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ABSTRACT The solution of the short-arc angles-only orbit determination problem has large uncertainty
because the topocentric range is not observable. For a certain angular observation tracklet with measurement
noise, there exist numerous potential orbits, all of which are compatible with the observations. However,
the solution of a deterministic initial orbit determination algorithm is usually far different from the true
orbit, especially for the semimajor axis and the eccentricity. A new sampling method is proposed to describe
the probability distribution of the orbit determination solutions. Firstly, a series of orbits are sampled in the
semimajor axis - eccentricity plane. A chi-square test method is proposed to select candidate orbits from the
sample orbits. The weights of the candidate orbits are calculated to measure their probability being the true
orbit. Finally, the kernel density estimation algorithm is used to estimate the probability density function of
the true orbits. With some a priori assumptions, the candidate orbits can be further screened, and their weight
can be modified. The a priori knowledge can significantly improve the accuracy of the orbit determination
solution.

INDEX TERMS Error analysis, initial orbit determination, Kernel density estimation, orbit sampling,
short-arc optical observations.

I. INTRODUCTION
The initial orbit determination (IOD) is an old but devel-
oping problem, which plays an important role in Space
Domain Awareness (SDA). For an unknown resident space
object (RSO) firstly detected by an optical or radar sensor,
the IOD process can give a preliminary guess of the true orbit,
providing valuable guidance information for the follow-up
observations. For a known RSO, the IOD process is useful
for object identification and tracklet association. Generally,
the IOD process is the pre-stage of orbit determination (OD)
using a batch or sequential estimation process. Traditional
IOD algorithms only use three pairs of measurements. How-
ever, modern sensors can gather many pairs of measurements
within a few seconds. In this paper, the IOD problem means
that the arc used for orbit determination is short, even if there
are more than three pairs of measurements are generated.

By the end of 2019.10.04, there are 19779 RSOs larger
than 10cm, including 5181 spacecrafts and 14598 rocket bod-
ies and debris [1]. Far more debris smaller than 10cm exists
in the space. Recently, many mega-constellation projects
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have been proposed by some companies and institutions. For
instance, SpaceX’s Starlink constellation will consist of a
total of 11943 satellites in the low earth orbit (LEO) [2]. The
rapid increase of the RSOs brings unprecedented pressure
to the SSA systems. The optical sensors will play a more
critical role. To ensure the detection of all RSOs, sensors
will produce millions of short-arc observations. ‘‘Short arc’’
usually means that the observation duration is less than 1%
of the orbital period. The lack of range information leads to
great uncertainty of the IOD solution. For a certain track-
let, there are numerous potential orbits compatible with the
observations. However, the IOD algorithms usually give a bad
solution far from the true orbit. Therefore, instead of a point
solution, the corresponding estimation of uncertainty must be
given. From the probability point of view, a good IOD process
should give the probability density function (PDF) of the true
orbit. The PDF of the true orbit will help to perform data
association, determine collision probabilities, and initialize a
filter for the orbit improvement.

The short-arc orbit determination is also a basic
problem in the astronomical field. To determine the
orbit of poorly observed asteroids, astronomers devel-
oped a kind of orbit determination method based on the
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‘‘Admissible Region’’ (AR) [3]–[7]. AR is defined in the
topocentric range-range rate plane, in which each point
represents an elliptical orbit. The true orbit of the RSO is
searched in the Admissible Region. To estimate the uncer-
tainty quantification for the IOD process, the so-called rang-
ing method is developed. In the ranging method, a series of
candidate orbits are sampled by assuming the topocentric
ranges (or range rate) at some epochs. Then the probabilities
of these candidate orbits being the true orbit are calculated.
The probability distribution of the true orbit can be estimated
by the candidate orbits. There are two kinds of ranging
methods: statistical ranging method [8]–[10] and systematic
ranging method [11]–[13]. In the statistical ranging method,
the topocentric ranges at two epochs of the observations are
sampled. Two pairs of observations with assumed ranges
determine a sample orbit. A weight is given to each sample
orbit by comparing the errors between virtual observations of
the sample orbit and the true observations. The systematic
ranging method adopts the technique of the Admissible
Region. Candidate orbits are sampled in the range-range rate
phase instead of assuming a pair of ranges.

Ansalone et al. [14] and Hinagawa et al. [15] applied the
ranging method to the determination of the satellite orbit.
Their approaches are similar to the statistical ranging meth-
ods. Two assumed ranges determined an orbit, whose virtual
observation errors are also determined. They find the optimal
IOD orbit by minimizing the observation errors using the
genetic algorithm. However, their method only finds a point
solution. The uncertainty characteristic of the solution is not
analyzed.

Another kind of method to analyze the IOD uncertainty
uses the PDF mapping technology. Given the statistical char-
acteristics of the measurement errors, all possible obser-
vations constitute an observation domain. Correspondingly,
all possible IOD solutions constitute an orbit domain. The
IOD process can be regarded as a nonlinear transformation
from the observations to the orbit solution. Once the PDF of
the observations is given, the PDF of IOD solutions can also
be obtained.

