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ABSTRACT Tree skeleton extraction plays a fundamental role in reconstructing both biological and struc-
tural models of trees. However, traditional approaches can be ineffective and problematic in guaranteeing the
topological correctness and centeredness of the tree skeleton when the tree point clouds contain noise and
occlusions. To overcome this limitation, we present a tree skeletonization method to generate topologically
correct and well-centered tree skeletons. We extract an initial skeleton from the tree point clouds via an
octree and level set method, use cylindrical prior constraint (CPC) optimization and the estimated radii of
branches to yield corrected positions of improper joints, and finally obtain updated skeletons with improved
smoothness. The good centeredness of our proposed method is intrinsically achieved by (1) exploiting the
cylindrical shape prior and calculating the CPC in the local neighborhood and (2) feeding the prior knowledge
regarding the radii of tree branches into a topology refinement algorithm to yield near-optimal estimates of
the positions of the skeleton points. To evaluate our method, we construct a novel tree point cloud data
set with known ground truth and propose three quantitative assessment methods: skeleton points deviation
(SPD), bifurcation points coverage (BPC) and endpoints coverage (EPC). The quantitative assessment and
visual assessment show that the proposed method clearly outperforms traditional ones in terms of topology
correctness and centeredness of the extracted tree skeleton.

INDEX TERMS Cylindrical prior constraint, point cloud, skeleton extraction.

I. INTRODUCTION
Due to the important role of tree models in computational
forestry [1], function-structure plant modeling [2], urban
planning and many other fields, substantial research effort
has been devoted to tree model reconstruction [3]–[6]. The
existing techniques usually include the following steps. First,
a point cloud of a tree is obtained and preprocessing, such as
removing noise, outliers, and leaves, is performed. Second,
the skeleton of trees, which capture the essential topological
invariance of the 3d model, are extracted. Third, the geometry
of the tree is reconstructed based on the extracted skeleton.

The topology of the reconstructed tree is usually estab-
lished in the skeleton-extraction phase [7], making skeleton
extraction from the point cloud the most important task in
tree reconstruction. Three common challenges are associ-
ated with extracting skeletons from point clouds [8]: (1) the
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point clouds may contain noise and outliers; (2) there can
be large amounts of missing data in point clouds due to data
occlusions; (3) the point density in the point clouds can vary
substantially. Many skeleton extraction algorithms have been
proposed [9]–[11] to overcome these challenges. However,
many of these algorithms fail to extract a topology-preserving
skeleton from point clouds of trees that have complex struc-
tures. Meanwhile, because there are almost no quantitative
evaluation methods that can measure topological correctness
and centeredness, the real performance of existing algorithms
is difficult to assess.

In this paper, we present a novel skeletonization method
that yields well-centered and topology-preserving tree skele-
tons from point clouds with noise and occlusions. The pro-
posed method extracts the initial skeleton points by means of
an octree [12] and level set method [13]. Then, we observe
that tree branches are generally cylindrical in shape in
nature; thus, we employ the cylindrical prior constraint (CPC)
optimization to improve the centeredness of the skeletons.
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Finally, we correct the skeleton topology with a topology
refinement process by estimating the radii of the branches.

Compared to existing skeleton extraction methods,
the incorporation of octree subdivision makes our method
resistant to noise and outliers.Most importantly, our proposed
method makes considerable improvements over traditional
level set methods [3]–[5], [13] and greatly enhances the
centeredness and topological correctness of the resulting
skeleton.

Additionally, to validate the effectiveness of our proposed
approach, we present a synthetic data set of tree point clouds
with known ground truths and three quantitative assessment
methods: skeleton points deviation (SPD), bifurcation points
coverage (BPC) and endpoints coverage (EPC). We perform
extensive case studies based on synthetic point clouds and
real tree point clouds. The visual comparisons and detailed
quantitative assessments demonstrate that our method clearly
outperforms traditional baselines.

II. RELATED WORK
Curve skeletons have been widely used in computer vision,
image processing, life sciences and plant morphology [7];
thus, many methods have been proposed. The latest research
in this field, presented at the SkelNetOn@CVPR19 work-
shop, includes Demir et al. [14], Yang et al. [15],
Liu et al. [16] and Atienza et al. [17]. However, the recent
methods at the SkelNetOn@CVPR19 workshop focus on
using deep learning to extract skeletons from 2D images,
whereas our method aims to obtain curve skeletons from
unorganized 3D point clouds. Therefore, in this section,
we review only skeletonization algorithms for unorganized
3D point clouds. The most closely related methods can be
roughly classified as level set methods, optimization-based
methods and graph-based methods.

A. LEVEL SET METHODS
Verroust and Lazarus [13] propose the level set method,
which is capable of extracting skeletons of tree-like objects.
They use geodesic distance on the k-nearest neighbor graph
to generate multiple level sets. The skeleton point is the
barycenter of the connected components in the level sets.
This method can capture the basic topology of tree-like
objects, is easy to implement, and is thus widely used [3]–[5].
However, the level set method is limited since it does not
consider the varying density or missing data in point clouds,
and the centeredness of the skeleton is not guaranteed. Such
limitations can be avoided by introducing octree subdivision
and CPC optimization, as in our proposed method.

