 334–344, Mar. 2016.

[6] W. Gu, J. Yao, Z. Yao, and J. Zheng, ‘‘Robust adaptive control of hydraulic
system with input saturation and valve dead-zone,’’ IEEE Access, vol. 6,
pp. 53521–53532, 2018.

[7] S. K. Maryam, ‘‘Dead-zone model-based adaptive fuzzy wavelet control
for nonlinear systems including actuator saturation and dynamic uncertain-
ties,’’ Int. J. Fuzzy Syst., vol. 20, no. 8, pp. 2577–2592, 2018.

[8] J. Gadewadikar, F. L. Lewis, K. Subbarao, K. Peng, and B. M. Chen,
‘‘H-infinity static output-feedback control for rotorcraft,’’ J. Intell. Robot.
Syst., vol. 54, no. 4, pp. 629–646, Apr. 2009.

[9] B. Guo and Y. Chen, ‘‘Output integral sliding mode fault tolerant control
for nonlinear systems with actuator fault and mismatched disturbance,’’
IEEE Access, vol. 6, pp. 59383–59393, 2018.

[10] Z. Song and H. Li, ‘‘Second-order sliding mode control with backstepping
for aeroelastic systems based on finite-time technique,’’ Int. J. Control
Autom. Syst., vol. 11, no. 2, pp. 416–421, Apr. 2013.

[11] X. Fang, F. Liu, Z. Wang, and N. Dong, ‘‘Novel disturbance-observer-
based control for systems with high-order mismatched disturbances,’’ Int.
J. Syst. Sci., vol. 49, no. 2, pp. 371–382, Jan. 2018.

[12] R. Rashad, A. Aboudonia, and A. El-Badawy, ‘‘A novel disturbance
observer-based backstepping controller with command filtered com-
pensation for a MIMO system,’’ J. Franklin Inst., vol. 353, no. 16,
pp. 4039–4061, Nov. 2016.

[13] A. Levant, ‘‘Higher-order sliding modes, differentiation and output-
feedback control,’’ Int. J. Control, vol. 76, nos. 9–10, pp. 924–941,
Jan. 2003.

[14] S. Li, H. Sun, J. Yang, andX.Yu, ‘‘Continuous finite-time output regulation
for disturbed systems under mismatching condition,’’ IEEE Trans. Autom.
Control, vol. 60, no. 1, pp. 277–282, Jan. 2015.

[15] X. Fang and F. Liu, ‘‘High-order mismatched disturbance rejection control
for small-scale unmanned helicopter via continuous nonsingular terminal
sliding-mode approach,’’ Int. J. Robust. Nonlinear Control, vol. 29, no. 4,
pp. 935–948, Mar. 2019.

[16] M. Rehan, M. Tufail, C. K. Ahn, and M. Chadli, ‘‘Stabilisation of locally
Lipschitz non-linear systems under input saturation and quantisation,’’ IET
Control Theory Appl., vol. 11, no. 9, pp. 1459–1466, 2017.

[17] A. Shams,M. Rehan,M. Tufail, C. K. Ahn, andW.Ahmed, ‘‘Local stability
analysis and H∞ performance for Lipschitz digital filters with satura-
tion nonlinearity and external interferences,’’ Signal Process., vol. 153,
pp. 101–108, Dec. 2018.

[18] L. Zhang, M. Chen, Q.-X. Wu, and B. Wu, ‘‘Fault tolerant control for
uncertain networked control systems with induced delays and actuator
saturation,’’ IEEE Access, vol. 4, pp. 6574–6584, 2016.

[19] R. Wang, H. Jing, J. Wang, M. Chadli, and N. Chen, ‘‘Robust output-
feedback based vehicle lateral motion control considering network-
induced delay and tire force saturation,’’ Neurocomputing, vol. 214,
pp. 409–419, Nov. 2016.

[20] S. Aouaouda and M. Chadli, ‘‘Robust fault tolerant controller design for
Takagi-Sugeno systems under input saturation,’’ Int. J. Syst. Sci., vol. 50,
no. 6, pp. 1163–1178, 2019.

[21] L. Tao and W. Lan, ‘‘Composite nonlinear feedback control for strict-
feedback nonlinear systems with input saturation,’’ Int. J. Control, vol. 92,
no. 9, pp. 2170–2177, 2019.

[22] J. D. Boskovic, L. Chen, and R. K. Mehra, ‘‘Adaptive control design for
nonaffine models arising in flight control,’’ J. Guid., Control, Dyn, vol. 27,
no. 2, pp. 209–217, Mar. 2004.

[23] X. Bu, G. He, and K. Wang, ‘‘Tracking control of air-breathing hypersonic
vehicles with non-affine dynamics via improved neural back-stepping
design,’’ ISA Trans., vol. 75, pp. 88–100, Apr. 2018.