Weisman et al. [16], [17] adopted the transformation of
variables (TOV) technique to analyze the uncertainty quan-
tification of the IOD solutions obtained by the Herrick-Gibbs
approach. The TOV technique allows for the exact map-
ping of the PDF from the observation domain into the orbit
domain. Armellin et al. [18], [19] realized the observations-
to-solution (O2S) mapping using the Differential Alge-
bra (DA) tools. The unscented transformation (UT) technique
is also used in the uncertainty analysis for the IOD prob-
lem [20]. Given the measurement error characteristics, the
UT technique is used to estimate the mean and covariance
of the solutions. Then the PDF of the solution is described
by the Gaussian distribution. Binz et al. [21]–[23] used sim-
ilar methods and obtained useful results from the ‘‘binary
sensors’’, demonstrating that low-quality observations gener-
ated by low-cost sensors are also useful. However, the solu-
tion domain is not necessarily Gaussian after the nonlinear

IOD processes, even if the observation domain is Gaussian.
This will limit the accuracy of the UT methods.

The rest of this paper is organized as follows.
Firstly, we proposed a Laplace-least square (Laplace-LS)
IOD method, whose estimation variance is very close to the
Cramer-Rao Lower Bound (CRLB). Section 3 describes a
new IOD uncertainty analysis approach. A series of orbits
are sampled in the semimajor axis-eccentricity plane instead
of the range-range rate plane. In section 4, we test our method
on three RSOs: a highly elliptical orbit (HEO) satellite, a low
earth orbit (LEO) satellite, and a Geosynchronous (GEO)
satellite. The a priori knowledge is used to modify the solu-
tions later. Some remarks conclude the paper in section 5.

II. THE LAPLACE-LEAST SQUARE INITIAL ORBIT
DETERMINATION
Many methods can solve the angles-only initial orbit deter-
mination problem. The Laplace method, the Gauss method,
the Double-r method, and the Gooding method are most
commonly used [24]–[26]. However, these methods choose
only three pairs of observations, with many observations
wasted. The improved Laplace method [27], [28] utilizes
all observations, which is essential to reduce the influence
of measurement error and improve the reliability of the
IOD solutions.

The improved Laplacemethod solves the conditional equa-
tions to find an orbit most compatible with the true observa-
tions. However, the original statistical characteristics of the
measurement errors are distorted by a series of nonlinear
transformations. From the perspective of optimal estima-
tion, the improved Laplace method cannot give the optimal
IOD solution. Moreover, when the observation arc is very
short, the improved Laplace method will give a large-error
solution, or even fail to converge.

In this paper, we use the least square method to solve
IOD problems. By minimizing the measurement errors
directly, this method can give a better solution than traditional
IOD methods.

A. ALGORITHM DESCRIPTION
The Laplace-LS IOD method is simple and direct: to min-
imize the errors between the virtual observations of solu-
tion orbit and true observations. Assuming that a sensor has
obtainedm groups of noisy measurements of right ascensions
and declination:

ỹi = (ti, α̃i, δ̃i), i = 1, 2, 3, . . . ,m (1)

The actual observation sequence with measurement noise
is defined as

Ỹ = [α̃1, δ̃1, α̃2, δ̃2, . . . , α̃m, δ̃m] (2)

Correspondingly, the theoretical observation sequence of
the true orbit (without noise) is defined as

Ȳ = [ᾱ1, δ̄1, ᾱ2, δ̄2, . . . , ᾱm, δ̄m] (3)
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Supposing the measurement errors follow the normal
distribution with variance σ 2, the observed ascensions and
declinations have following statistical characteristics:

α̃i ∼ N (ᾱi, σ 2/ cos δ̃2i )

δ̃i ∼ N (δ̄i, σ 2) (4)

For any orbit whose state is x0 at the initial epoch t0, there
is also a theoretical observation sequence calculated by the
dynamic model and the observation model:

Y(x0) = [α1(x0), δ1(x0), . . . , αm(x0), δm(x0)] (5)

The weighted square sum of the errors between the theo-
retical observations and the actual observations indicates the
difference between the given orbit x0 and the actual orbit:

m∑
i=1

(
(αi(x0)− α̃i)2

σ 2/ cos2 δ̃i
+

(δi(x0)− δ̃i)2

σ 2

)
(6)

The root mean square error (RMSE) of the errors is defined
as the target function J (x0), which indicates the average angle
error. Then the IOD problem can be transformed into an
optimization problem:

min
x0

J (x0)

=
1
√
2m

√√√√ m∑
i=1

(αi(x0)− α̃i)2 · cos2 δ̃i + (δi(x0)− δ̃i)2

(7)

B. INITIAL VALUE AND OPTIMIZATION
A reasonable initial guess is very important for an optimiza-
tion problem. We adopt the same initial value used in the
improved Laplace method for our optimization problem.

