
Received December 30, 2019, accepted January 17, 2020, date of publication February 4, 2020, date of current version February 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2971639

Graph Compression Storage Based on Spatial
Cluster Entity Optimization
DAWEI WANG 1, WANQIU CUI 2, AND BIAO QIN 1
1School of Information, Renmin University of China, Beijing 100872, China
2School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

Corresponding author: Biao Qin (qinbiao@ruc.edu.cn)

This work was supported by the 2018 Outstanding China-Foreign Youth Exchange Program of the China Association for Science and
Technology under Grant 311319000207.

ABSTRACT Graph storage technology is confronted with an enormous challenge as far as the compact and
complex graph-structure data. This phenomenon is derived from social networks with spatially intensive
data. Since a hot event can cause the generation of a network cluster, which consists of a massive duplicate
associated entities in the social networks, the space utilization and processing speed of graph data is
obstructed. Therefore, it is necessary to design a graph storage mechanism specifically for the above data.
In this paper, we propose a Graph compression Storage engine based on spatial Cluster entity Optimization
(GSCO), which improves the native graph storage model through the proposed the many-to-one mapping
structure and a Heat Evolution Elimination algorithm (H2E). Firstly, we define the spatial cluster entity
formally and confirm the compressed storage objects. Then, we introduce the many-to-one relationship to
transfer the mapping structure between the node and property. It compresses the data to raise the space
utilization of the graph database. Finally, we propose the H2E algorithm that allows the representative nodes
to be anchored an extended period in memory according to the heat evolution acceleration. It increases the hit
rate and throughput and reduces the I/O operation by deleting the redundancy of data. Extensive experiments
results show that the proposedGSCO storagemodel is better thanNeo4j for reading andwriting data in spatial
clustering entity. It significantly promotes the effectiveness of graph operation, including the data loading,
the common queries, and the clustering test.

INDEX TERMS Graph compression storage, social networks, spatial cluster entity, heat evolution.

I. INTRODUCTION
Graph database has been extensively studied and applied with
the emergence of abundant relational data such as knowledge
mapping and social networks. Specifically, Neo4j [1] and
Titan [2] are adopted by top enterprises like eBay, Cisco.
FlockDB [3] is developed and used by Twitter. The graph
storage model is an indispensable module and business in
the construction of the graph database. It surfaces a tremen-
dous challenge when dealing with space-intensive clustered
data. The spacial clusters are usually highly correlated data
incurred by the widespread dissemination of hot events on
social networks, including reply, likes, and forwarding [4],
etc. It sets off numerous interactions focused on the hot event
and constructs an immense network that contains substantial
duplicate data. The different popularity of events brings into

The associate editor coordinating the review of this manuscript and

approving it for publication was Vlad Diaconita .

a diverse density of graph structures in social networks. The
spacial cluster structure caused by hot events is more con-
centrated than the usual events. It forms a spacial cluster of
star-shaped topological in the discussion space of the topic
[5], [6]. Although the network is often sparse (|E| � |V |2),
the neighborhood of the nodes is dense. Besides, the clus-
tering coefficient and transitivity are also high. The structure
produces considerable duplicate data that need to be handled
in the graph database resulting in data redundancy and waste
of storage space. Therefore, it is necessary to build a separate
storage mechanism for such data in the graph database.

The goal of this paper is to design a new storage model
in the graph database and compress the duplicate data pre-
senting space-intensive in the social network. We elimi-
nate redundant data to realize efficient utilization of storage
space and improve related operational performance. Due to
the characteristics of the social network data, the generous
new data is created by the interaction behavior such as

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 29075

https://orcid.org/0000-0003-2326-4079
https://orcid.org/0000-0002-6793-6394
https://orcid.org/0000-0002-4304-675X
https://orcid.org/0000-0002-5169-9232


D. Wang et al.: Graph Compression Storage Based on Spatial Cluster Entity Optimization

forwarding and comment, etc., which has a strong correlation
with the original entity node. That is, the new node carries the
partly content of the original node, but also has a different
primary key from other entities. As a result, a large amount
of duplicate data exists in the formation of a space-intensive
structure in an interactive network. They are usually long text
and frequently reused in social networks. The reason is that
the nature of the semi-structured data. The structure of the
data mixes with the content, and there is no noticeable dif-
ference between them [7]. Moreover, the operating speed of
spatial clustering data is also greatly affected. How to discard
redundant data to achieve compression, and reduce the I/O
consumption caused by file loading is the main problem of
this paper.

In order to store dense network data, the Neo4j graph
database discards relationalmodels. It first employs the native
graph storage [8] with a labeled property graph model to store
and process graph data. However, a native graph database
does not recognize the demand for efficient storage toward
clustered data that tends to be space-intensive in social net-
works. In the native graph storage engine, the data stores in
a dynamic storage file that cannot be encoded as a property
structure of the inline value. The dynamic storage file requires
a pointer for further addressing and increases the path to read
the property. Therefore, this model not only suffers from the
problem of data redundancy but also slows down the speed
of related operations as many associations and addressing.
Moreover, the Hypergraphs model [9] allows the relationship
to attach any number of nodes when storing the graph data,
effectively reducing the number of relationships. However,
the storage model is only suitable for the field of many-to-
many ties. As a more generalized model, it needs to be more
clearly defined and not easily tweaked while modeling. So
it is not applied for the graph database based on the on-line
transaction processing.

In this paper, we design a new graph storage engine GSCO.
It optimizes native graph storage from two perspectives. On
the one hand, we develop a many-to-one mapping relation-
ship for the compression of data and structure. On the other
hand, a heat evolution elimination algorithm is proposed to
designate anchoring data in memory based on thermal evolu-
tion. Concretely, the model classifies the related data of hot
events and extracts the spatially-intensive data in the social
network as the spatial cluster entity. Then, we perform the
compression of the original data by generating multiple rep-
resentative nodes and the many-to-one mapping relationship.
Finally, GSCO eliminates repetition data and improves the
I/O speed by combining the novel mapping structure with the
H2E algorithm.