B. OPTIMIZATION-BASED METHODS
The L1-median has a long history in statistics and shows good
resistance to noise and outliers in point sets. [10] employs
localized L1-medians to construct a skeleton. The L1-medial
method does not impose strong requirements on the quality
of the point cloud or specific topology of the captured object.
These methods use a weighting function with a supporting

radius to define the size of the local neighborhood. The
supporting radius is gradually increased to yield clean and
well-connected skeleton points. However, this method can
be ineffective in yielding a tree skeleton for two reasons.
First, when two tree branches are close to each other in
the point cloud, the L1-medial skeleton may contain cycles,
whereas the skeleton of a tree ought to be acyclic. Second,
the bridge points are occasionally not correctly connected to
nearby branches: some parameters related to bridge points
must be carefully set to guarantee the topological correctness
of the tree skeleton. In our method, we use the L1-median to
compute the center of the local point set rather than directly
generating all the skeleton points.
Mei et al. [11] aim to extract skeletons from point clouds

with large portions of missing data. They first use the
L1-medial method to generate a coarse tree skeleton;
then, they devise an iterative data-completion scheme to
recover missing data. The coarse tree skeleton is finally
refined through a L1-minimum spanning tree algorithm.
Song et al. [18] compute a distance field from a voxelized
point cloud, extract an initial skeleton from the distance field,
and finally use the L1-medial method to obtain the final
skeleton.

Tagliasacchi et al. [9] note that a curved skeleton could be
regarded as a generalized rotational symmetry axis of a shape
(ROSA). Therefore, the normal information can be utilized to
compensate for missing data when large portions of data are
missing in a point cloud. The position of a skeleton point in
the local set of points is computed by minimizing the sum of
the projected distances to the normal extensions of the data
points.

The Laplace operator is a useful tool for mesh smoothing.
Au et al. [19] apply the Laplace operator on the mesh to move
vertices along their approximate curvature normal direction.
Laplace operator-based vertex contraction is implemented
by minimizing the quadratic energy. They then convert the
contracted mesh into a 1d curve skeleton by means of a
connectivity surgery process. Cao et al. [20] extend their work
by applying the Laplace operator to point cloud models and
replacing the connectivity surgery process with a topological
thinning method. However, the results are sensitive to param-
eter tuning, e.g., the contraction weights update factor.

Qin et al. [21] introduce an optimal mass transport method
to extract the mass-driven curve skeleton (MdCS) from 3D
point clouds. This method minimizes the Wasserstein dis-
tance with an entropic regularization term between two prob-
ability measures: the mass distribution of MdCS and the raw
point cloud. This method is robust to noise, missing data
and unoriented data. However, the authors do not discuss the
results of skeletons extracted from tree-shaped point clouds.

C. GRAPH-BASED METHODS
Livny et al. [22] propose a method for reconstructing tree
skeletal structures automatically. They construct a graph from
input points and then extract minimum spanning trees that
represent the initial tree skeletons. They then refine the initial
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FIGURE 1. The procedure of our skeletonization method.

tree skeletons via a global optimization that is driven by
biological priors. Their method is capable of extracting tree
skeletons from point clouds of multiple overlapping trees.
However, the method is based on the assumption that the
graph is built from sparse TLS point clouds and is thus
ineffective when applied to dense point clouds.

Bucksch et al. propose SkelTre [8], a graph-based method
for extracting tree skeletons from point clouds with twigs
and leaves. In this method, they build a graph in octree [12]
subdivision and reduce the graph to a skeleton according to a
set of given rules. However, the centeredness of the skeleton
is sensitive to a large portion of missing data. The SkelTre
method is employed in [23] to generate skeletons of tree
branches.

III. OVERVIEW OF SKELETONIZATION
A point cloud is a set of data points X = {xi|xi ∈ R3} sampled
on the surface of an object. The process of extracting a skele-
ton from the point cloud of a tree is called tree skeletonization.
A tree skeleton is an undirected acyclic graph whose vertices
are the loci of the centers of the maximal inscribed balls of the
point cloud [24]. In this paper, the vertices of the tree skeleton
are named skeleton points. Let Q = {qj|qj ∈ R3} denote the
centers of the maximal inscribed balls [24]; hence, skeleton
points Q represent an optimal set of points:

Q = argmin
∑
i∈I

∑
j∈J

||xi − qj||θ (||xi − qj||, ri) (1)

where θ (d, r) = e−d
2/(r/2)2 is a rapidly decaying smooth

function with support radius r , i.e., the radius of the maximal
inscribed ball [24]. A major challenge in tree skeletonization
is that point clouds contain noise and occlusions, which not
onlymake the skeleton points shift from the center of the local
inscribed balls but also affect the topological correctness of
the connected skeleton points.

To address these issues, we propose a tree skeletonization
algorithm that consists of four steps (as illustrated in Fig.1):

(1) Tree skeleton points computation.We subdivide the raw
point cloud by octree and take the L1-medians of the octree
cells as the initial skeleton points. This step downsamples the
point cloud, makes the skeletonization algorithm resistant to
noise and varying density of the point cloud, and reduces the
scale of the data.

