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ABSTRACT Electroencephalogram (EEG) measurement, being an appropriate approach to understanding
the underlying mechanisms of the major depressive disorder (MDD), is used to discriminate between
depressive and normal control. With the advancement of deep learning methods, many studies have designed
deep learning models to improve the classification accuracy of depression discrimination. However, few
of them have focused on designing a convolutional filter to learn features according to EEG activity
characteristics. In this study, a novel convolutional neural network namedHybridEEGNet that is composed of
two parallel lines is proposed to learn the synchronous and regional EEG features, and further differentiate
normal controls from medicated and unmedicated MDD patients. A ten-fold cross validation method is
used to train and test the model. The results show that HybridEEGNet achieves a sensitivity of 68.78%,
a specificity of 84.45%, and an accuracy of 79.08% in three-category classification. The result of EEG
feature analysis indicates that the differences of spatial distributions and amplitude ranges in the alpha rhythm
(especially at approximately 10 Hz) among three categories might be distinctive attributes for depression
discrimination.

INDEX TERMS HybridEEGNet, convolutional neural network, depression discrimination, EEG, feature
analysis.

I. INTRODUCTION
Major depressive disorder (MDD, also known as unipolar
depression) is widely distributed in populations worldwide
and is one of the leading causes of disability in both ado-
lescents and adults. According to the World Health Organi-
zation’s statistics, over 300 million individuals suffer from
depressionworldwide, and approximately 800,000 people die
due to it every year [1]–[4]. An accurate diagnosis of depres-
sion in an early stage is critical and beneficial for depressed
people who need to receive clinical treatment in time.

Based on the various physiological measurement tools,
such as functional magnetic resonance imaging (fMRI),
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electroencephalogram (EEG) and positron emission tomog-
raphy (PET), many studies have tried to measure the psycho-
logical data and develop an adjunctive diagnostic approach
in clinical practice [5]–[9]. One of the measurement tools,
namely, quantitative measurement of a brain’s electrical sig-
nals taken from the EEG, is a neuroimaging technique with
clear practical advantages because it does not involve invasive
procedures, is easy to administer, is tolerated well, and has
a relatively low cost. Furthermore, the pervasive and persis-
tent nature of depressive symptoms has made scalp-recorded
EEG an appropriate approach to understanding the under-
lying mechanisms of the major depressive disorder. To this
end, many studies proposed various EEG data-based methods
for depression discrimination in recent years [7]–[12]. For
instance, their findings showed that low-frequency bands,
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such as alpha and beta, are promising candidate biomark-
ers. This suggested that the resting-state EEG might con-
ceal a biomarker for pathophysiology in neurodevelopmental
disorders.

Recent advances in EEG acquisition and process-
ing for discriminating depression have been paralleled
by the increased availability of machine learning meth-
ods [13]–[16]. Despite their promise as a supplementary
computer-aided diagnostic approach to studying depression,
these analytic methods are semiautomatic because their meth-
ods require manual feature extraction and selection that are
time-consuming and labor-intensive. Few studies used the
raw EEG data as the model input directly for classifying
depressive patients and healthy controls. In other words,
a classification method that can directly learn from raw
EEG data and automatically extract EEG features is more
suitable for constructing an automated EEG analysis method
for depression discrimination. Deep learning is such kind of
machine learning method that is commonly used in many
EEG data-based classification scenarios. As one of the deep
learning methods, the convolutional neural network (CNN)
is able to directly learn EEG features from raw data, and
does not require a handcrafted set of features for classi-
fication [17]–[25]. For example, Acharya and colleagues
presented the first application of CNN-based depression dis-
crimination [24]. A novel CNN model named DeepConvNet
was proposed to decode imagined or executed movements
from raw EEG [18]. EEGNet introduced a compact con-
volutional neural network for EEG-based brain-computer
interfaces (BCIs) used depthwise and separable convolutions
to construct an EEG-specific model [25].

Although many studies have used CNNs to perform
EEG-based classification tasks including depression discrim-
ination, few of them designed a convolutional filter to learn
EEG features according to the EEG activity pattern [23]–[25].
All of the existing methods mix EEG data of multiple
channels into a row, which results in the following layers
being unable to learn the spatial distribution characteris-
tics of multichannel EEG data, and a partial loss of the
synchronous characteristics of multiple brain regions. As
EEG activity characteristics always reflect the summation
of the synchronous activity pattern over a network includ-
ing several brain regions with similar spatial orientations,
those methods might not fully use synchronous EEG char-
acteristics to design the model and perform the classifi-
cation task. Considering that EEG network irregularity is
one of physiological symptoms that could be caused by
depression, we have reasons to believe that the summa-
tion of the synchronous activity characteristic over a net-
work might contain useful depression-specific information.
In addition, since EEG activity possesses regional charac-
teristics originating from different brain regions, regional
EEG characteristics extracted from different EEG channels
could also be used for depression discrimination. In other
words, the synchronous and regional characteristics tend
to reflect different aspects of depression-specific informa-

tion. It is expected that richer and more accurate depression
discrimination maybe achieved by fusing the two kinds of
characteristics that synthesize the hybrid information. The
above observations motivate us to design different convolu-
tional filters to learn the EEG’s synchronous and regional
characteristics and construct a CNN model to distinguish
depression.