Specifically, we overcome the existing obstacles to achieve
two improvements. 1) The storage space utilization. In the
storage of the space-intensive data, the one-to-one rela-
tionships cause the repeated record of a substantial of the
same data. We get rid of the limitation of the mapping
structure and redesign many-to-one relations to map the
same part of multiple nodes into the representative node for

shared storage. We define the equivalence relationship in the
entire data space and aggregate the public content to achieve
the compression of redundant data. Moreover, we rate the
access frequency and importance of nodes based on their
priority and current popularity. The H2E algorithm dynami-
cally allocates the anchor time for the data. Therefore, GSCO
improves the utilization of storage space. 2) Efficiency of
graph operations. The abundance network structure of the
space-intensive clusters increases the workload of the graph
database, which can occupy the main system resources when
traversing its nodes. We prune redundant data through a
many-to-one relationship, which points the property storage
files of a vast of nodes to the same representative node. The
complexity of each clustering structure is compressed by
mapping between the representative nodes and the remain-
ing nodes. Therefore, we can perform traversal more effi-
ciently in the graph model while reducing system resource
consumption.

We evaluate the proposed GSCO model on a real-public
dataset, which is collected from Sina Weibo and consists
of 13 hot events. The extensive experimental results show
that our GSCO model can achieve high space utilization in
compressed storage and effectively improves the cache hit
rate in the data read and query. Above these outperform,
GSCO is significantly superior to the state-of-the-art Neo4j
graph model adopting the labeled property graphs.

The contribution of this paper are summarized as follows:
• We propose GSCO, a graph storage engine through
compression and shard cache optimization. GSCO can
effectively storage spatial-intensive data caused by hot
events in social networks, that raises the storage space
utilization dramatically compared with Neo4j.

• We design a many-to-one relationship structure that
enables the mapping between related sharing data and
representative data in spatially cluster. It reduces redun-
dancy caused by duplicate data and improves the space
utilization of graph database.

• We develop a heat evolution elimination algorithm by
defining the acceleration of heat evolution and the prior-
ity of representative nodes. Through the dynamic selec-
tion of the compression target and the timely update of
memory, we greatly improve the memory hit ratio so as
to realize more efficient and faster disk access.

• We conduct comprehensive experiments in a social net-
work graph. The results indicate that the GSCO model
delivers considerable performance on random element
writes while being orders of magnitude faster on clus-
tering operations compared with the Neo4j. We also
demonstrate the H2E algorithm reaches high space uti-
lization and the cache hit rate compared to the LRU
algorithm using in Neo4j.

The rest of the paper is organized as follows. In section 2,
we review the related work of graph storage. We pro-
pose the many-to-one mapping structure and H2E algo-
rithm, as the two main components of GSCO in Section 3.
In Section 4, we report and display broad-scale and

29076 VOLUME 8, 2020



D. Wang et al.: Graph Compression Storage Based on Spatial Cluster Entity Optimization

multi-angle experimental results by comparing the state-of-
the-art Neo4j storage model. Finally, we conclude the paper
in Section 5.

II. RELATED WORK
In this section, we review the related works about graph
storage technology. It divides into the graph storage model
and graph compression method.

A. GRAPH STORAGE MODELS
As the main research directions of databases, data storage has
received extensive attention. The traditional storage mecha-
nisms include the storage model of the row, column, key [10],
document and object exchange [11], etc. Besides, since com-
plex relational data forms a network structure, a graph model
is needed to the commitment to the management of rich
related data [12]. Compared with other data models, the graph
storagemodel can set different property sets for specific types
of data.

The triplestores model [13] is derived from the Semantic
Web. It is a data structure that contains the subject, predi-
cate, and object. It can infer large-scale knowledge by con-
necting network resources with semantic tags. The graph
databases can seem a superset of the simple triplestores, and
the processed data only tends to be logically related in the
triplestores model. Since it does not support polygon index
adjacencies and its storage engine is not optimized for storing
property graphs, the triplestores is not native graph databases.
So the model is best at analysis. The hypergraph model is a
generalized graph model in which a link (called a hyperedge)
can be associated with any number of nodes [14]. The hyper-
graph model is suitable for many-to-many relationships [15],
which visualizes the modeling of the problem and be more
faithful to the details of the data.

The labeled property graph model consists of nodes, links,
properties, and labels [16]–[18]. The node contains proper-
ties, which can act as a container. The property value can be
in the form of any key-value pairs. At the same time, nodes
can be labeled with one or more tags. The node structure is
semantically linked by direction and name. Connections can
also be used as containers to store properties. The native graph
has an indexed adjacency.

The management of large-scale graph data is a tricky
problem of graph computation and graph storage. It is
involved in graph mining and analysis, including related sub-
graph matching, subgraph isomorphism testing, hypergraph
matching, etc. There is a lot of discussion in [19]–[22].
Based on these studies, a large number of excellent group
databases have been generated, such as Neo4j,1 Infinite-
Graph, FlockDB, OrientDB, Affinity, Allegro-Graph, Hyper-
grophDB,2 FranzInc, Titan,3 Trinity, etc.

1https://neo4j.com/
2http://www.hypergraphdb.org/
3http://titan.thinkaurelius.com/

B. GRAPH COMPRESSION METHODS
With the increase of large-scale graph data, graph storage
mechanisms have been devoted to research on graph com-
pression techniques [23]–[25] to reduce the storage burden
and improve the operation efficiency of graph data.