(2) Initial tree skeleton extraction. We build a k-nearest
neighbor graph from the initial skeleton points. With this k-
nearest neighbor graph and a selected root point, we construct
a geodesic distance function by calculating the shortest paths
in the graph between all vertices and the root point. We then

extract the initial tree skeleton using level sets [13] of the
geodesic distance function.

(3) Cylindrical prior constraint optimization. Since some
skeleton points near missing data areas can be off-centered
and thus harmful to the centeredness of the resulting skeleton,
we introduce CPC optimization to recenter such off-centered
skeleton points.

(4) Topology refinement. Due to noise and occlusions,
skeleton points in branching regions of the tree may be
misconnected. These points can further lead to incorrect
topology. We note that the local region of a tree branch
is a generalized cylinder and design a topology refinement
process. This process aims to improve the resistance to noise
and occlusions by estimating the radii of branches and updat-
ing the local topology. We finally smooth the extracted tree
skeleton via an interpolation algorithm and reconstruct the 3D
tree model based on the smoothed skeleton.

The above steps are discussed in detail in Section IV, and
the extracted skeletons and corresponding tree models are
elaborated in Section V.

IV. TREE SKELETONIZATION
A. SKELETON POINTS COMPUTATION
The generated raw point cloud is a set of data points X =
{xi|xi ∈ R3} sampled on the surface of visible tree branches,
which are noisy. To remove noise, we use an octree to down-
sample the input point cloud (see Fig.2(b)). An octree is a tree
structure for partitioning 3D space by recursively subdividing
the space into eight octants. Each node in an octree is a
cubic cell that contains a subset of data points. Our proposed
skeletonization procedure is performed on octree cells rather
than the original data points.

With an appropriate subdivision depth do (do = 2+log8|X |
by default), the octree generation procedure is as follows:

(1) Compute the bounding box of the tree and initialize
an empty cell list. To simplify our algorithm, we expand the
bounding box to a cubical box of size l × l × l. Then, a cell
of size l × l × l containing all data points X is created and
placed into the cell list.

(2) For each parent cell in the list, if the cell (sizem×m×m)
contains data points, then the cell is divided into eight child
cells (size m

2 ×
m
2 ×

m
2 ). The data points in the parent cell

are also divided and added to the corresponding child cells.
Then, the parent cell is removed from the list and the eight
child cells are added to the list.

(3) If the current subdivision depth for the octree is less
than depth do, step (2) is repeated; otherwise, the subdivision
is complete.

VOLUME 8, 2020 27329



L. Fu et al.: Tree Skeletonization for Raw Point Cloud Exploiting Cylindrical Shape Prior

FIGURE 2. Overview of our skeletonization method. (a) Raw point cloud. (b) Octree generated from a point cloud. (c) The centroid of every
octree cell. (d) Neighbor graph composed of centroids. (e) Geodesic graph extracted from the neighbor graph. (f) Original skeleton
points (red) are acquired. (g) Initial skeleton extracted from the level sets. (h) Final skeleton after refinement.

In the following, we compute the skeleton points Q from
octree cells. For each octree cell that contains k data points,
Xj = {x

j
1, x

j
2, . . . , x

j
k}, the spatial location of the correspond-

ing skeleton point qi is computed using the L1-median (see
Fig.2 (c)):

qi = argmin
qi

∑
xjk∈Xj

||qi − x
j
k || (2)

B. INITIAL TREE SKELETON EXTRACTION
Given a set of skeleton points, Q = {qi|qi ∈ R3} computed
from octree cells, we define the k-nearest neighbor (k = 26
by default) graph G(Q, k) of a point cloud as an undirected
graph (Fig.2 (d)):
(1) The vertices of G(Q, k) are the points of Q;
(2) (qi, qj) denotes an edge of G(Q, k) if qi is one of the k

nearest neighbors of qj.
The time complexity of building the k-nearest neighbor

graph assisted with octree is usually O(nlogn). Because each
vertex is the median point of an octree node, this procedure
can be further accelerated. For each vertex qi, we look for all
the octree cells that are adjacent to the corresponding cell of
qi instead of computing and comparing Euclidean distances.
We further connect the corresponding vertex of those adjacent
cells and finally build the nearest neighbor graph withinO(n)
time.

We further define f (qi) as a geodesic distance function
whose value represents the length of the shortest path from
point qi to the selected root point, qs, on G(Q, k). Then,
we build a geodesic graph Ggeo(Q) in which edge (qi, qj)
represents the shortest geodesic path from qi to qj (Fig.2(e)).
Therefore, we extract an initial tree skeleton from the point

cloud using the level sets of the geodesic distance function f ,

similar to [13] (see Fig.2(f)(g)). The level set L(f , c, ρ) of
geodesic distance function f is a set of points defined as
L(f , c, ρ) = {qi|c ≤ f (qi) < c + ρ, qi ∈ Q}. qi ∈ L(f , c, ρ)
is a point with geodesic distance between c and c + ρ. The
detailed extraction steps for the initial skeleton are as follows:

(1) We use the geodesic distance function to divide the
skeleton points Q into k level sets {L(f , c1, ρ),L(f , c2, ρ),
. . . ,L(f , ck , ρ)}, where ci = ci−1 + ρ.