We are also interested in the two characteristics learned by
the CNN model. As one of advantages of the CNN model
is the ability to extract features with the most discriminative
power for classifying objects, the features learned by the
CNN model and the related feature analysis may reveal the
EEG feature that is effective in distinguishing depression.
Thus, we explore whether the features learned by the CNN
model contain depression-specific information. The feature is
obtained by a technique that is similar to the deep-dreaming
algorithm [26]–[28], which is also known as feature maxi-
mization. This method helps us visually analyze the inner
works of the neural network. The idea of the method is to
generate an input feature matrix that maximizes individual
features inside the neural network. The matrix is initialized
with random noise and is subsequently gradually changed
using the gradient of the given feature with respect to the
input matrix. The artificially generated feature is iteratively
updated using the weights between layers and would most
likely produce the desired output. Advancing deeper into the
network, the feature is more likely to represent the archety-
pal features of the desired output. Specifically, the latter
exists (e.g., normal control = 0), and we want to determine
the input that would result in normal control. One way to
do this is to start with an input matrix that is full of ran-
dom noise and has the same size as the input EEG data
matrix, and then gradually tweak the input towards what
the neural net considers a data sample of normal control.
The input representing an archetypal feature would most
likely produce the output with the normal control label.
Accordingly, the feature matrix is able to represent EEG
characteristics of other categories. The existing studies used
feature maximization to visualize the features learned by
different layers and adopted the fast Fourier transform (FFT)
to analyze the features [18]–[21]. Similar methods, e.g.,
visualizing the features learned by a network through the
inception method, have also been described at Google
AI Blog (https://ai.googleblog.com/2015/06/inceptionism-
going-deeper-into-neural.html). Inspired by these studies, the
FFT method is chosen to analyze the spectral characteristics
of the feature matrix and interpret the difference between
the EEG activity features of normal control and depressive
patients.

The main contributions of this study are as follows:
• We propose a novel CNN model named HybridEEGNet
to capture more depression-specific information. Spe-
cially, there are two kinds of convolutional filters in
HybridEEGNet, which are used to simultaneously learn
the synchronous EEG characteristic and the regional
EEG characteristic.
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FIGURE 1. Architecture of the HybridEEGNet model for three-category classification.

• We evaluate the proposed HybridEEGNet model with
a three-category classication task of making a distinc-
tion among medicated depressive patients, unmedicated
depressive patients and normal controls. The results
demonstrate that our method constantly outperforms
other state-of-the-art approaches for the task.

• We further combine the feature maximizaion and FFT
method to analyze features learned by the proposed
HybridEEGNet model. The experimental results prove
that the differences of spatial distributions and amplitude
ranges in the alpha rhythm among three categories might
be distinctive attributes for depression discrimination.

The rest of the paper is organized as follows. In Section 2,
we present details of HybridEEGNet including the method of
generating the features from its convolutional layers and the
last fully connected layer. In Section 3, we compare the clas-
sication performance of HybridEEGNet with five baseline
approaches, and give the related results of feature analysis.
In Section 4, we disscuss HybridEEGNet from the extentional
aspect. Finally, conclusions are included in Section 5.

II. METHODS
A. INPUT DATA REPRESENTATION
Inspired by successful architectures in computer vision,
the input data of the first layer is represented as a 2D matrix.
Every EEG record is a data matrix of size C × D, where C
denotes the number of channels, and D represents the length
of a record. Then, all records are split up into a sequence of
fragments {X1, X2, . . ., XT }. The size of each fragment Xt
is C × d , where d is the ratio of D/(number of fragments).
Each fragment Xt also has a corresponding category label
Lt , and fragments belonging to the same record have the
same category label. The one-hot coding strategy for three-
category classification is used to represent Lt . Using the
above notation, the inputs of the proposed CNN model are
a set of time-ordered sequences {X1, X2, . . ., XT } with a set
of corresponding labels {L1, L2, . . ., LT }.