They encode a graph or its transitive closure into com-
pact data structures via node ordering and document similar-
ity, hosts [25], and linkage similarity [26], etc. Shrink [24]
reduces the structure size of the graph and mainly consid-
ers the distance-query. Other studies aim at specific classes
of operations, which mainly contain neighborhood queries
[27]–[29], reachability queries [30], and path queries [26],
etc. Furthermore, most of them need to decompression before
querying the graph [1], [31]. Moreover, the query evaluation
algorithms on original graphs have to be modified to answer
queries in their compact structures. Therefore, existing meth-
ods are not universal and dose not consider the nature of
the structure and content of the constantly changing graph
data. However, we analyze the flexibility of dynamic memory
occupation in this paper.

As an important implementation of the property graph
model, Neo4j is excellent and widely adopted. Each property
record stores up to four property blocks. Each property block
contains property types, property index files, and property
values. For each value of the property, the record contains
a pointer or inline value to the dynamic store record. The
property index file stores all the property names. The value
of the property is given priority inline into the property store
file [32]. However, it is dragged to a dynamic store when
the value can not be encoded as an inline value. Due to the
Neo4j is a one-to-one mapping between node and property,
queries for such data require multiple accesses to one or more
files which increases I/O operations and reduces throughput
in Neo4j. This phenomenon has a direct relationship with
the separation strategy of graph structure and property data.
Therefore, we make improvements based on Neo4j. We fully
use the superiority of the complete attribute and structure
information of the graph provided by the label property
graph. Then, we add a new mapping mechanism and memory
replacement algorithm to achieve the compression storage of
space-intensive graph data. Finally, we increase the memory
utilization and accelerate the processing speed and through-
put of graph data.

III. OUR MODEL
In this section, we firstly describe the problem statement.
Then the definition of the spatial cluster entity is introduced.
The main component of the graph data storage model GSCO
is proposed, which consists of the many-to-one mapping
structure and the designation of H2E algorithm.

The proposed GSCO aims to optimize the graph stor-
age model when handling with space-intensive data, thereby
improving the storage space utilization and operational effi-
ciency. It first identifies the spatial cluster entities that can
cause duplicate data. Then, GSCO extracts representative

VOLUME 8, 2020 29077



D. Wang et al.: Graph Compression Storage Based on Spatial Cluster Entity Optimization

FIGURE 1. The framework of the proposed GSCO model.

elements and designs a new many-to-one structure mapping.
Finally, the H2E algorithm dynamically updates the mem-
ory according to the access popularity. Fig. 1 illustrates the
framework of GSCO. It consists of three main components:
the recognition of spatial cluster entity, many-to-onemapping
structure, and H2E algorithm.

A. PROBLEM STATEMENT
Given microblog data with different hot events, we define the
social networks graph structure as G = (V ,E,Au,Y ), where
V (G) is a set of message nodes, E(G) is a set of edges which
represents the forwarding relationship between nodes, Au(G)
is the property in the form of a key− value pair which has no
duplicate data, and Y is the representative nodes. The property
of nodes in Y is a shared content that is extracted from A(G).
We use |V (G)|, |E(G)| and |A(G)| to denote the number of
nodes, edges and properties in G, respectively. For each node
u ∈ V (G), we use N (u,G) to denote the neighborhood of u in
G, which isN (u,G) = {v|(u, v) ∈ E} [20].D(u,G) represents
the degree of node u ∈ V (G), that is, the number of neighbors
of u in G, expressed as D(u,G) = |N (u,G)|. The G is a
simple directed graph that has no self-looping and no parallel
edges.

Since the nature of forwarding operations in social
networks, the forwarding node contains a part of the same
information as the original node. In the graph database Neo4j,
all nodes are stored in the same way [8]. As a result, a lot
of the same data that discusses the identical hot event is
dumped into memory multiple times as different physical
nodes. The structure formed by loading copies of the same
content into the graph as multiple independent nodes con-
tributes to maintaining the graph structure. To address this
problem, we optimize the storage engine by redesigning the
relationship between the node and the property storage, while
ensuring the integrity of the graph structure and information.

Followed by the Neo4j, we store the independent storage
files asV (G),E(G) andA(G). This way ensures the separation
of graph structure G = (V ,E) and property data A(G).
Among them, A(G) is made up of a fixed-size record, which
is referenced by a node v ∈ V (G) and a relational record
e ∈ E(G). For each property value, the record contains
a pointer to the inline value or the dynamic store record.
In particular, we judge the data in A(G) and elevate the
dominance of data that cannot be encoded as inline values.

This data acts as a node in V (G), which in turn becomes a
representative node Yi,Yi ∈ Y to express the shared content
contained in other properties in theG. The purpose is to com-
press the data node which contain the same content by many
nodes projecting into a representative node, which denotes
as {v1, v2, . . . , vn} → {Y1,Y2, . . . ,Ym}, where the m � n.
Moreover, the H2E algorithm is designed and the hit rate is
improved by caching and eliminating the spatial cluster entity
according to the priority.
Concretely, we compress redundant data in forwarding

nodes centered on the original node. By many-to-one struc-
ture mapping, we merge the multiple related data into several
representative nodes that indicate the different hot events.
To improve the efficiency of the operation of the graph,
we choose the representative nodes with the most attention
and long duration of heat to be anchored in memory for a long
time. At the same time, we eliminate outdated information
dynamically according to the priority of the node. Finally,
space utilization and I/O efficiency are improved in our stor-
age model.

B. SPATIAL CLUSTER ENTITY
According to the aggregation effect of data from hot events,
the social network graph presents multiple dense sub-graphs
around different hot events. Due to the phenomenon that the
entities in the group are dense and sparse between groups,
the graph model is divided into several cluster structures of
data. We formalize the classification and definition of these
space-intensive clusters.
Let Ep represents the node describing a hot event,Mε is the

length of the content property contained in Ep. Rε indicates
the number of forwards of Ep. Cε and Lε is the frequency
of comments and likes of Ep. Since the size of the message
content exceeds 32 Byte, the data cannot be encoded as inline
values and occupies the storage space in the property graph
data model [4]. We set the threshold of content size 0ι = 32
Byte. The interaction times as 0κ and ϒκ .