(2) For each level set L(f , ci, ρ), we construct a fully
connected graph by connecting the skeleton points in this
set. Then, this fully connected graph is divided into m con-
nected subgraphs by means of a spectral clustering algo-
rithm [25]. If the skeleton points in L(f , ci, ρ) belong to
different branches, m is equal to the number of branches;
otherwise, m is equal to 1. We set the L1-medians of the
subgraphs as new skeleton points.

(3) Q′ is the new skeleton point set computed from step
(2), and we build a new geodesic graph Ggeo(Q′). The initial
skeleton is a geodesic graph Ggeo(Q′) whose edges represent
the topology of the tree point cloud.

C. CYLINDRICAL PRIOR CONSTRAINT
The extracted tree skeleton is an undirected acyclic graph
Ggeo(Q′), and Q′ is the set of skeleton points that are L1-
medians of the level sets. The L1-median is inherently robust
to noise and outliers. However, the skeleton points calculated
using the L1-median are not well centered when there is a
large proportion of occlusions in the point cloud (see Fig.3).

Considering the possible missing data in the occluded
regions, we observe that tree branches in nature are generally
cylindrical in shape, which means that the distances from
each point of a cross section to the local median are similar
(see Fig.4). Inspired by this characteristic, we deduce two
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FIGURE 3. The point cloud of a tree with missing data.

FIGURE 4. Point D is in the cylindrical axis of symmetry, and the distances
from A, B, and C of a cross section to point D are similar.

constraint conditions. (1) The local median constraint makes
the median point represent the location of the local points,
and we choose the L1-median as the local median constraint
term because of its strong robustness. (2) The equal-distance
constraint yields the median point close to the cylindrical axis
of symmetry, maintaining a similar distance to each point
in the neighborhood. We introduce an optimization process
called CPC to recenter the skeleton points.

The CPC yields themedian point that minimizes the sum of
the Euclidean distances from local points to the median point
and the weighted variance of these distances. Formally, for
a local point set Xs = {xs1, x

s
2, . . . , x

s
m}, the optimized local

median υs is computed via the following optimization:

υs = argmin
υs

m∑
i=1

||υs − xsi || + λsσ
2
s (3)

The local median constraint is the left term, where xsi is in the
set Xs. The equal-distance constraint is the right term λsσ

2
s ,

where the weight factor λs controls the penalty effect. σ 2
s is

the variance of distance d si from point xsi ∈ Xs to the local
median υs:

σ 2
s =

1
m

m∑
i=1

(d si − µs)
2 (4)

The distance d si is defined as:

d si = ||v
s
− xsi || (5)

FIGURE 5. The data points shown in top view. The green point is the
L1-median. The red point is the centroid computed using CPC with
λ = 104.

FIGURE 6. Extracted skeleton of the marked branch shown in Fig.5 using
CPC with different λ. When λ is 0, the extracted red curve is the L1-medial
skeleton.

The average distance µs is:

µs =
1
m

m∑
i=1

d si (6)

Fig.5 shows three local cross sections of data points and
the median computed using the L1-median and CPC. Clearly,
the equal-distance constraint prevents the L1-median from
being attracted to dense points, and the CPC median is closer
to the theoretical median under the assumption that the local
branch is cylindrical.

Fig.6 shows skeletons extracted using CPC with differ-
ent λs. CPC can significantly enhance the centeredness of the
skeleton when the point cloud has missing data, and the value
of the weight factor λs plays an important role in optimizing
the positions of the skeleton points. In Fig.6, as λs increases,
the median point gradually becomes centered. In this paper,
we use gradient descent to optimize Equation 3. In iteration
k , λks is recomputed as follows:

λks = m2µk−1s (7)

where µ(k−1)
s is the average distance µs in iteration k − 1.

µ0
s is the average distance from the local points to the initial

skeleton point. During optimization, λs gradually decreases
until convergence.

D. TOPOLOGY REFINEMENT
The initial skeleton captures the basic topology of the tree;
however, the complexity of the tree branching structure might
result in unexpected vertices and edges when building the
k-nearest neighbor graph (see Fig.8). Moreover, a skeleton
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FIGURE 7. The point cloud contains 600 points. The centroid (red) is
computed using CPC with different λ.

with the correct topology is difficult to extract in the bifur-
cation region because the distances between points in the
bifurcation region are usually small. In addition, noise and
occlusions can make the circumstances worse. The level set
method cannot generate a good skeleton under such circum-
stances; therefore, we develop an algorithm to refine the
topology of the tree skeleton and improperly located skeleton
points, especially in the branching region.
Q = {qi|qi ∈ R3} is the initial skeleton points, and geodesic

graph Ggeo(Q) is the initial skeleton. The pseudo code of our
refinement algorithm is as follows.