B. HYBRIDEEGNET MODEL CONSTRUCTION
Figure 1 shows the architecture of the HybridEEGNet
model, in which two parallel lines are designed to

run two independent TensorFlow graphs. Specifically,
the HybridEEGNet model consists of two independent CNN
submodels. Every independent CNNmodel comprises 8 con-
volutional layers and 8 max-pooling layers. Four fully con-
nected layers and one softmax layer are shared by the two
submodels. We refer to the submodel learning the EEG’s
synchronous characteristic as the SynEEGNet part, and
the submodel learning the EEG’s regional characteristic as
the RegEEGNet part. Table 1 illustrates the parameters of
the HybridEEGNet model. Columns under Layer Size pro-
vide information on input and output sizes of each layer,
and the input or output of a layer contains the number of
neurons equal to channels × data points × feature maps.
For each layer of the SynEEGNet part, the input and output
sizes are as same as those of the corresponding layer in the
RegEEGNet part. To avoid a repetitive representation, we use
one column (Input Size or Output Size) to describe the input
size or the output size of the layer in different parts. For each
feature map, we define the direction along the data points
as the y-axis, and the direction along the channels as the
x-axis. Filter Size means the size of the convolutional filter
or the max-pooling filter. Syn represents the convolutional
filter used for learning the synchronous EEG characteristic,
and Reg represents the convolutional filter used for learning
the regional EEG characteristic. Stride indicates how the filter
shifts along the x-axis and the y-axis. The input data of the
first layer is represented as a 2D matrix that comprises C
channels; each channel contains D data points. The convo-
lutional filters shift along the x-axis and the y-axis by one
unit each time. The zero-paddingmethod is utilized to pad the
input of convolutional layer if the filter does not fit the input.
The max-pooling filters shift along the x-axis and the y-axis
by one unit each time and by two units each time, respectively.
The specific operations are illustrated as follows:

1) CONVOLUTIONAL LAYERS
Two kinds of convolutional filters are designed to learn sep-
arately the EEG’s synchronous and regional characteristics.
The former could be regarded as the EEG characteristic of
multiple channels, and the convolution operation is split into
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TABLE 1. Parameters fixed in each layer of the HybridEEGNet model.

the first convolution across the data of multiple channels
and the second convolution across time. The regional EEG
characteristic could be regarded as the EEG characteristic of
a single channel, and the convolution operation is split into
the first convolution across the data of a single channel and
the second convolution across time. To facilitate the following
description, we use uppercase and lowercase letters to distin-
guish the layer operations in the two submodels. If l = 0, layer
l is the input layer with the input being EEG fragment Xm.
Let layer l (l ≥ 1) be a convolutional layer. Then, the input
of layer l comprises ml−1 feature maps from the previous
layer. The output of layer l consists of ml feature maps. The
ith feature map in layer l of two submodels, denoted Y li and
yli , are computed as follows:

Y li = f (B(l)i +
∑m(l−1)

j=1
K (l)
i,j ∗ Y

(l−1)
i ) (l ≥ 1) (1a)

yli = f (b(l)i +
∑m(l−1)

j=1
k (l)i,j ∗ y

(l−1)
i ) (l ≥ 1) (1b)

where B(l)i and b(l)i are bias matrices, and K (l)
i,j and k

(l)
i,j are the

convolutional filters connecting the jth feature map in layer
(l − 1) with the ith feature map in layer l. The leaky rectified
linear unit (LeakyReLU) is used as the activation function f(•)
after the convolution operation. In Figure 1, the convolutional
filter is marked by a red rectangle, the size of the filter
for learning the EEG’s synchronous characteristic is C × 8,
and the size of the filter for learning the EEG’s regional
characteristic is 1× 8. The corresponding convolution result
is marked by a black rectangle, and its size of 1× 1.

2) POOLING LAYER
Let layer l be a pooling layer. Its output comprisesml1 = ml−11
feature maps of reduced size. Max-pooling is used as the
downsampling operation. In Figure 1, the max-pooling filter

is marked by a green rectangle, and the filter size is 1×2. The
corresponding downsampling operation’s result is marked by
a black rectangle and is of size 1× 1.

3) CONCATENATION LAYER
The concatenation layer is also the first fully connected layer.
The TensorFlow outputs of the last pooling layer for two
submodels are concatenated into one vector, and feed that
vector into the first fully connected layer.

4) FULLY CONNECTED LAYER
Let layer l be a fully connected layer but not the first fully
connected layer; then, the input of layer l is in the form of
ml−11 feature maps. The identity activation function is utilized
as activation function g(•), and the output of the ith unit in
layer l is computed as follows:

Z (l)
i = g(

m(l−1)∑
j=1

w(l)
i,jZ

(l−1)
j ) (2)

wherew(l)
i,j and Z

(l−1)
j denote the correspondingweights of the

ith unit in layer l and the outputs of layer (l−1), respectively.