• If Mε > 0ι, and Rε > 0κ , Cε + Lε > ϒκ , then Ep is
Large Entity which denoted as E2p .

• IfMε > 0ι, and Rε > 0κ , but Cε + Lε < ϒκ , then Ep is
Big Entity, expressed as Eθp .

• IfMε > 0ι, but Rε < 0κ , and Cε + Lε < ϒκ , then Ep is
Wide Entity. We represent it as E+p .

29078 VOLUME 8, 2020



D. Wang et al.: Graph Compression Storage Based on Spatial Cluster Entity Optimization

FIGURE 2. The structural relationship between spacial cluster entity.

• If Mε < 0ι, then we define Ep as Short Entity and
represented as E−p .

Therefore, the entity in the space-intensive cluster can be
summarized as:

Ep =


E2p Mε > 0ι Rε > 0κ & Cε + Lε > ϒκ

Eθp Mε > 0ι Rε > 0κ & Cε + Lε < ϒκ

E+p Mε > 0ι Rε < 0κ & Cε + Lε < ϒκ

E−p Mε < 0ι

(1)

Case 1. Large Entity:
The large entityE2p is a circular representation in the Fig. 2,

which gathers in the center. Due to the amount of text volume
and microblog interactions, including forwarding, likes, and
comments exceeded the given threshold0κ , a substantial data
can not be encoded as inline values and frequently refresh to
memory. Therefore, the storage space is wasted. It is easy to
increase the I/O operation and reduce the throughput of the
database.
Case 2. Big Entity:
Eθp is distributed on the periphery of the large entity, which

is represented by a triangle in Fig. 2. Because text volume
and the forwarding number exceed the preset threshold and
the number of likes and comments does not reach 0κ , there is
also a large amount of data that can not be encoded as inline
values. However, It does not need to be refreshed frequently
in memory. It can result in wasted storage, but with minimal
effect on throughput.
Case 3. Wide Entity:
E+p is denoted as ‘‘+’’ in Fig. 2. Its text volume exceeds

0ι, but the number of interactions does less than the threshold
0κ . This data does not belong to the hot data, which has little
impact on the storage model.
Case 4. Short Entity:
E−p is dispersed at the outer end of the cluster structure,

which is represented by ‘‘_’’ in Fig. 2. It can be encoded inline
into the storage records when stored.
Definition 1 (Spacial Cluster Entity): The entities in Case

1 and Case 2 can cause massive nodes to contain redundant
data in Neo4j. They waste space and influence the processing
efficiency of the graph. Therefore, we define E2p and Eθp
as Spacial Cluster Entity, which is the object compressed

in GSCO model. It denotes as E2p ∪ E
θ
p = {Mε > 0ι &

Rε > 0κ}. 0κ is set to the mean value of message forwarding
times in each event of the dataset based on the statistical
analysis.

C. GSCO STORAGE MODEL
In this section, we introduce the GSCO storage mechanism
by presenting its many-to-one mapping structure and the heat
evolution elimination algorithm H2E.

1) MANY-TO-ONE MAPPING STRUCTURE
We adopt the native graph storage and file storage to reduce
the independence of the storage structure, thereby ensuring
the separation of graph structure and property. The existing
storage model utilizes a one-to-one mapping relationship
between nodes and properties. To prevent multiple dumps
of the same content, we redesign the many-to-one structure
between nodes and property storage. We create a representa-
tive node that contains the common data of all node properties
in the graph. Tomore clearly describe the novel structure rela-
tionship in the graph model, we introduce a sample exhibited
in Fig. 3. By comparing the storage pattern of GSCOwith the
property graph model, the problem of redundant data can be
highlighted.

The node id_a is the original microblog message, other
nodes are the forwarding node of id_a in Fig. 2(a). The
edges among nodes denote the repost relationship. The dotted
line indicates the relationship between entity and property
storage, which forms a one-to-one structure. The node rid is
the representative node of the shared content extracted from
the properties of all nodes in Fig. 2(b). The nodes containing
common data point to the same representative node. The
dynamic storage file of the representative node is the shared
content of all connected nodes. It creates amany-to-one struc-
ture mapping between different entities and the representative
nodes. The GSCO storage model greatly reduces the copies
of the property records. Through the conversion of inline
values and pointers, the dynamic storage records of the entity
node with the common property are shared. Therefore, it is
not necessary to store each node for relation scheduling in
the graph mode, thereby achieving compression of storage
space.

Specifically, the implementation process of the many-to-
one mapping structure is as follows.

a: DATA STRUCTURE
Suppose C = {E2p ,E

θ
p }, the each object is a spatial cluster

entity which denotes a key−value pair. For any twomappings
in C , f (key) and g(key) is continuous in the domain of the
position key = Mid ∈ C . If there is a sufficiently small
neighborhood N of key = Mid , it makes f (key) ≡ g(key)
on N , then f (key) and g(key) are equivalent at the point. We
mark it as f∼g.
If S(Mid ) represents the set of all contiguous mappings

in the neighborhood of the origin, then ∼ is an equivalent
relationship on S(Mid ). Each equivalent class of S(Mid ) cor-

VOLUME 8, 2020 29079



D. Wang et al.: Graph Compression Storage Based on Spatial Cluster Entity Optimization

FIGURE 3. The interaction relationship between the storage files.

responds to ∼ is called a germ that is continuously mapped
at the origin. The equivalent class is the same value that
corresponds to key in the different collections of C . Due
to the non repeatable nature of the set, there are different
value in S(Mid ), that is, |S(Mid )| � |

∑
f (Mid )|. We use

θn to represent the whole row of germs that are continuously
mapped at the origin, which is θn = S(Mid )/∼.
Based on the above germ theory, we define the data struc-

ture of many-to-one in GSCO. It decouples the spatial cluster
entity in the social network graph G. The evolution process
of the data structure of the GSCO storage model is described
in detail as follows.