Algorithm 1 Refinement
Input: Skeleton nodes Q, data points set X
Output: Refined skeleton
1: for all qj in Q do
2: if qj is a branching node then
3: pick up n initial cluster centers
4: perform k-means clustering on Xj, obtain
Xj,1, . . . ,Xj,n

5: compute centroids of clusters using CPC
6: for all Xj,i in clusters do
7: compute distance di and threshold τ
8: if di > τ then
9: add sibling node qi,sibling for qi

10: Xj = Xj\Xj,i
11: recompute the centroid of Xj
12: end if
13: end for
14: else
15: if parent of qj is a branching point then
16: perform radius estimation for the current

branch
17: end if
18: end if
19: end for

Before refinement, we sort the initial skeleton points Q
according to geodesic distance value on Ggeo(Q) in descend-
ing order. Thus, the algorithm is applied to all branching
regions in top-down order.

We use the neighborhood of qi on Ggeo(Q) to determine
whether qi is a branching point: if the neighbor size of qi is
greater than 2, qi is a branching point. For a branching point qi
that has n child branches, we perform k-means clustering on
the data points in this region. The parameter k of k-means is

FIGURE 8. (a) Neighborhood graph colored according to level set.
(b) Initial skeleton, colored red, extracted by connecting the centroids of
every two adjacent components.

n because the number of child branches is already known and
reliable in the top-down refinement. The initial centroid for
a cluster can be estimated based on known child branches.
We select the n vertices closest to the n daughter branches
as the initial centroid. This clustering process produces n
clusters.

We propose a criterion to determine whether the k-means
clustering result can be accepted. We calculate the distances
d1, d2, , dn from the centroids of the clusters to the skeleton
point qi and compare these distances to a threshold τ . The
threshold is calculated as follows:

τ = η

√√√√ n∑
i=1

ri2 (8)

The value of parameter η varies depending on the current
geodesic distance. The empirical value of η in our experiment
is 1. ri is the radius of skeleton point qi, which is estimated
using:

ri =
1
m

m∑
j=1

||xj − qi|| (9)

where point xj ∈ X is a neighbor of skeleton point qi. This for-
mula is also used in step 16 of the pseudo code. The method
used to compute threshold τ is inspired by the observation
from Leonardo da Vinci that the sum of the cross-sectional
area of all child branches above a branching point is equal
to the cross-sectional area of the branch below the branching
point [26], [27].

If di > τ , the centroid of the corresponding cluster is
added to skeleton point set Q as a sibling node of skeleton
point qi. Later, the centroid of the cluster is recomputed using
CPC. The process of steps 2-13 in the pseudo code is shown
in Fig.9.

After refining the branching point, to enhance the smooth-
ness of the skeleton, we perform cardinal spline interpo-
lation [28]: five points are interpolated between every two
adjacent skeleton points.
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FIGURE 9. Process of refinement. (a) Pick up the initial clustering center.
(b) Perform k-means clustering and compute the distance. (c) Insert
sibling node. (d) Recenter original branching point.

V. RESULTS
To validate the effectiveness of our proposed skeletoniza-
tion algorithm, we compare our method with L1 [10],
L1-MST [11] and ROSA [9] in terms of the topologi-
cal correctness and centeredness of the extracted skeletons.
L1 [10] shows good performance on a raw point cloud with
considerable noise and outliers and large areas of missing
data. Although L1 is not designed for tree point clouds,
the method can extract high-quality skeletons with complex
branches. L1-MST [11] integrates the advantages of both
the L1 and MST algorithms and can efficiently extract tree
skeletons from imperfect point clouds. Same as our method,
ROSA [9] uses a cylindrical shape prior and can produce
robust curve skeletons over regions of a shape that are gen-
erally cylindrical. ROSA can also handle branch structures.
In summary, all the methods chosen for comparison can
extract skeletons from point clouds with complex branches,
noise and occlusions. Moreover, L1 and ROSA are open
sourced by their authors. Although L1-MST is not open
source, it is not difficult to implement L1-MST using the
source code of L1. Sincemost skeleton extractionmethods are
not open source, comparing our method with L1, L1-MST and
ROSA can increase the reliability of the experimental results.

Our comparison consists of two parts: visual assessment
and quantitative evaluation. For the former, we construct
a new tree point cloud data set with known ground truths
and propose a series of indices and approaches to conduct
quantitative evaluations. For the latter, we perform a visual
assessments on both real-world point clouds and synthetic
point clouds.

We implement our skeletonization algorithm in the Java
8 environment. Then, we download the software provided
by the authors of [10] and the code of [9] from the authors’
repositories on Github. We normalize the point clouds and
follow the authors’ instructions before running their algo-
rithms. To compare the performance of the algorithms, we use
various point clouds that have missing data, noise, and vary-
ing point densities. We also implement the L1-MST method
according to the original paper. All the algorithms are run
on a laptop with 8 GB memory and an Intel Core i7-8550U
processor running at 1.80 GHz. The operating system is
Windows 10. For each presented result for L1, L1-MST and
ROSA, we have assessed at least five groups of parameters
and selected the best skeleton for comparison.

FIGURE 10. Six ground truth skeletons, indexed from 1 to 6.

FIGURE 11. Point clouds with different numbers of data points. The point
clouds in the first and second rows are generated based on ground truth
skeletons No.2 and No.3, respectively. The number of points in the point
cloud increases from left to right.