In the improved Laplace method, the conditional equations
are comprised of 3m equations:

Fi(ηix0 − λiy0)+ Gi(ηiẋ0 − λiẏ0) = ηiRxi − λiRyi
Fi(νiy0 − ηiz0)+ Gi(νiẏ0 − ηiż0) = νiRyi − ηiRzi
Fi(λiz0 − νix0)+ Gi(λiż0 − νiẋ0) = λiRzi − νiRxi,

(i = 1, 2, . . . ,m) (8)

where x0, y0, z0, ẋ0, ẏ0 and ż0 are Cartesian components
(position and velocity) of the orbit state x0. Rxi, Ryi, and Rzi
are position components of the sensor at epochs ti. Fi and Gi
are the f and g functions of the RSO at epochs ti. They are
decided by x0 and ti. [λi ηi νi]T is the unit vector of the sight
direction: λiηi

νi

 =
 cosαi cos δi
sinαi cos δi
sin δi

 , (i = 1, 2, . . . ,m) (9)

Though the f and g functions are changing with x0
and ti, they are easy to be approximated from their series
expansion [27]: {

Fi ≈ 1
Gi ≈ 1ti = ti − t0

(10)

Using the approximate f and g functions, (8) comes to
linear equations, whose solution is a good initial guess of the
optimal solution.

Given an initial guess, there are many off-the-shelf algo-
rithms to solve the optimization problem in (7). We adopt
the Levenberg-Marquardt algorithm, which is an effi-
cient and robust algorithm to solve non-linear least-square
problems [29].

C. THE CRAMER-RAO LOWER BOUND OF INITIAL ORBIT
DETERMINATION PROBLEM
Broadly speaking, the IOD problem is a kind of parameter
estimation problem. An IOD algorithm is an estimator of the
orbit state x0. The Cramer-Rao Lower Bound (CRLB) gives a
lower bound for the variance of any unbiased estimator. If the
variance of an estimator is close to the CRLB, it is considered
a good estimator.

The CRLB is expressed as an inequality:

P ≡ E{(x̂− x̄)(x̂− x̄)T} ≥ F
−1

(11)

where x̄ and x̂ are the true value and the estimation of the
parameter x respectively. P is the variance of an estimator.
F is called the Fisher information, which is expressed as:

F = E

{[
∂

∂x
ln[p(ỹ|x̄)]

] [
∂

∂x
ln[p(ỹ|x̄)]

]T}
(12)

where ỹ is the actual value of the observation. Specifically,
the Fisher information of the IOD problem is (see Appendix)

F =
1
σ 2

m∑
i=1

 cos2 δ̃i
[
∂ᾱi(x̄0,ti)
∂ x̄0

] [
∂ᾱi(x̄0,ti)
∂ x̄0

]T
+

[
∂δ̄i(x̄0,ti)
∂ x̄0

] [
∂δ̄i(x̄0,ti)
∂ x̄0

]T
 (13)

D. ACCURACY TEST OF THE LAPLACE-LEAST SQUARE
IOD METHOD
This section will test the accuracy of the Laplace-LS
IOD method by simulation. As a contrast, the accuracy of the
improved Laplace method is also analyzed. The simulation
parameters are shown in Table 1. The RSO’s orbit is described
by the Keplerian elements, where a is the semimajor axis,
e is the eccentricity, i is the orbit inclination, � is the right
ascension of ascending node (RAAN), ω is the argument of
perigee and f is the true anomaly.

The Monte Carlo simulation is necessary to measure the
performance of the IOD algorithms because the measurement
errors are stochastic. The Laplace-LS IOD algorithm and
the improved Laplace method were implemented 1000 times
respectively. The covariance of the IOD solutions is calcu-
lated and compared with the CRLB respectively. For con-
venience, only the standard deviations of the orbit elements
(square roots of the diagonal elements of the covariance
matrix) are listed and compared, as Table 2 shows. The sta-
tistical results show that the variance of the Laplace-LS IOD
method is close to the CRLB, while the improved Laplace
method performance poorly. Figure 1 shows the errors of
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FIGURE 1. Orbit determination errors of the semimajor axis and eccentricity.

TABLE 1. Simulation settings for the short-art initial orbit determination.

the semimajor axis and eccentricity in the 1000 times’ sim-
ulation. Moreover, the CRLB shows that the large errors of
semimajor axis and eccentricity are inevitable in short-arc
circumstances, no matter how accurate an estimator is.