5) SOFTMAX LAYER
As shown in Figure 1, the last fully connected layer con-
nects with the softmax layer that contains 3 neurons. It is
noteworthy that the last fully connected layer also contains
3 neurons and connects with the softmax layer by the one-
on-onemethod. Since the softmax layer corresponds to output
classes (normal, medicated depressive patients, and unmedi-
cated depressive patients), the feature matrix learned by the
last fully connected layer could be used to analyze the feature
differences among the samples of three categories.
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Algorithm 1 Pseudocode for Generating the Feature Matrix
Input: trained HybridEEGNet model, convolutional layer ID
conv_id , feature ID of the last fully connected layer f _id ,
iteration count num_iter , size of input data size
Output: feature matrix FM
1: FM = random(size).
2: while i less than num_iter do
3: if conv_id is None then
4: Get the tensor value of the given neuron f _id in the

last fully connected layer as the objective function.
5: else
6: Get a reference to the tensor output by the given

convolutional layer conv_id .
7: Calculate the average of all tensor values for the

given convolutional layer conv_id as the objective
function.

8: end if
9: Get gradient grad of the objective function with

respect to feature matrix FM .
10: Calculate the step size for updating FM : step_size =

1.0/(std(grad) + 1e-8).
11: Update FM by adding the gradient: FM+ =

step_size ∗ grad .
12: i+ = 1
13: end while
14: return FM

6) LOSS FUNCTION
The categorical cross-entropy is used as the loss function to
compare the probability distribution with the true distribution
{L1, L2, . . ., LT } represented by the one-hot coding strategy.
The loss function is computed as follows:

Loss = −
T∑
i=1

M∑
j=1

Li,j ∗ log pi,j (3)

where T is the number of verification data samples,M is the
number of classes, pi,j is the predicted value obtained from
the fully connected layer, and Li,j is the true value.

C. ANALYSIS OF FEATURES LEARNED BY CONVOLUTIONAL
LAYERS AND THE LAST FULLY CONNECTED LAYER
Algorithm 1 follows the feature maximization method and
shows the details of generating the feature matrices learned
by convolutional layers and the last fully connected layer.
It essentially performs optimization with gradient ascent. In
the beginning, a trained model HybridEEGNet is given.
A feature matrix FM of the same size as the input data
of HybridEEGNet model is initialized with random values
and is subsequently iteratively updated using the gradient for
the given feature with respect to the feature matrix. For the
last fully connected layer, a feature ID f _id representing the
corresponding data category is given. The objective function
for the gradient ascent is the value of that feature. For the con-
volutional layer, convolutional layer ID conv_id representing

the jth convolutional layer is specified. The objective func-
tion is the average of all tensor values in the jth layer of
HybridEEGNet. Afterwards, the gradient of the objective
function with respect to FM is calculated. The gradient indi-
cates howmuchwe need to changeFM to maximize the given
feature. Finally, the step size is calculated for updating the
feature matrix; in that step, 1e − 8 is added to protect from
division by zero, and std(grad) denotes the standard deviation
of the gradient array. The gradient is added to update FM , and
FM is output after the completion of the specified number of
iterations.

Since the feature matrices updated by different layers
share similar frequency properties with the original EEG
data, the FFT method is used to reveal specific spectral
characteristic of each row of the feature matrix, and fur-
ther observe the EEG’s spectral differences among the three
categories. Specifically, for the feature matrix generated by
the RegEEGNet part, since the convolutional filter merely
operates on the data of a single channel each time, the matrix
shares similar frequency properties with the original data of a
single EEG channel. For the feature matrix generated by the
SynEEGNet part, because the convolutional filter operates on
the data of multiple channels each time, the spectral charac-
teristic of each row (except the last row) of the matrix reflects
the synchronous properties of multiple EEG channels. For
the last fully connected layer, the feature matrices updated
by three neurons corresponding to normal control, medicated
and unmedicated depressive categories contain the EEG’s
spectral characteristics of the three categories.

III. EXPERIMENT AND RESULTS
A. DATA COLLECTION
All depressive patients were recruited from Beijing Anding
Hospital, China. Every patient willing to participate in this
project had to meet the inclusion and exclusion criteria spec-
ified by a clinician. The normal control group of the experi-
ment was required to have no psychiatric disorders in the past
and was also screened by a clinician. Ultimately, 35 subjects
were recruited, who included 12 normal controls (6 females
and 6 males) aged from 21 to 55 (with mean ± standard
deviation (Std.) being 26.4 ± 9.8 years), 12 unmedicated
patients (6 females and 6 males) aged from 25 to 54 (with
mean ± Std. being 28.6 ± 7.3 years), and 11 medicated
patients (6 females and 5 males) aged from 20 to 56 (with
mean± Std. being 29.8± 10.6 years).