A. EXPERIMENTS ON THE SYNTHETIC DATA SET
1) SYNTHETIC TREE POINT CLOUD DATA SET
The lack of suitable tree point cloud data sets with known
ground truth (3D skeleton models) has prevented direct quan-
titative evaluations. To enable such quantitative evaluations
for assessing tree skeletonization algorithms, we construct a
new data set that contains point cloud models of trees and
the corresponding ground truth skeletons. This data set is
generated via two steps. The first step is to draw a series of
skeletons using particular programs. We draw six different
ground truth tree skeletons, as shown in Fig.10, and for
convenience of citing them in the following sections, we give
each skeleton an index number. Based on these skeletons,
the second step is to generate four types of point clouds:
point clouds with different numbers of data points, point
clouds with noise, point clouds with missing data, and point
clouds with varying point density. Some examples are shown
in Fig.11 - Fig.14

The details of all the tree point clouds used in our experi-
ments are listed in Table 1.
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TABLE 1. All point clouds used in the experiments.

FIGURE 12. Point clouds with missing data. The point clouds in the first
row are generated based on ground truth skeletons No.1-No.3. The point
clouds in the second row are generated based on ground truth skeletons
No.4-No.6.

2) QUANTITATIVE EVALUATION METHODS
After constructing a synthetic tree point cloud data set,
we propose an index system for quantitative evaluations. This
section describes howwe establish such a system bymeans of
geometric comparison to the ground truth models and howwe
use the system to assess the performance of skeletonization
algorithms.

We denote the ground truth model as an undirected graph
G = (Vg,Eg) and the corresponding skeletonization result to
be evaluated as an undirected graph S = (Vs,Es). The goal
of our evaluation is to assess both the centeredness and the
topological correctness of S.
To measure the centeredness of S, we compute the average

distance between the skeleton points in G and the skeleton

FIGURE 13. Point clouds with noise. The point clouds in the first
and second rows are generated based on ground truth skeletons
No.1 and No.5, respectively.

points nearest to them in S. This measurement is called SPD:

SPD(G, S) =

∑
i dist(v

i
g, S)

|Vg|
(10)

where |Vg| is the number of skeleton points in G and
distance(vig, S) is the nearest distance between vig and S.
Cleaerly, the smaller the SPD is, the better the centeredness of
the skeleton is. In practice, we calculate the nearest distance
between vig and edge ejs in S:

dist(vig, S) = min {dist(vig, e
j
s)|e

j
s ∈ Es} (11)

To measure the topological correctness of S, we compute
two measurements of coverage. The first measurement is the
coverage of the matched bifurcation points in S andG, which
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FIGURE 14. Point clouds with varying point density. The point clouds in
the first and second rows are generated based on ground truth skeletons
No.3 and No.4, respectively. A darker region indicates a denser
distribution of data points.

we call BPC. The second measurement is the coverage of
matched twig endpoints in S and G, which we call EPC.
Definition 1: Let deg(x) be the degree of vertex x. Then,

a bifurcation point in a skeleton is a vertex with degree greater
than or equal to 3. We denote the bifurcation points in G and
S as Bg and Bs, respectively.

Bg = {big|b
i
g ∈ Vg, deg(b

i
g) ≥ 3} (12)

Bs = {bis|b
i
s ∈ Vs, deg(b

i
s) ≥ 3} (13)

To compute BPC, we first find matched bifurcation points
in G and S. Given bifurcation points Bg and Bs, together with
a distance function dist : Bg × Bs → R, which measures the
Euclidean distance between big and b

j
s, we find the bijection

φ : Bg→ Bs that minimizes the following cost function:∑
big

dist(big, φ(b
i
g)) (14)

where bks = φ(b
i
g) is the matched bifurcation point of big. This

is an assignment problem, and the bijection φ can be found
via the Hungarian algorithm [29].
Definition 2: The bifurcation point big is covered by bks =

φ(big) only if the distance between big and bks is less than a
given threshold τ .
The distance between big and bks = φ(big) is represented

as d = dist(big, φ(b
i
g)), so the BPC can be calculated by the

following equation:

BPC(G, S, τ ) =
|{d |d = dist(big, φ(b

i
g)), d < τ, big ∈ Bg}|

|Bg|
(15)

where |{d |d = dist(big, φ(b
i
g)), d < τ, big ∈ Bg}| is the

number of covered bifurcation points, |Bg| is the number of
bifurcation points in G and τ is set to 0.05 by default. BPC
represents the ratio of the number of matched bifurcation
points in S to the total number of bifurcation points in G. The

larger the BPC is, the higher the accuracy of the extracted
skeleton is.

Similarly, we can calculate EPC as the following defini-
tions.
Definition 3: A twig endpoint in a tree skeleton is a vertex

with degree equal to 1. We denote the twig endpoints in G
and S as Tg and Ts, respectively.