III. ORBIT SAMPLING IN THE SEMIMAJOR AXIS -
ECCENTRICITY PLANE
The difficulty of short-arc IOD is that there are numerous
orbits compatible with the observations. Due to the mea-
surement noises, the least square (LS) orbit (solution of the
Laplace-LS IOD method) is not necessarily the true orbit,
though it has the smallest angle RMSE. On the contrary,
the least square orbit is usually very different from the true
orbit, or even an impractical orbit intersecting with the earth.
Fortunately, though a and e are hard to determine, the incli-
nations and the RAANs are easy to determine because they
determine the orbital plane’s direction in the inertial space.

For the short arc IOD problem, a point solution given by a
deterministic IOD algorithm is not credible. More candidate
orbits which might be the true orbit must be found to describe
the distribution of the true orbit comprehensively. In other

words, a good IOD algorithm should give the PDF of the true
orbit. In this paper, we propose an orbit sampling method
in the semimajor axis - eccentricity plane. The idea of this
method is as follows.

1) Sample the semimajor axis and eccentricity uniformly
in the (a, e) plane. For each sample point, find a least square
orbit with a and e constrained. The least square orbit given a
and e is defined as the ‘‘sample orbit’’;

2) Set a threshold for the angle RMSE. If the angle RMSE
is lower than the threshold, the sample orbit will be accepted
as a candidate orbit. Otherwise, it will be rejected;

3) Give a weight for each candidate orbit to measure its
probability being the true orbit;

4) Estimate the probability density function using the can-
didate orbits.

A. THE ORBIT DETERMINATION WITH GIVEN SEMIMAJOR
AXIS AND ECCENTRICITY
When the semimajor axis and eccentricity are constrained,
it is also probable to find an orbit most consistent with
the observations. The optimization variables are reduced to
θ = [i, �, ω, f ]T . Correspondingly, the optimization prob-
lem turns into

min
θ
J (θ )=

1
√
2m

√√√√ m∑
i=1

(αi(θ )−α̃i)2 · cos2 δ̃i+(δi(θ )− δ̃i)2

(14)

The given semimajor axis, eccentricity, and the solution of
this optimization problem constitute the sample orbit.

B. ACCEPTANCE THRESHOLD
For a sample orbit, a threshold is needed to determinewhether
to accept it as a candidate orbit. By analyzing the error
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TABLE 2. Standard deviations of the orbit elements.

distribution of the theoretical observations, we calculate the
threshold based on a χ2 value. Using this threshold, the
probability of accepting the true orbit is greater than 1-α
(α is the significance level).

In practical, only one specific observation sequence
Ỹ = [α̃1, δ̃1, α̃2, δ̃2, . . . , α̃m, δ̃m] can be obtained. The errors
between the theoretical true observations Ȳ and the actual
observations Ỹ can be measured by J (x̄0). Though the true
value is unknown, the statistical characteristics of these errors
are clear according to (4):

ᾱi(x̄0)− α̃i
σ/ cos δi

∼ N (0, 1),
δ̄i(x̄0)− δ̃i

σ
∼ N (0, 1) (15)

Suppose the measurement errors are independent of each
other. The sum of the squares of these errors follows the
χ2-distribution with 2m degrees of freedom:

χ2
≡

m∑
i=1

(
(
ᾱi(x̄0)− α̃i
σ/ cos δi

)2 + (
δ̄i(x̄0)− δ̃i

σ
)2
)
∼ χ2

2m (16)

Given a significance level α, the α quantile of χ2 can be
denoted as χ2

2m(α), and

P(χ2 < χ2
2m(α)) = 1− α (17)

Then an inequality about J (x̄0) can be obtained:

P(J (x̄0) <

√
χ2
2m(α)

2m
σ ) = 1− α (18)

Therefore, the acceptance threshold can be set to
(χ2

2m(α)/2m)
1/2σ . When the angle RMSE of a sample orbit

is smaller than this threshold, it is accepted as a candidate
orbit. This judgment strategy makes sure the true orbit being
accepted with a probability of 1-α.

C. WEIGHTS OF THE CANDIDATE ORBITS
For a certain candidate orbit x0, the posterior probability
density of this orbit can be calculated by the Bayes formula:

p(x0|Ỹ ) =
p(Ỹ |x0)p(x0)∫

x0
p(Ỹ |x0)p(x0)dx0

(19)

When no a priori knowledge is available, the distribution
of x0 is uniform. According to the expression of p(Ỹ |x0)
(see Appendix),

p(x0|Ỹ ) ∝ p(Ỹ |x0)

∝ exp

[
m∑
i=1

(
−
(α̃i − ᾱi(x0, ti))2

2σ 2/ cos2 δ̃i
−

(δ̃i − δ̄i(x0, ti))2

2σ 2

)]
= exp(−

m
σ 2 J

2(x0)) (20)

Define the weight of the candidate orbit as

w(x0) = exp(−
m
σ 2 J

2(x0)) (21)

w(x0) is proportional to the probability density. Obviously,
the least square orbit with the smallest J has the largest
weight, i.e., the largest probability.