Firstly, the graph structure is represented as a triple
G0 = (V ,E,A) based on the nature of the separation of
properties from nodes and relationships. |A(G0)| represents
the number of properties in G0. There are the mappings
among the node, relationship, and property.
• Between the node and the property:
∀v ∈ V (G0), ∃ !r ∈ A(G0) corresponds to v, referred to
as: f : V (G0)→ A(G0).

• Between the relationship and the property:
∀e ∈ E(G0), ∃ !r ∈ A(G0) corresponds to e, referred as:
f : E(G0)→ A(G0).

Let Vs = {vs0, vs1, vs2 . . .} is a node sequence of graph G0,
which each vsi ∈ Vs ⊂ V . Let vs0 is the innermost node in
the node sequence. As i increases, the distance of the node vsi
from the node vs0 becomes farther. The level becomes lower,
that is, the in-degree |ID(vsi)| decreases.
Secondly, we further divide A(G0) into two parts Au

and Y , which extends the new graph representation to
G = (V ,E,Au,Y ). Here Au ⊂ A, Y is a set of <
key, S(Mid ) >, Y ⊂ A, Au ∩ Y = ∅ and Au ∪ Y ⊂ A. The
Y is a germ sequence, so we have Y = {Y1,Y2,Y3 . . .} =
{< key1, S(Mid 1) >,< key2, S(Mid 2) >, . . .}. Where <
keyi, S(Mid i) >⊂ Y , Y ⊂ G, but Yi 6=< keyi, S(Mid i) >.
Based on the above inference, we conclude that the Y is a
set formed by the germ group. The element in Y is referred
to as a representative node. Y satisfies the properties of
closure, associative law, unit element, and inverse element.
The dynamic storage in multiple nodes is projected into
a property value. It cuts down the coupling among nodes
and reflects the many-to-one mapping pattern of the graph
structure.

b: BASIC OPERATIONS
To extract representative nodes, we implement some basic
graph operations. They are spanSequence, readProperty, and
extractGerm, respectively.
spanSequence. Given the graph G, we firstly identify the

space-intensive clusters containing the spacial cluster entities.
Because the in-degree represents the popularity of the node,
it is more important than the out-degree to reflect the heat
of a node. We only consider the in-degree in the algorithm.
We obtain the node with the highest degree by breadth-first
traversal. The node with the largest degree is pushed into
the root node queue `r . Meantime, a new queue `n with the
current node as the head is generated. As a root node of a hot
event, all child nodes are iteratively traversed and stored into
the `n according to the label and degree. If there is a node
whose degree is greater than the current root node, we judge
the content similarity of the two nodes. When the similarity
is larger than the given threshold, the new node act as the
root node, while the original one dequeue. On the contrary,
the node is placed in the root node queue and become into
the root node of a new hot event. The above operations are
repeated until all nodes are traversed in the graph.

Finally, a root node queue `r is generated. Each element
in `r as the head node corresponds to a node queue `n. Each
`n indicates a hot event and is determined by the root. G is
partitioned into some subgraphs centered on one hot event.
The spanSequence is summarized in Algorithm 1.
readProperty: We read the node properties in turn by the

label, and then establish the index on the label property.
We obtain the property value in the dataset that needs the
maximum storage space. The property name and its mapping
value are denoted as pnMax and valueMax . We retrieve the
nodes set Dv corresponding to the node v through the global
index B, and then perform property traversal. If there is a
property that satisfies the condition, a label is added to the
name of the property. Then, we create an index Bva based on
the node v and its properties on this label property. We show
the algorithm of readProperty in Algorithm 2.
extractGerm:According to the node sequence `n generated

by spanSequence, we traverse the all node by calling the
readProperty algorithm. In this case, we get a property B-tree
based on the graphG and its property index file f . We traverse

29080 VOLUME 8, 2020



D. Wang et al.: Graph Compression Storage Based on Spatial Cluster Entity Optimization

Algorithm 1 spanSequence(G, v0)
Input: graph G, start node v0
Output: a root queue `r , several node queues {`n}

1 while ∃ node v are not visited do
2 L← all the unvisited neighbors of node v0;
3 root ← maxDegree(v0,V (L)) & [root] = traversed;
4 if root not in `n with `r .top as the front node then
5 if root has a high similarity with the `r .top then
6 if node is not a spacial cluster entity then
7 delete `n with front node root;

8 else
9 `r .push(root);
10 create a new queue `n based on current root;
11 `n← insertSort(V (`n));
12 foreach v in `n & [v]! = traversed do
13 spanSequence(G, v);

14 else
15 `n← insertSort(V (`n));

16 if node x in `r is not a spacial cluster entity then
17 delete `n node queue with front node x;

18 return `r , {`n};

Algorithm 2 readProperty(v, f)
Input: node v, property index file f
Output: index Bva installed in the property of node v

1 Dv← B.query(v) ;
2 foreach i in f do
3 if fi is Inlining then
4 skip;
5 else
6 foreach Ai in A do
7 create index on:Ai;
8 Bva← index(Ai);

the data for the second time according to the B-tree index.
The data pointed by the index is extracted as an independent
node. We use pattern matching to determine the degree of
repetition of the data. If it first appears, a new node is created
with the association to the node. Otherwise, we create a new
association with the node. As a result, it forms a many-to-one
structure mapping. Finally, we delete the B-tree index and the
dynamic data storage file created in the property after con-
verting it to a new node and connection. The representative
nodes are generated. The process is shown in Algorithm 3.