In the experiment, subjects are asked to record their EEG
data in the resting state. Specifically, subjects would sit on
a sofa and keep eyes closed for 8 minutes while not inten-
tionally thinking of anything in a dimly illuminated and
soundproof room. They are also asked tomaintain aminimum
arousal level without falling asleep. In the data collection
process, we select several representative brain regions from
the prefrontal cortex (PFC), the frontal cortex, and the parietal
cortex as EEG-collecting locations that were demonstrated to
be closely related to depression. To record multichannel EEG
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data, six surface electrodes (Fp1, Fp2, F3, F4, P3 and P4)
are placed on the scalp according to the 10-20 international
electrode system. EEG recordings are acquired using a plat-
form (Brain Products Ltd., Germany) with BrainAmp 16-bit
A/D convertor (ADC). The data collection software named
BrainVision Analyzer provides a head model for volume
conduction properties and supports localization of the signal
sources of different EEG channels. This function is used to
mitigate the effects of volume conduction on raw EEG data
samples before exporting the latter. The down sampling rate
of 500 Hz is used to downsample the collected EEG data.
The software used for EEG data analysis is written in Python
3.0 configured with TensorFlow.

B. DATA PREPROCESSING
The EEG data recorded in one trial is cut into three snippets,
and the median snippet with the duration of 5 minutes is kept
for analysis. The time snippets of the beginning 30 seconds
and the last 2 minutes and 30 seconds are removed. Z-score
normalization is used to overcome the amplitude scaling
problem and remove the offset effect. For every median snip-
pet, the data record of 5 minutes is fragmented into 50 data
samples. Every sample contains 3072 sampling points (cov-
ering approximately 6.144 seconds). Based on the channel
order of Fp1, Fp2, F3, F4, P3 and P4, the fragments of 6
channels are realigned into a data matrix. Every data matrix
is fed into the CNNmodel as a new independent data sample.
The dataset ultimately used in this study includes a total
of 1750 data samples (consisting of 600 data samples of
normal control, 600 data samples of unmedicated depres-
sive patients, and 550 data samples of medicated depressive
patients).

C. COMPARISON BASELINES
Five kinds of CNN models are constructed as baseline
approaches for result comparison. The simplified descrip-
tions of model features of every baseline approach are as
follows:
• SynEEGNet. Compared with HybridEEGNet, we only
keep the submodel part that learns the EEG’s syn-
chronous characteristic and remove the concatenation
operation in the first fully connected layer. The last three
fully connected layers, the softmax layer, and the model
input are the same as those of HybridEEGNet.

• RegEEGNet. Similarly to the construction of the
SynEEGNet model, we only keep the submodel part
that learns the EEG’s regional characteristic and remove
the concatenation operation in the first fully connected
layer. The last three fully connected layers, the soft-
max layer, and the model input are also the same as in
HybridEEGNet.

• DeepConvNet [18]. The model uses a convolutional
filter to mix the EEG data of multiple channels into a
row, which might make it unable to fully use the spatial
distribution characteristics of EEG activities originating
from multiple brain regions.

• AchCNN [24]. We refer to the CNN model constructed
by Acharya et al. as AchCNN because we did not
find any specific model name in the paper. Since the
researchers demonstrated the advantage of CNN-based
depression discrimination by comparing results of their
model with those of several traditional methods (SVM,
logistic regression, bagged tree, etc.), it is a valuable
comparison baseline in this paper.

• EEGNet [25]. An operation similar to that of [18] is used
by EEGNet to merge the EEG data of multiple channels
into one row as the output of the first convolutional layer.

For the baselines, namely, the SynEEGNet and
RegEEGNet models that are bases of our model, the respec-
tive hyperparameters are tuned until we obtained the optimal
classification accuracy. Afterwards, for a fair comparison,
the HybridEEGNet used those parameters. For DeepConvNet
and EEGNet, as their inputs and outputs are different from
those of our model, we did not directly use their publicly
released software implementations. Instead, we referred to
the latter. Subsequently, we built them and tuned the hyper-
parameters in the same way as [18]. For AchCNN, we
reproduced the CNN network and tuned the hyperparameters
in the same way as [24].

D. EVALUATION METRICS
Evaluation metrics including sensitivity (Sen), specificity
(Spc) and recognition accuracy (Acc) are used to evaluate
the classification performance of models. Sensitivity refers to
the ability of a classifier to correctly detect positive samples.
Specificity refers to the ability of a classifier to correctly
detect negative samples. Recognition accuracy refers to the
ability of a classifier to correctly detect the samples with
different labels. The above metrics are calculated using the
following formulas:

Sen = TP/(TP+ FN )

Spc = TN/(TN + FP)

Acc = (TP+ TN )/(TP+ FP+ FN + TN ) (4)

where TP means true positives, TN denotes true negatives,
FP represents false positives, and FN corresponds to false
negatives. For three-category classification, the one-against-
all approach is utilized to calculate the evaluation metrics.
In other words, we take turns at using one of the three cat-
egories as the positive label and the remaining two categories
as the negative label. The results of 3 evaluations are averaged
for estimating the model performance.