When the a priori knowledge is available, the weight
can be modified. For instance, if an RSO is identified as a
GEO object [30], there will be a constraint on the semimajor
axis. In this circumstance, we can assume that the semimajor
axis of the true orbit follows a Gaussian distribution. The
mean is the standard semimajor axis of the GEO aGEO and
the standard deviation is σa. The a priori weight wprior can be
defined as

wprior = p(a(x0)) =
1

√
2πσa

exp(−
(a(x0)− aGEO)2

2σ 2
a

) (22)

Then the sample orbit’s weight should be modified to:

w(x0) = exp(−
m
σ 2 J

2(x0)) · wprior (23)

D. PROBABILITY DENSITY FUNCTION COMPUTATION
Some candidate orbits and the corresponding weights are
obtained after the sampling procedure. They can be used to
estimate the probability density function of the IOD solutions.

There are many methods to estimate the PDF of the ran-
dom variables from samples. They are usually classified as
parameter estimation methods, semi-parametric estimation
methods and non-parametric estimation methods. Due to the
nonlinear characteristics of the IOD algorithms, the PDF of
the IOD results should not be assumed to follow a certain
parametric distribution.

Non-parametric estimation methods can give the PDF
directly from the samples. Kernel density estimation (KDE)
is a widely used non-parametric density estimation algo-
rithm [31], [32]. It was proposed by Rosenblatt (1955) and
Emanuel Parzen (1962), also known as the Parzen Window.

KDE for the one-dimensional random variable x is as fol-
lows. Assuming that x1, x2, . . . , xn are n independent samples
of x, then the PDF f (x) can be estimated as:

f̂h (x) =
1
nh

n∑
i=1

K
(
x − xi
h

)
(24)

where K (·) is the kernel function, including Gaussian func-
tion, Epanechnikov function, Biweight function, etc., and h is
the window width. When the samples have different weights,
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TABLE 3. Orbital parameters of the test cases.

1/n should be adjusted to each sample’s weight wi:

f̂ (x) =
1
h

n∑
i=1

wiK
(
x − xi
h

)
(25)

For the multi-dimensional random variable X =

(x1, x2, . . . , xd )T with n independent samples X i =

(xi1, xi2, . . . , xid )T (i = 1, 2, . . . , n), the KDE of the PDF
is:

f̂h (X)

=
1
n

n∑
i=1

Kh (X − X i)

Kh (X − X i)

=
1

h1h2 · · · hd

×

{
K
(
x1 − xi1
h1

)
K
(
x2 − xi2
h2

)
· · ·K

(
x1 − xin
hn

)}
(26)

where h = (h1, h2, . . . , hd ) is the window width vector.
In this paper, the Gaussian function is adopted as the kernel

function:

K
(
x − xi
h

)
=

1
√
2π

exp

(
−
(x − xi)2

2h2

)
(27)

IV. RESULTS AND CONCLUSIONS
Our sample method is tested on three different types of RSOs.
The first one is the Radiation Belt StromProbes-A (RBSP-A),
an HEO satellite. The second one is FengYun 3A, an
LEO weather satellite. The third one is CHINASAT 9,
a GEO communications satellite. Detail orbit parameters are
shown in Table 3.

The true satellites’ orbits are obtained using the Two
Line Elements (TLE). The optical observations are simulated
assuming the sensor is located in China National Astronom-
ical Observatories (XingLong Observatory).

For the LEO satellite, the observation’s duration is 30 sec-
onds with the measurement frequency of 1Hz. The theoretical
measurements calculated by the true orbit and sensor’s loca-
tion constitute the true observations. Using the true observa-
tions, the solution of IOD algorithms must be the true orbit.

The Gaussian noises with a standard deviation of 3′′ are added
to the true observations. The noisy observations are defined
as the actual observations, which are the realization of the
measurements with noise. The IOD algorithm and sampling
method are implemented on the actual observations.

For the HEO satellite, the observation’s duration is set
to 7.5 minutes with the frequency of 1/15 Hz. The mea-
surement resolution is set to 0.5′′. For the GEO satellite,
the observation’s length is set to 15 minutes with the fre-
quency of 1/30 Hz. The measurement resolution is also 0.5′′.

A. CONFIDENCE BOUNDARY, CONFIDENCE REGION,
AND SAMPLE ORBITS
Implement the sampling method in section 3 on the
HEO satellite firstly.

Figure 2 (a) shows sample orbits whose angle RMSE is
smaller than 0.0004◦(1.5′′). They are all very compatible with
the actual observations. The red circle represents the least
square orbit that has the smallest error. The green diamond
represents the true orbit. In Figure 2(a), there is a regionwhere
the gradient value is almost zero. All orbits in this region are
candidate orbits. Taking J (x0) = (χ2

2m(α)/2m)
1/2σ as the

boundary of this region, the region will contain the true orbit
with a probability of 1-α.