c: COMPLEXITY ANALYSIS
The above three algorithms realize the conversion of data
structure in GSCOmodel. These algorithms are implemented
in the graph database which supports graph calculation. The
graph traversal interface is used to ensure the effectiveness of
the algorithm. SpanSequence is a recursive algorithm whose

Algorithm 3 extractGerm(G,f )
Input: G = (V ,E,A), property or field f
Output: B-tree Ba installed in the property of G; NULL

otherwise
1 foreach v in V do
2 readProperty(v, f );

3 if Ba 6= ∅ then
4 foreach Bva in Ba do
5 SG← Bva.value;

6 createRelation();
7 return SG;
8 else
9 return NULL;

contains the traversing (line 12) and insertion sort (line 16)
of the nodes queue, the time complexity is about O(|V |2 +
|V | × |E|). The readProperty algorithm takes O(log(m, |V |))
time by requiring a traversal of the nodes in the graph,
where m indicates that the B-tree is an m-ary tree. In extract-
Germ algrithm, the query on the B-tree can be carried out
in O(log(m, |V |) × |V |) time (lines 3-7). In the worst case,
the value of m can be taken as 1, so that time complexity
reaches O(|V |2).

2) HEAT EVOLUTION ELIMINATION ALGORITHM (H2E)
The GSCO model modulates local data into multiple small
communities by representative nodes. It aggregates nodes
belonging to the same spatial cluster and establishes a new
network. In this situation, the graph application performs
multiple operations in one logical subgraph of the entire
dataset. In the many-to-one structure built by the GSCO
model, the operations can be accumulated into a more cohe-
sive space. Therefore, it is necessary to optimize the model to
reduce the burden of the spatial cluster. First, the boundary
of each community provides the smallest cut point for the
segmentation of the large graph. It is more conducive to the
cut graph data for the cache operation. Moreover, due to
the spatial cluster entity is triggered by a hot event, It can
keep the attention heat for a while.We are inspired by the heat
evolution of the event and further propose the H2E algorithm,
which achieves the iterative updating of heat data.

Specifically, we analyze the popularity of each representa-
tive node. The hot data is determined by the number of being
reposted, commented, and liked. We anchor the nodes with
persistent heat in memory for a while, which can update the
memory constantly and improve the hit rate. The proposed
H2E algorithm determines and updates important data contin-
uously. The data stored in the GSCO storagemodel comprises
of the regular nodes, related relationships and properties,
representative nodes, multi-degree relationships, and relative
properties. Based on the storage characteristics of each part
of the data, they present a star-shaped distribution with rep-
resentative nodes as the center. The data closer to the cluster
center are more important in the graph structure. Therefore,

VOLUME 8, 2020 29081



D. Wang et al.: Graph Compression Storage Based on Spatial Cluster Entity Optimization

we set the center point, i.e., the representative nodes have
the highest priority and outwards in turn lower. According
to Definition 1, we define the priority of each element.

P(Y ) = P(S1R) = 5

P(Ep2) = P(ρEp2) = 4

P(Epθ ) = P(ρEpθ ) = 4

P(E+p ) = P(ρEp+) = 3

P(E−p ) = P(ρEp−) = 2

P(EN ) = P(ρEN ) = 1

where, ρ denotes the property of entity. S1R is the many-to-one
relationship. EN represents the normal node except for the
spatial cluster entity. Combining Definition 1, we formalize
that the priority relation of each data structure in the GSCO.
The priority comparison decides to the dynamic evolution
principle of the memory. The relation is as follows:

P(Y ) = P(S1R)

> P(Ep2) = P(ρEp2) = P(Epθ ) = P(ρEpθ )

> P(E+p ) = P(ρEp+)

> P(E−p ) = P(ρEp−)

> P(EN ) = P(ρEN )

By relevant statistics, the spread of the hot event usually
lasts about a week on social networks. Therefore, we set the
heat duration as a week and denote as T. The maintenance
time of a hot event is following normal distribution or skew
distribution. It is not constant in its life cycle T whether it
conforms to the normal distribution or the skewed distribu-
tion. To measure the state of heat change, we define the heat
evolution acceleration and propose H2E based on αϕ . The
heat evolution acceleration of node can be denoted as:

αϕ =
1v
1t
= log

(
IDt2 − IDt1
t2 − t1

+ 1
)

(2)

where ID = Rε + (Cε + Lε), t1 and t2 are any points in the
cycle, where t2>t1. IDt1 and IDt2 represent the penetration of
the hot event at t1 and t2, respectively. They are affected by the
number of forwards of node and the frequency of comments
and likes.

For a hot event, the acceleration is at the half-cycle of its
duration. There are three cases:
• aT/2 = 0, it indicates that hot events conform to the
normal distribution.

• aT/2 > 0, it demonstrates that the hot events meet the
negative skewed distribution.

• aT/2 < 0, it shows that the hot events are in positive
skewed distribution.

We determine the time interval of the next time node base
on the above three cases. In summary, the flow chart of the
H2E algorithm shown in Fig. 4. Given the graph G, we first
extract data that conforms to spatial cluster entity and gener-
ate the sequence `n using spanSequence algorithm (details in
the first basic operation). H2E maintains two queues `h and

FIGURE 4. The flow chart of H2E algorithm.