E. PARAMETER SETTINGS
The tenfold cross-validation method is used to validate the
classification performance of each model. In the training
phase of each fold, all variables are initialized with ran-
dom values following Gaussian distributions and trained for
1000 epochs; the batch size of every epoch is 300 data
fragments. In each epoch, a random resampling strategy
for selecting the training data is used to avoid the model
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TABLE 2. Comparison results of HybridEEGNet and baselines using the confusion matrix and evaluation metrics.

performance decrease caused by the sample disequilibrium.
A total of 100 medicated depressive patient data fragments,
100 unmedicated depressive patient data fragments, and
100 normal control data fragments are used to train the model
in every iteration. The other parameters aremomentum of 0.9,
weight decay of 0.0005, the (base) learning rate of 0.001, and
dropout rate of 0.9. A regularization term is added into the
loss function of the proposed model so as to avoid overfitting.
In the testing phase of each fold, 60 data samples of normal
control, 60 data samples of unmedicated depressive patients,
and 55 data samples of medicated depressive patients are uti-
lized as the testing sample. Themetrics’ values resulting from
10 folds are averaged for estimating the model performance
to prevent any model from obtaining good results by chance.

F. RESULTS
1) COMPARISON WITH THE BASELINE APPROACHES
Table 2 compares the classification results of HybridEEGNet
and baseline approaches using the confusion matrix and eval-
uation metrics. In the table,MD,UnMD andNC represent the
medicated depressive patient, unmedicated depressive patient
and normal control categories. The Positive column shows
that the samples of each category are used as positive samples
in turn to calculate the evaluation metrics given in columns
Sen(%), Spe(%) and Acc(%). For each model, the results of
average evaluation metrics are also given.

From Table 2, we can see that HybridEEGNet achieves
the best performance. The average sensitivity, specificity
and accuracy are 68.78%, 84.45% and 79.08%, respectively.
This result demonstrates that the HybridEEGNet model that
merges the EEG’s synchronous and regional characteristics
is more suitable for distinguishing depressive patients than

other kinds of CNN architectures. Examining the confusion
matrix, we observe that in the condition of considering the
unmedicated depressive patient samples as the positive sam-
ples, HybridEEGNet attains the sensitivity of 58.83%, i.e., it
does not distinguish well the unmedicated depressive patient
samples from the samples of the other two categories. The
sensitivity results of other baseline models are also lower
than in the conditions of considering medicated depressive
patient or normal control samples as the positive samples.
This might be caused by the EEG activity state of unmed-
icated depressive patients being a median state between a
medicated state and the normal state. Additionally, the table
shows that most EEG samples of unmedicated depressive
patient are classified as EEG samples ofmedicated depressive
patient. This finding indicates that EEG samples of unmedi-
cated depressive patients and medicated depressive patients
have common EEG characteristics even though medicated
depressive patients received medical treatment.

The classification performance of HybridEEGNet is com-
pared with that of baseline models from the perspec-
tive of model structure. On the one hand, compared with
SynEEGNet and RegEEGNet, HybridEEGNet integrates the
feature extraction part of the two models, and attains a
higher classification performance, which demonstrates that
the integration of the synchronous and regional EEG char-
acteristics improves depression discrimination ability of the
CNN model. On the other hand, compared with models that
ignore synchronous EEG characteristics, HybridEEGNet also
attains a better classification performance, which indicates
the significance of learning spatial distribution characteristics
of EEG activity generated by multiple brain regions for the
task of depression discrimination.
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FIGURE 2. The results of the FFT analysis in the feature matrices learned
by the 2nd, 4th and 8th convolutional layers of the SynEEGNet part.

FIGURE 3. The results of the FFT analysis in the feature matrices learned
by the 2nd, 4th and 8th convolutional layers of the RegEEGNet part.