In this paper, the boundary J (x0) = (χ2
2m(α)/2m)

1/2σ is
defined as the (1-α)− confidence boundary. The correspond-
ing region is defined as the (1-α)−confidence boundary.
Figure 2(b) shows the contour plot of Figure 2(a) and some
candidate orbits. The significance level α is set to 0.005.
The red line represents the corresponding 99.5%-confidence
boundary, whose value is 0.0001714◦ (0.617′′). The color of
each candidate orbit is based on the weight, which has been
scaled in the range [0,1].

For the LEO satellite and the GEO satellite, the
99.5%-confidence boundary, 99.5%-confidence region, and
the candidate orbits are shown in Figure 3 and Figure 4.
For orbits with small eccentricity, the joint distribution of a
and e of the candidate orbits is non-Gaussian because the
eccentricity is limited in the range [0,1]. For an HEO satellite,
the distribution of the candidate orbits may be Gaussian,
as Figure 2(b) shows.
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FIGURE 2. Sampling Results of the HEO satellite.

B. VALIDATION: THE MONTE CARLO METHOD
This paper uses the weighted candidate orbits to describe the
probability distribution of the true orbit. The feasibility of this
method can be validated by the Monte Carlo method.

The actual observations are the realization of measure-
ments with noise. In reality, the theoretical observations of
the true orbit are unknown, but their probability distribution
is clear from (15):

Ȳ ∼ N (Ỹ ,6)

6 = diag(
σ 2

cos δ̃21
, σ 2,

σ 2

cos δ̃22
, σ 2
· · ·

σ 2

cos δ̃2m
, σ 2) (28)

In theMonte Carlo method, the unknown theoretical obser-
vations of the true orbit are treated as random variables.
Their means are the actual observations with noise, and the
variance is the same as the measurement errors. Therefore,
if we add the Gaussian noises to the actual observations and
implement the Laplace-LS IOD algorithm, the solution (the
Monte Carlo orbit) may be the true orbit. Repeat the process
for some times, all IOD solutions can describe the probability
distribution of the true orbit. If our sampling method in the

FIGURE 3. Confidence boundary, confidence region and the candidate
orbits (LEO).

FIGURE 4. Confidence boundary, confidence region and the candidate
orbits (GEO).

a-e plane is reasonable, the PDF estimated by the weighted
candidate orbits and the Monte Carlo orbits should be similar
to each other.

In the validation section, the orbit is described with
two kinds of elements, namely the Keplerian elements
K = [a e i � ω f ] and the Cartesian elements X =
[x y z vx vy vz]. x, y, and z are three position components
of the RSO in the International celestial reference frame
(ICRF). vx , vy, and vz are the corresponding velocity compo-
nents. The Cartesian elements have been normalized in this
paper. The unit length is 6378.1366km, and the unit vector
is 7.905km/s.

Figure 5 shows the 2000 Monte Carlo orbits and the
weighted candidate orbits projected on different planes. The
Keplerian elements are projected on the a−e, i−�, andω−f
plane respectively. The Cartesian elements are projected on
the x− y, z-vx , and vy-vz plane respectively. The colors of the
candidate orbits represent their weights. The weights of the
Monte Carlo orbits are the same, so they are all represented
by the gray point.

An important conclusion can be summarized in Figure 5.
The Keplerian elements of the IOD potential true orbit are
not necessary Gaussian because of the elements’ value are
restrained. The eccentricity is restrained in the range [0,1],
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FIGURE 5. The Monte Carlo orbits and the candidate orbits for three types of satellites.
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TABLE 4. Validation of the candidate orbits for the HEO satellite (Cartesian elements).

TABLE 5. Validation of the candidate orbits for the LEO satellite (Cartesian elements).

TABLE 6. Validation of the candidate orbits for the GEO satellite (Cartesian elements).

FIGURE 6. Candidate orbits after screening (HEO).

and the angle elements are restrained in the range [0,360).
However, the Cartesian components have no constraint in the
value. Orbit described by the Cartesian elements follows the
Gaussian distribution. This fact provides a simple method to
validate our sampling method. Using the Cartesian elements,

FIGURE 7. Candidate orbits after screening (LEO).

we only have to compare the mean and variance calculated by
the Monte Carlo orbits with those calculated by the weighted
candidate orbits.

Table 4 - Table 6 show the validation results for three RSOs.
The numbers of candidate orbits for the HEO, LEO, and GEO
satellites are 432, 515 and 788 respectively. The numbers of
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FIGURE 8. Candidate orbits after weights modification (GEO).

Monte Carlo orbits are all 2000 for three satellites. Com-
parison results of the means and standard deviations show
that the sampling method in this paper is feasible. Moreover,
fewer weighted candidate orbit is needed than the unweighted
Monte Carlo orbits to estimate the PDF of the true
orbit.

C. MODIFICATION OF THE CANDIDATE ORBITS –ADDING
THE A PRIORI KNOWLEDGE
The candidate orbits selected and weighted by the angle
RMSE J (x0) do not contain any a priori knowledge. In this
section, we will discuss how the a priori knowledge can help
to modify the candidate orbits, including further screening
and the modification of the weights.