Tg = {t ig|t
i
g ∈ Vg, deg(t

i
g) = 1} (16)

Ts = {t is|t
i
s ∈ Vs, deg(t

i
s) = 1} (17)

Definition 4: The twig endpoint t ig is covered by t
k
s = φ(t

i
g)

only if the distance between t ig and tks is less than a given
threshold τ .
Then, the EPC is computed using the following equation:

EPC(G, S, τ ) =
|{d |d = dist(t ig, φ(t

i
g)), d < τ, t ig ∈ Tg}|

|Tg|
(18)

where τ is set to 0.05 by default. As shown in the equation,
EPC represents the ratio of the number of matched twig
endpoints in S to the number of total matched twig endpoints
in G, which is similar to the definition of BPC. Moreover,
larger values of EPC indicate higher accuracy of the extracted
skeleton.

3) COMPARISON OF THE RESULTS ON THE SYNTHETIC
DATA SET
We first test the performance of our methods on synthetic
point clouds with different numbers of points. We select point
clouds No.27, No.26, No.37, and No.38 for comparison. The
details of these synthetic point clouds are given in Table 1.
Fig.15 shows the visual comparison of the results of four
skeleton extraction algorithms: L1, L1−MST , ROSA and our
algorithm. The skeletons generated by our algorithm accu-
rately capture the topology of the point cloud, and most of
the branches in the skeleton are connected correctly. By con-
trast, the skeletons generated by the other three algorithms
have a large number of misconnected skeleton points in the
branching regions.

To further illustrate the correctness and accuracy of the
skeleton generated by our algorithm, we compute the SPD,
BPC, and EPC of the skeletons generated by the four skeleton
extraction algorithms (as shown in Table 2-Table 10), and the
number marked in bold in each row of a table represents the
best value for that row. In terms of centeredness, which is
measured by SPD, our algorithm performs best, followed by
L1 and L1-MST. In terms of topological correctness, which is
measured by BPC and EPC, our algorithm also has the best
overall performance. L1 and L1-MST perform well in some
cases, with BPC and EPC values greater than 0.8. ROSA
performs worst in both aspects.

Next, we test our algorithm on synthetic point clouds that
have large amounts of missing data. Visual comparisons are
given in Fig.16. The three point clouds shown in Fig.16
are generated based on skeleton No.2. As shown in the
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FIGURE 15. The skeletons extracted from synthetic point clouds with
different numbers of points. The point clouds are indexed by No.27,
No.26, No.37, and No.38 from top to bottom.

TABLE 2. SPD (different tree structure).

blue boxes, the skeletons generated by the L1 method and
L1-MST method deviate from the ground truth skeleton.
In comparison, the skeletons generated by ROSA and our
method show better centeredness. The quantitative assess-
ment of the centeredness is shown in Table 5. Our algorithm
performs best, with the highest SPD in all cases. The BPC
and EPC values are also presented in Table 6 and Table 7.
We also test our algorithm on synthetic point clouds that

have noise. Visual comparisons are given in Fig.17. The three
other methods fail to extract skeletons from the twig area of
the point cloud. Because of the existence of noise, the ROSA
method fails to accurately estimate the normals of the points;
hence the generated skeleton deviates considerably from the

TABLE 3. BPC (different tree structure, τ = 0.05).

TABLE 4. EPC (different tree structure, τ = 0.05).

TABLE 5. SPD (missing data).

ground truth. In comparison, ourmethod is capable of extract-
ing a complete skeleton from the twig parts. Even in the pres-
ence of considerable noise, the skeletons generated by our
method show good centeredness and topological correctness.
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FIGURE 16. Skeletons extracted from point clouds with missing data. The
point clouds are indexed by No.16, No.17, and No.18 from top to bottom.

TABLE 6. BPC (missing data, τ = 0.05).

A related quantitative assessment is shown in Table 8 -
Table 10. These three tables show the SPD, BPC, and EPC
of the skeletons extracted from tree point clouds with noise,
respectively. Our algorithm still outperforms the other three
in terms of both centeredness and topological correctness,
in most cases.

Finally, we test the performance of our algorithm on syn-
thetic point clouds that have varying point density. Visual
comparisons are given in Fig.18, and a quantitative assess-
ment is presented in Table 11 - Table 13. Again, our algorithm
produces the best results in most cases.

For a more intuitive comparison, we present three line
graphs to illustrate the quantitative evaluation results of the
four skeleton extraction algorithms on 72 synthetic tree point

TABLE 7. EPC (missing data, τ = 0.05).

FIGURE 17. Skeletons extracted from point clouds with noise. The point
clouds are indexed by No.8, No.9, No.68, and No.69 from top to bottom.

clouds in Fig.19 - Fig.21. The x-axis of these line graphs
indicates the index of the synthetic point clouds, and the
y-axis indicates the value of SPD, BPC or EPC. The skeletons
generated by our method have a smaller SPD, which indicates
better centeredness. These skeletons also have larger BPC
and EPC, which indicate a topological structure that is more
similar to the ground truth skeletons. In other words, our
method outperforms three other skeletonization algorithms
on synthetic point clouds.

4) RESULTS ANALYSIS
In the above experiments, the SPD values of our method
are the best for most point clouds. Therefore, our method
achieves the best centeredness because, in most situations,
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TABLE 8. SPD (noise).

TABLE 9. BPC (noise, τ = 0.05).