2) ANALYSIS OF THE FEATURES LEARNED BY THE
CONVOLUTIONAL LAYER
As mentioned above, we firstly use the deep-dreaming algo-
rithm to generate matrices representing the features learned
by the convolutional layers, and then utilize the FFT method
to analyze the feature matrices. Figures 2 and 3 show the
results of the FFT analysis in the feature matrices learned by
the 2nd , 4th and 8th convolutional layers of the SynEEGNet
part and the RegEEGNet part, respectively. Each figure con-
sists of 6 subfigures, and each subfigure contains two parts.
In each subfigure, the right part shows the result of the FFT
analysis in the feature matrix learned by the three convolu-
tional layers, and the left part shows the EEG electrode distri-
bution locations as red dots and gives the corresponding EEG
channel names. In the left parts of all subfigures in Figure 2,
six channel names are displayed, while only one channel
name is provided in the left parts of all subfigures in Figure 3.
This representation aims to reflect that the feature matrix
learned by RegEEGNet is generated by processing the EEG
data of a single channel, i.e., each row shares similar fre-
quency properties with the original data of a single EEG
channel, while the feature matrix learned by SynEEGNet
shares similar frequency properties with the original data of
multiple EEG channels.

FromFigures 2 and 3, we can observe that the peak position
of the FFT amplitude of each row moves back as the layers
deeper in the network. In other words, the model tries to cap-
ture the low-frequency components to distinguish depressive
patient and normal control samples, which might indicate
the importance of low-frequency components in depres-
sion discrimination. The relation between low-frequency

components and depression has been investigated by many
studies [29]–[31]. For example, in the last several decades,
alpha- and theta-band rhythms have been observed to provide
information on the depressive state as well as recovery. The
results of those studies suggest that the design of our convo-
lutional filters is reasonable. Furthermore, for all rows of the
feature matrix learned by the 8th convolutional layer of the
SynEEGNet part, the primary frequency is between 4-10 Hz.
This result might reveal that the frequency between 4-10 Hz
to be the synchronous EEG frequency originating from the six
brain regions, which is useful for distinguishing depressive
patients from normal controls. For the rows (3rd, 4th, 5th and
6th) of the feature matrix learned by the 8th convolutional
layer of the RegEEGNet part, the signal component with
the frequency at approximately 10 Hz is the primary fre-
quency component. Comparing it with the primary frequency
values shown in all rows of the feature matrix learned by
SynEEGNet, we observe that not every row of the feature
matrix learned by RegEEGNet shows 10 Hz as the primary
frequency. As each row of the feature matrix shares similar
frequency properties with the original data of a single EEG
channel, this result might demonstrate spatial distribution
differences of the alpha rhythm between depressive patient
and normal control samples. Based on the previous studies
[12], [13], the EEG rhythms in especially low frequency
bands, such as theta (4-7 Hz) and alpha (8-13 Hz), and their
spatial distribution are broadly believed to be important in
cooperative studies of the neuropathology of the depressive
disorder. Our observation is congruent with those findings
and shows the importance of the theta and alpha rhythms in
studying the neuropathology of the depressive disorder.

3) ANALYSIS OF THE FEATURES LEARNED BY THE LAST
FULLY CONNECTED LAYER
Since the feature matrices updated by the last fully con-
nected layer correspond to output classes, it is important
to analyze the spectral characteristics of such matrices and
examine the spectral difference among the EEG samples of
three categories. The feature matrix is averaged into a vector
and the FFT is used to observe the spectral characteristics
of the vector. Figure 4 illustrates the difference among the
EEG samples of the three categories in four EEG rhythms
(delta (1-3 Hz), theta (4-7 Hz), alpha (8-13 Hz) and beta
(14-30 Hz)). The top figure displays three curves that rep-
resent the log-transformed amplitude spectrum of the three
vectors in the frequency band between 1-30 Hz. The hor-
izontal axis represents the scale of the frequency range of
the four EEG rhythms, and the vertical axis shows the log-
transformed amplitude of different frequencies. The bottom
figure shows a topographic plot of the three categories for
four EEG rhythms. The top part of Figure 4 indicates that
the amplitude of the alpha rhythm (especially at approxi-
mately 10 Hz) of normal control and medicated depressive
patient samples is greater than that of unmedicated depres-
sive patients. This result is congruent with the previous
findings that demonstrated that depressed patients showed
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FIGURE 4. Difference among EEG samples of the three categories in four
EEG rhythms (delta (1-3 Hz), theta (4-7 Hz), alpha (8-13 Hz) and beta
(14-30 Hz)).

a task-dependent decrease in alpha, and beta oscillations in
centro-parieto-occipital sites [30], [32], [33]. The bottom part
of Figure 4 demonstrates that the primary power of four
rhythms of normal controls is focused on the PFC region,
while the primary power of four rhythms of the medicated
group and the unmedicated group is focused on bilateral
frontal or parietal regions. This result might indicate pre-
frontal cortex abnormalities in clinically depressed subjects.
Many previous studies [33]–[35] have shown that the PFC
region is a significant nerve center of thinking and behavior
regulation in the brain and is emerging as likely being directly
involved in clinical depression.