1) CANDIDATE ORBIT SCREENING
Figure 5(c) shows that the semimajor axis of some candidate
orbits are smaller than the earth radius Re, which is not
practical. We should exclude the orbits if they intersect with
the earth. The geocentric range of the perigee of an orbit is
rp = a(1-e). The condition of rejecting a candidate orbit can
be set to:

rp < Re + 100km (29)

Apply this rejection condition to three test cases.
Figure 6 and Figure 7 show the remaining candidate orbits
after the screening process in the HEO and LEO test cases.
For the 515 HEO candidate orbits, 356 orbits are rejected
and 159 orbits are retained. For the 432 LEO candidate
orbits, 356 orbits are rejected and 159 orbits are retained.
All 788 GEO candidate orbits are retained. Besides, the least
square orbit for the HEO and GEO cases are all rejected.

FIGURE 9. Two-dimensional PDF projection of the IOD solutions for the HEO satellite.
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FIGURE 10. Two-dimensional PDF projection of the IOD solutions for the LEO satellite.

2) WEIGHTS MODIFICATION
Take the GEO satellite for example. Usually, the GEO RSOs
are easy to distinguish due to the special characteristics of
their orbit. Then the weight can be modified using (23).
Setting aGEO = 42166km and σa = 100km, the modified
candidate orbits are shown in Figure 8, whose weights were
changed significantly.

3) THE MAXIMUM A POSTERIORI ORBIT
Both the candidate orbit screening and the modification of the
weights will lead to the change of the posterior probability
density. In this circumstance, the best IOD point solution is
no longer the least square orbit, but the maximum a posteri-
ori (MAP) orbit. Equivalently, we can find the MAP orbit by
solving the following optimization problem.

max
x0

w(x0) = exp(−
m
σ 2 J

2(x0)) · wprior (30)

For the a priori constraint of the GEO orbit, the optimiza-
tion problem turns into:

max
x0

w(x0) = exp(−
m
σ 2 J

2(x0))

·
1

√
2πσa

exp(−
(a(x0)− aGEO)2

2σ 2
a

)

⇔ min
x0

m
σ 2 J

2(x0)+
(a(x0)− aGEO)2

2σ 2
a

(31)

For the orbit screening case, wprior should be defined as:

wprior =

{
1, if the condition is met
0, if the condition is not met

(32)

However, this definition will cause the discontinuity of
the objective function. For the convenience of optimization,
the screening condition should be transformed into a contin-
uous function. Taking the constrain of rp as example, wprior
can be expressed as:

wprior = exp(− exp(Re + 100− rp)) (33)

When rp is slightly larger than Re+100, wprior approxi-
mately equal to 1. When rp is slightly smaller than Re+100,
wprior approximately equal to 0. Actually, many similar func-
tions can be defined such as wprior =(1+tanh(rp-Re-100))/2.
However, the definition of (33) has an additional benefit.
This function is in the exponential form, which helps the
simplification of the optimization problem:

max
x0

w(x0)

= exp(−
m
σ 2 J

2(x0)) · exp(− exp(Re + 100− rp))

⇔ min
x0

m
σ 2 J

2(x0)+ exp(Re + 100− rp) (34)

Table 7 shows the Keplerian elements of the true orbit,
the LS orbit and theMAP orbit for three satellites. Obviously,
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FIGURE 11. Two-dimensional PDF projection of the IOD solutions for the GEO satellite.
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TABLE 7. Comparison of the true orbit, the LS orbit and the MAP orbit.

the a priori knowledge can significantly improve the accuracy
of the IOD point solution.

D. PROBABILITY DENSITY FUNCTION: ESTIMATION AND
VALIDATION
This section will estimate the PDF of the IOD result using
KDE and the candidate orbits. For the orbit screening process,
the orbit weights are unchanged. The PDF estimation result
can still be validated by the Monte Carlo orbits if they are
screened by the same rejection condition.

Figure 9 and Figure10 show the projection of the PDF on
the two-dimensional space. The diagonal sub-graphs show
the marginal distribution of the orbit state elements x, y,
z, vx , vy, and vz, respectively. Other sub-graphs show the joint
distribution of two different orbit elements. In the marginal
distribution sub-graphs, the solid blue lines show the PDF
of a certain variable estimated by the screened candidate
orbits. The black dotted lines show the PDF estimated by the
screened Monte Carlo orbits. The green dash-dot lines show
the value of the true orbit parameters. The magenta dashed
line shows the value of the MAP orbit parameters. In the
two-dimensional joint distribution sub-graphs, the green dia-
monds show the position of true orbit, and the magenta stars
show the position of the MAP orbit.