[24] G. Sun, X. Ren, Q. Chen, and D. Li, ‘‘A modified dynamic surface
approach for control of nonlinear systems with unknown input dead zone,’’
Int. J. Robust Nonlinear Control, vol. 25, no. 8, pp. 1145–1167, May 2015.

[25] T. Sun and Y. Pan, ‘‘Adaptive control for nonaffine nonlinear systems
using reliable neural network approximation,’’ IEEE Access, vol. 5,
pp. 23657–23662, 2017.

[26] S. Zhang, L. Kong, S. Qi, P. Jing, W. He, and B. Xu, ‘‘Adaptive neural
control of unknown non-affine nonlinear systems with input deadzone and
unknown disturbance,’’ Nonlinear Dyn., vol. 95, no. 2, pp. 1283–1299,
Jan. 2019.

[27] C. Liu, H. Wang, X. Liu, and Y. Zhou, ‘‘Adaptive finite-time fuzzy funnel
control for nonaffine nonlinear systems,’’ IEEE Trans. Syst., Man, Cybern.,
Syst., pp. 1–10, 2019.

[28] H. Liu, T. Zhang, and X. Xia, ‘‘Adaptive neural dynamic surface control of
MIMO pure-feedback nonlinear systems with output constraints,’’ Neuro-
computing, vol. 333, pp. 101–109, Mar. 2019.

[29] Y. Pan and H. Yu, ‘‘Dynamic surface control via singular perturbation
analysis,’’ Automatica, vol. 57, pp. 29–33, Jul. 2015.

[30] H. Niu and Z. Geng, ‘‘Almost-global formation tracking control for
multiple vehicles with disturbance rejection,’’ IEEE Access, vol. 6,
pp. 25632–25645, 2018.

[31] P. Forni and D. Angeli, ‘‘Perturbation theory and singular perturbations
for input-to-state multistable systems on manifolds,’’ IEEE Trans. Autom.
Control, vol. 64, no. 9, pp. 3555–3570, Sep. 2019.

[32] N. Hovakimyan, E. Lavretsky, and C. Cao, ‘‘Dynamic inversion for mul-
tivariable non-affine-in-control systems via time-scale separation,’’ Int.
J. Control, vol. 81, no. 12, pp. 1960–1967, Dec. 2008.

[33] S. Yoo, ‘‘Adaptive control of non-linearly parameterised pure-feedback
systems,’’ IET Control Theory Appl., vol. 6, no. 3, pp. 467–473, 2012.

[34] M. Asadi and H. T. Shandiz, ‘‘Adaptive control of pure-feedback systems
with nonlinear parameterization via time-scale separation,’’ Int. J. Control
Autom. Syst., vol. 15, no. 1, pp. 196–204, Feb. 2017.

[35] H. Yang and H. Pei, ‘‘A novel redesign framework to extend the applica-
tion scope of a class of disturbance-rejection algorithms,’’ Int. J. Robust
Nonlinear Control, vol. 30, no. 1, pp. 321–337, 2019.

[36] H. K. Khalil, Nonlinear System, 3rd ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 2002.

[37] D. Dawson, J. Carroll, and M. Schneider, ‘‘Integrator backstepping control
of a brush DC motor turning a robotic load,’’ IEEE Trans. Control Syst.
Technol., vol. 2, no. 3, pp. 233–244, Sep. 1994.

[38] Y. Yang, J. Tan, and D. Yue, ‘‘Prescribed performance tracking control of a
class of uncertain pure-feedback nonlinear systems with input saturation,’’
IEEE Trans. Syst., Man, Cybern., Syst., to be published.

HAO YANG received the B.S. and M.S. degrees
from the Shaanxi University of Science &
Technology, China, in 2010 and 2013, respec-
tively. He is currently pursuing the Ph.D. degree
with the School of Automation Science and Engi-
neering, South China University of Technology,
Guangzhou, China.

His research interests include singular pertur-
bation theory, disturbance rejection, and robust
control.

HAILONG PEI was born in 1965. He received the
Ph.D. degree in automatic control from the South
China University of Technology, Guangzhou,
China, in 1992.

From 1997 to 1998, he did a Postdoctoral
Research in the Chinese University of Hong Kong.
He is currently a Professor with the School
of Automation Science and Engineering, South
China University of Technology, Guangzhou,
China. His research interests include robot control,
neural networks, nonlinear control, and so on.

26256 VOLUME 8, 2020


	INTRODUCTION
	PROBLEM FORMULATION AND PRELIMINARIES
	PROBLEM FORMULATION
	PRELIMINARIES ON SINGULAR PERTURBATION THEORY

	CONTROLLER DESIGN
	FTDOs AND MODEL RECONSTRUCTION
	MODIFIED ADI CONTROLLER DESIGN

	STABILITY ANALYSIS
	SIMULATION
	NUMERICAL EXAMPLE
	ONE-DOF LINK MANIPULATOR WITH BDC MOTOR

	CONCLUSION
	REFERENCES
	Biographies
	HAO YANG
	HAILONG PEI