IV. DISCUSSION
This study is the first attempt to utilize a CNN model for
differentiating normal controls from medicated and unmed-
icated depressive patients, and furthermore to analyze and
compare the differences between the features learned by the
convolutional layer or the fully connected layer using the
deep-dreaming algorithm. In other words, the primary focus
in this paper is mainly on two aspects: HybridEEGNet model
construction and feature analysis.

In the constructed HybridEEGNet model, the synchronous
EEG characteristic and the regional EEG characteristic are
learned by different filters, and the fusion feature is used to
distinguish depression. Although the results show that the
spatially global voltage patterns contain effective depression-
specific information, the filter for learning the synchronous
EEG pattern did not strictly follow the approach of learning
such global patterns. Specifically, The filter of size 6 × 8
is used to learn the synchronous characteristic in the con-
volutional layer. The first row of the feature matrix of a
convolutional layer could be regarded as the joint result of
processing the EEG data of 6 channels. However, with the
movement of the filter in the channel direction, the zero-
padding method is utilized to pad the input of a convolutional
layer if the filter does not fit the input, i.e., the remaining rows
of the feature matrix could only be regarded as the joint result
of EEG data and zeros. One alternative way to improve this is
by designing different filters with different sizes. Specifically,

a filter of size 5 × 8 could be designed to process the input
data of five EEG channels in a convolutional layer, and a
filter of size 4 × 8 could be used to process the input data
of four EEG channels in a convolutional layer. Furthermore,
the characteristics of functional brain networks in depressive
patients have been investigated by many studies that exam-
ined the resting-state scalp EEG data, i.e., the EEG activity in
functional brain networks is affected by depression [36]–[39].
In this context, different convolutional filters could be used to
process the EEG data of different functional brain networks.
The inception network [40] that uses different filters to extract
features and fuses them to obtain more abstract and effective
features seems to be appropriate for this task.

For feature analysis, using a feature maximization tech-
nique similar to that of the deep-dreaming algorithm, feature
matrices are artificially generated to reveal the EEG’s spectral
characteristics learned by the convolutional layer and the last
fully connected layer. Based on the FFT analysis, we can
mainly draw three conclusions: (1) the peak position of the
FFT amplitude of each row moves back as layers deeper
into the network, and the primary frequencies of the features
learned by the 8th convolutional layer of the SynEEGNet
part and the RegEEGNet part concentrate in the frequency
components of 4-10 Hz and 10 Hz, respectively; (2) the
spatial distribution of the alpha rhythm (at approximately
10 Hz) might yield depression-specific information useful
for distinguishing normal control from medicated depressive
patient and unmedicated depressive patient samples, and (3)
the results of the FFT analysis in the features learned by
the last fully connected layer indicate a decrease in alpha
oscillations in centro-parieto-occipital sites, and prefrontal
cortex abnormality is also observed in clinically depressed
subjects. Human EEG studies in the past several decades have
shown that the neuropathology of the depressive disorder
has been associated with abnormalities of alpha rhythms.
For example, the frontal alpha asymmetry has been investi-
gatedmultiple times to validate its effectiveness in depression
diagnosis. The decreased alpha power is currently considered
a hallmark of depression, and there is strong evidence that
individuals with depression have impaired alpha oscillations.
In this work, the insights into how the spatial distribution and
amplitude range differ between the depressive patients and
normal controls provide new evidence to support the idea that
the alpha rhythm might play a crucial role in distinguishing
depression.

Although our results have similarities with the findings of
previous studies, these results are still in the experimental
stage. In future research, it would be more appropriate to use
a dataset with a larger scale and more EEG channels for vali-
dating the reliability of our results. Additionally, those results
could be used in reverse to discriminate normal controls from
medicated and unmedicated depressive patients. Specifically,
we can go back to a traditional approach and extract fre-
quency power features from the raw EEG data based on the
above findings. Exploiting the spatial distribution and ampli-
tude range difference of the EEG rhythm between depressive
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patients and normal controls, other classifiers could be used to
make our results more interpretable and provide a neurobio-
logical interpretation of the relationship between the findings
and the neuropathology of the depressive disorder.

V. CONCLUSION
In this study, a HybridEEGNet model is proposed to per-
form classification tasks of three categories for support-
ing computer-aided depression discrimination application.
Compared with the baseline approaches, the HybridEEGNet
model exhibits superior classification performance. The
results of the FFT analysis in the features learned by the
convolutional layers indicate the importance of the low-
frequency (4-10 Hz) components in depression discrimina-
tion. Additionally, the results of the FFT analysis in the
features learned by the last fully connected layer illustrate
that the difference of spatial distribution and amplitude range
in alpha rhythm is one of distinctive aspects in depression
discrimination. The methods and findings of this study might
pave the way for a widespread application of deep CNN-
based depression discrimination in both clinical applications
and neuroscientific research.
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