The results show that PDF estimated by the candidate
orbits and the Monte Carlo orbits are almost identical, indi-
cating the KDE method is feasible to estimate the PDF of the
IOD results.

For the GEO satellite, we estimate the PDF of its
orbit without and with the a priori knowledge respectively,
as Figure 11 shows. The red circles and the bold dashed
red line represent the LS orbits. The comparison of
Figure 11(a) and (b) show that the a priori knowledge can
reduce the IOD uncertainty significantly. The MAP solution
is far more accurate than the LS solution.

V. CONCLUSION
In this paper, the problem of short-arc orbit determination
is researched. A more accurate IOD method, namely the
Laplace-LS orbit determination method, is presented, whose
estimation variance is close to the CRLB. For the short-art ini-
tial orbit determination problem, a new sampling method in

the semimajor axis-eccentricity plane is proposed to describe
the probability distribution function of the true orbit. Some
candidate orbits are obtained and weighted according to the
angle errors. They are efficient to estimate the PDF of the true
orbit. When the a priori knowledge is available, the candidate
orbits can easily be screened andmodified. Then the accuracy
of the IOD solution can be significantly improved.

When the detected trajectory is very short or the sensor has
limited accuracy, our method can be applied to determine the
RSO’s orbit comprehensively.

Our method can also be applied to the long-arc IOD prob-
lem. However, the uncertainty of the long-arc IOD result will
degrade dramatically. A point solution given by a traditional
algorithm is usually credible. In this circumstance, methods
introduced in section I, such as the uncertainty analysis using
the unscented transformation, maybe more straightforward.

APPENDIX: THE FISHER INFORMATION OF THE INITIAL
ORBIT DETERMINATION PROBLEM
Suppose that x̄0 is the true orbit sate at epoch t0 and x̂0 is
the estimation, i.e., the IOD solution. The true observation
sequence can be expressed as

Ȳ = [ᾱ1(x̄0, t1), δ̄1(x̄0, t1), · · · , ᾱm(x̄0, tm), δ̄m(x̄0, tm)].

The statistical characteristic of the measurement errors are
as follows:

vi ≡ α̃i − ᾱi (x0, ti) ∼ N
(
0, σ 2/ cos2 δ̃i

)
µi ≡ δ̃i − δ̄i (x0, ti) ∼ N

(
0, σ 2

)
Assuming that the measurement errors are independent of

each other, the probability density of obtaining a specific
observation sequence given x̄0 is

p(Ỹ |x̄0) = p(α̃1, δ̃1, α̃2, δ̃2, · · · , α̃m, δ̃m|x̄0) =
m∏
i=1

p(α̃i)p(δ̃i),

where:

p(α̃i)=
1

√
2πσ/| cos(δ̄i(x̄0, ti))|

exp(−
(α̃i − ᾱi(x̄0, ti))2

2σ 2/ cos2(δ̄i(x̄0, ti))
),

p(δ̃i)=
1

√
2πσ

exp(−
(δ̃i−δ̄i(x̄0, ti))2

2σ 2 ).
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The logarithm of the probability density is:

ln p(Ỹ |x̄0) =
m∑
i=1

ln p(α̃i)+ lnp(δ̃i)

= −m ln 2πσ +
m∑
i=1

ln | cos(δ̃i)|

−
(α̃i − ᾱi(x̄0, ti))2

2σ 2/ cos2 δ̃i
−

(δ̃i − δ̄i(x̄0, ti))2

2σ 2

Then calculate its partial derivative to the true orbit
state x̄0:

∂

∂ x̄0
ln p(Ỹ |x̄0)

=
1
σ 2

m∑
i=1

(
(α̃i − ᾱi(x̄0, ti)) cos2(δ̃i)

∂ᾱi(x̄0,ti)
∂ x̄0

+(δ̃i − δ̄i(x̄0, ti))
∂δ̄i(x̄0,ti)
∂ x̄0

)

=
1
σ 2

m∑
i=1

(
νi cos2(δ̃i)

∂ᾱi(x̄0, ti)
∂ x̄0

+ µi
∂δ̄i(x̄0, ti)
∂ x̄0

)
Besides, the measurement errors are independent, i.e.

E(νiνj) =

{
σ 2/ cos2(δ̃i), i = j
0, i 6= j

E(µiµj) =

{
σ 2, i = j
0, i 6= j

E(νiµj) = 0

Finally, the Fisher information of the initial orbit determi-
nation problem is:

F = E

{[
∂

∂x
ln[p(Ỹ|x̄0)]

] [
∂

∂x0
ln[p(ỹ|x̄0)]

]T}

=
1
σ 2

m∑
i=1

 cos2 δ̃i
[
∂ᾱi(x̄0,ti)
∂ x̄0

] [
∂ᾱi(x̄0,ti)
∂ x̄0

]T
+

[
∂δ̄i(x̄0,ti)
∂ x̄0

] [
∂δ̄i(x̄0,ti)
∂ x̄0

]T

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