`c. `h is used to record the history of all cache data being
accessed, while `c saves the cached data. According to the
sequence `n, when the data in it is accessed, we calculate its
priority and add it to the access history list `h. However, if the
data priority is 5, it is directly stored in the cache. The cache
list `c is sorted again according to the heat evolution accel-
eration. After part of data is retransmitted in the `h, if some
data do not reach the threshold of heat elimination, then the
data with the minimum product of priority and acceleration
P× αϕ is eliminated. When the `c is accessed again, the heat
evolution acceleration αϕ is updated to be reordered. When
the list is full, the data at the end of the `c is eliminated, that
is, the data with the least heat acceleration can be replaced.
We summarize the H2E in Algorithm 4.

LRU algorithm eliminates data based on the access his-
tory list in one queue, and its complexity is O(1). LRU-K
maintains two queues on this basis, namely the FIFO queue
and the LRU queue, which improves the hit rate. LRU-K
transfers data in the access history queue into the cache
queue according to the access frequent of data K . The H2E
algorithm maintains two LRU queue by directly judging the
priority of the data and does not record the access times
of data so that reducing overhead. Therefore, the compared
complexity: LRU-K > H2E > LRU.

IV. EXPERIMENT AND EVALUATION
In this section, we experimentally evaluate the proposed
GSCO model on the standard datasets. The proposed GSCO
and the baseline database Neo4j (v3.1.3) are compared
from three aspects, including data loading, some com-
mon queries, and clustering tests, respectively. In particular,
we select several common clustering algorithms to evaluate
the storage model in the clustering test. These clustering
algorithms contain K-means [33], DBSCAN [34], spectral
clustering(SC) [35], and hierarchical clustering(HC) [36].

A. EXPERIMENTAL ENVIRONMENT AND DATASET
1) EXPERIMENTAL ENVIRONMENT
We perform all experiments on Lenovo ThinkCentre Desk-
top. It is an Intelr CoreTM x86_64 platform with a 3.40 GHz
8-core i7-6700 CPU and 16 GB of RAM, running CentOS 7

29082 VOLUME 8, 2020



D. Wang et al.: Graph Compression Storage Based on Spatial Cluster Entity Optimization

FIGURE 5. The distribution of partial data in the dataset.

Algorithm 4 H2E Algorithm
Input: `h, `c
Output: the new `h and `c

1 Through heat acceleration and priority, it determines the
data anchored in memory, the length of time;

2 foreach i in G do
3 if P(i) == 5 then
4 put i into `c;
5 compute all αϕ by using Equation (2);
6 update `c;
7 if `c is full then
8 delete Min(αϕ);

9 else
10 put i into `h;
11 computer α(i) = αϕ(i) ∗ P(i);
12 if α(i) < 0 then
13 delete i from `h;

14 else if `hisfull then
15 delete Min(α(i));

with kernel-4.4.110. We utilize a size of 1 TB, 7200 rpm
Western Digital HDD equipped with the ext4 file system.
Because the HDD is I/O bound even with a single thread,
we run serial experiments on the HDD. The environment pro-
vides equal and effective operating conditions for the storage
model GSCO and the baseline graph storage model Neo4j.

2) DATASET
Our experimental data from datatang4 with a data format of
json.bz. The dataset composes 13 hot events from the social
networks. Totally, it includes 84,168 microblog information,
27,759 forwarding relationship, 63,641 user information. We
mainly deal with the microblog content and forwarding rela-
tionship.Wefirst remove the punctuation and special symbols

4http://www.datatang.com/data/46758

without affecting the semantics. According to the microblog
id, we crawl the number of likes, comments and forwards for
each message. Then, we construct the connection edges to
forming the graph G by repost relations among nodes in the
social networks.

To display the form of the spatial cluster, we extract
part of data from the dataset. The distribution of data is
shown in Fig. 5. Among them, Fig. 5(a) is the distribution
of 500 nodes around a hot event, Fig. 5(b) and Fig. 5(c) is
the distribution of random 1,000 and 2,000 nodes. We can
see that spatial clusters are local dense structures centered on
events. Only nodes that reach a certain popularity can form
spatial clusters, such as being frequently forwarded, like, and
comment. These entities are the target of GSCO compression.

B. EXPERIMENTAL COMPARISON
In this section, we conduct massive experiments to verify the
effectiveness of GSCO in graph data storage. They mainly
include three aspects of workloads to compare the effect of
GSCO and Neo4j. Each test is a simulation designed to be a
common operation in a graph database system. We describe
each workload in detail andmake a comprehensive evaluation
of GSCO on the dataset.

1) DATA LOADING
This section mainly includes single insertion workloads and
massive insertion workloads, as well as the comparison of
space occupied after the data is imported. In the preprocessed
dataset, there are 26% of the data that meets the conditions of
the spatial cluster entity. Neo4j treats all data equally, whereas
GSCO deals with the spatial cluster entity differently from
the rest data of the 74%. The following shows the impact
and compression effect of duplicate data in the storage model
GSCO and Neo4j under different operations.

a: SINGLE INSERTION WORKLOADS
We simulate a real-time scenario with the single insertion
workloads, in which case the graph is created progressively.
We assume that the growth of the graph follows the steps

VOLUME 8, 2020 29083



D. Wang et al.: Graph Compression Storage Based on Spatial Cluster Entity Optimization

TABLE 1. Dataset used in single insertion workloads.

FIGURE 6. The comparison of single insertion workloads.

by the single insertion. We segment the dataset into several
blocks to comprehensively evaluate the loading performance.
Each block consists of ten thousand nodes and the edges that
appear when these nodes are inserted. The statistics of data
inserted in batches are shown in Table 1.

Firstly, we create a graph database and load the experi-
mental data shown in Table 1 into it. Each object (i.e., node
or edge) is inserted directly and the graph is constructed
incrementally. The single insertion workloads are processed
by creating a single node and a relationship related to the node
that has already been created. If the end node does not exist
in the dataset, a node with only node id and no property is
created. We measure the insertion time of each block and plot
the results in Fig. 6.