TABLE 10. EPC (noise, τ = 0.05).

the tree branches are generally cylindrical. Thus, we can
employ CPC to optimize the positions of the skeleton points.
The experiments show that even in the presence of noise

FIGURE 18. Skeletons extracted from point clouds with varying point
density. The point clouds are indexed by No.12, No.34, No.60, and
No.71 from top to bottom.

TABLE 11. SPD (varying point density).

or missing data (Table 5, Table 8), CPC can optimize the
skeleton points to the local center. Since the other methods do
not use any shape prior to recenter the skeleton points, when
the point cloud is incomplete, the extracted skeleton points
may deviate from the local center.

BPC and EPC are used to measure the topological cor-
rectness. As shown in the above experiments, our method
also produces very good results for these values in most
cases. For simple tree structures (e.g., No.1-No.3), all meth-
ods achieve good topological correctness. However, for com-
plex tree structures (e.g., No.61-63), only L1-MST and our
method have good BPC and EPC values because L1-MST and
our method are specifically designed for tree point clouds.
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TABLE 12. BPC (varying point density, τ = 0.05).

TABLE 13. EPC (varying point density, τ = 0.05).

FIGURE 19. SPD of all extracted skeletons.

L1-MST is based on the MST algorithm, and our method is
an improvement of the level set method. Both the MST algo-
rithm and the level set method can guarantee that the extracted
skeleton has a tree structure. However, L1 and ROSA do not
ensure a tree structure. Therefore, even for dense point clouds

FIGURE 20. BPC of all extracted skeletons (τ = 0.05).

FIGURE 21. EPC of all extracted skeletons (τ = 0.05).

without noise and occlusion, L1 and ROSAmay fail to extract
a topologically correct skeleton.

For point clouds with noise, missing data and varying point
density, our method usually has better BPC and EPC values
than those of L1-MST. One reason is that our method uses
octree to downsample the point cloud, which improves the
robustness to noise and varying point density. Most impor-
tantly, our method uses prior knowledge about the radii of
the tree branches to refine the improper positioning of joint
points. This approach enables our method to extract a topo-
logically correct skeleton in the case of missing data and
complex branch structures.

B. EXPERIMENTS ON THE REAL DATA SET
1) REAL TREE POINT CLOUD DATA SET
We also conduct experiments on a real tree point cloud data
set. This section introduces how the data set is acquired.

In this paper, we employ multiview stereo (MVS) tech-
niques to obtain point clouds of tree instances. Although
MVS is widely used for image-based 3D reconstruction, its
potential for point cloud-based tree reconstruction is under-
estimated. Different from TLS, MVS is capable of acquir-
ing point cloud data by means of an inexpensive digital
camera. To collect raw point data from a tree, we attach
a digital camera to an unmanned aerial vehicle (UAV) and
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FIGURE 22. Front view of the skeletons extracted from real tree point
clouds No.4,No.5, No.7 and No.9.

FIGURE 23. Top view of skeletons extracted real tree point clouds
No.6-No.9.

let it take photographs around the tree. Outdoor panoramic
scans of trees can easily be performed with the help of a
UAV. Compared to that obtained by TLS, the point clouds
obtained by MVS contain few occlusions and are dense.
Such dense point clouds strongly facilitate the extraction of
topology-preserving and well-centered tree skeletons.

To obtain point clouds, we took 20 to 30 pho-
tographs of each tree from different perspectives. The point

cloud is generated using pen-source MVE software [30].
In our experiment, we use one Osmanthus tree, three
Ficus virens tree, and five Ficus concinna trees as test
cases.

2) VISUAL ASSESSMENT ON REAL TREE POINT CLOUD
Because ground truth skeletons of point clouds of real trees
are difficult to obtain, we use visual comparisons to assess
our proposed skeleton extraction algorithm. For each point
cloud of a real tree, we provide the front view and top view
of the generated skeletons to conduct visual comparisons. The
point clouds of real trees and the corresponding skeletons are
shown in Fig.22 - Fig.23.
From both the front view and top view, we can see that

although the MVS point clouds have considerable noise and
outliers, our method extracts clean and topology-preserving
skeletons. The other three methods show two vulnerabilities
in these cases. First, they fail to extract skeletons from the
twig parts of the point clouds. Second, the skeletons generated
by these methods are not well-centered in the branching
regions.

VI. CONCLUSION
In this paper, we propose a novel skeletonization method for
dense point clouds of trees. The proposed approach has the
following characteristics: (1) accelerated skeletonization and
enhanced robustness to noise using octree; (2) initial skele-
ton extraction using the level set method; (3) well-centered
skeleton points calculated using CPC; and (4) improper posi-
tion refinement of joint points based on prior knowledge
about the radii of tree branches. Our method clearly out-
performs traditional ones in terms of topological correctness
and centeredness when the point cloud used to generate
the tree skeleton is noisy and partly occluded. Extensive
case studies based on real-world trees suggest that our algo-
rithm can extract skeletons that accurately fit the tree struc-
ture, and the positions of the skeleton points are optimally
centered. The extracted skeleton can not only be used to
reconstruct structural models of trees but also to estimate
forestry parameters.We plan to consider these topics in future
work.
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