Fig. 6 shows the comparison of operands per second in
GSCO and Neo4j after all the data has been created. The X
axis indicates the size of each data block and the Y axis is
the time required to import the data block. We can conclude
that the executive time of GSCO is significantly lower than
Neo4j. This is mainly because 26% of the data meets the
conditions of spatial cluster entities in the dataset. They are
the compressed object of GSCO, which are implemented
many-to-one mapping and storage. Therefore, in the process
of importing nodes and edges, GSCO reduces the reimport of
a large number of nodes and edges and greatly saves the load
of single insertion. In the process of importing all nodes into
the GSCO in turn, the operands per second are 27391, while
the Neo4j is 12523. It is more obvious that the part of data

TABLE 2. The results of massive insertion workloads (in ms).

FIGURE 7. The comparison of massive insertion workloads.

that is spatial cluster entity achieve 37037, and the average
speed of the remaining data is 23809 ops/sec.

b: MASSIVE INSERTION WORKLOADS
In this test, we simulate the massive insertion workloads. We
first create a graph database and configure it to be bulk loaded
mode. The dataset is loaded into the graph database GSCO
and Neo4j, respectively.

The massive insertion workloads are processed by batch
importing all nodes and all relationships correlated to the
node that has already been imported. If the end node does not
exist, then we create a node with only the assigned node id
and no property. We batch import all the node data first, then
load all the relationships into the database by the interface
Batch Inserter. Simultaneously, we measure the time to create
the entire graph. The results of the massive insertion test are
shown in Table 2.

Table 2 shows the advantages of the GSCO model com-
pared to Neo4j in massive insertion workloads. We plot Fig. 7
to display the performance comparison of GSCO and Neo4j
in throughput. We plot Fig. 7 to display the performance
comparison of GSCO and Neo4j in throughput. The abscissa
axis is divided into three dimensions to compare the import
efficiency. They are nodes batch import, relationships batch
import, and total data batch import, respectively.

By analyzing the results in Fig. 7, we make some con-
clusion. In the processing of batch importing the nodes into
Neo4j, the operands per second are 10543, while the operands
per second of batch importing the edges are 17484. To sum-
marize, the entire batch importing rate is 12274 ops/s, and the
total executive time is 9.6s. The counterpart of the previous
situation is that the import speed reached 43478 ops/s when
the 26% node data that satisfies the spatial cluster entity

29084 VOLUME 8, 2020



D. Wang et al.: Graph Compression Storage Based on Spatial Cluster Entity Optimization

is imported into GSCO. The operands per second of batch
importing the remaining nodes are 24894. So, the speed
of importing all nodes is 30037 ops/sec. And the operands
per second of batch importing the edges are 18820. Conse-
quently, the entire batch importing rate is 27544 ops/s, and
the total execution time is 4.3s.

c: DATA SPACE OCCUPANCY
After all the data is imported into the database, the occupied
space in GSCO and Neo4j are 79155.2 KB and 141516.8 KB,
respectively. The new graph storage engine GSCO saved
43% more storage space than Neo4j. According to the above
numerical comparison, it can be found that GSCO reduces
space utilization. The results indicate that the GSCO can
effectively implement data compression in the dataset with
spatial clusters.

2) QUERY WORKLOAD, QW
We perform three common graph queries on graph database
GNode and Neo4j, which are FindNeighbours, FindAdja-
centNodes and FindShortestPath. These three queries are
applied to most of the existing social network data. For the
FindNeighbours, we can find some friends or followers on
Facebook or Twitter. Similarly, we can find out whether two
users have joined a specific community by the find adjacent
nodes query (FindAdjacentNodes). Through the find shortest
path query (FindShortestPath), we can find two users con-
nected to each other in social networks. Therefore, it is crucial
whether these queries can be efficiently implemented in the
shortest time.

a: FINDNEIGHBOURS
To demonstrate the effectiveness of the proposed GSCO in
FindNeighbours, we find the neighbor nodes of INCOMING
andOUTGOING corresponding to all the nodes using breadth-
first traversal through the interface Traversal Description.
We set the depth to 1. We obtain the results drawled in Fig. 8
that the execution time of nodes are greater than 1 in both
INCOMING and OUTGOING. The axis marked as Node Id
represents the number of each node stored in the graph
database. The Degree denotes the number of neighbors cor-
responding to each node. The ordinate is the time required to
find all neighbors.

We use the blue line and the orange line to represent
theINCOMING andOUTGOING of Neo4j, respectively. In the
same way, we use the green line and the red line to show the
INCOMING and OUTGOING of GSCO. In addition, the blue
part and green part are INCOMING data. The ‘‘id’’ number of
the query results mainly ranges from the [1.1×106, 1.9×106],
the relationship concentration is the degrees within [1, 5]. The
time used by the GSCO is concentrated in the 0-2 ms, and
the time of Neo4j is concentrated with the 1-4 ms. Therefore,
GSCO takes less time than Neo4j. While the time used by the
GSCO and Neo4j are similar in OUTGOING data. This proves
the importance and influence of the in-degree of the node in
the GSCO model.

FIGURE 8. The data range used in FindNeighbours.

FIGURE 9. The comparison of finding adjacent nodes on the main sides.

b: FINDADJACENTNODES
In the same way, we traversed each edge, in turn, to per-
form the FindAdjacentNodes operation through the interface
Traversal Description. Since each edge has a start node and an
end node, they are the adjacent nodes of this edge. So we are
looking for the starting and ending nodes of the edge. Due
to the nature of the dataset containing hot events, the rele-
vant nodes of the edge are relatively concentrated. The time
required for Neo4j and GSCO to find the adjacent nodes of
each edge is shown in Fig. 9.

The Start Node and End Node in Fig. 9 represent the num-
ber of two adjacent nodes of an edge, respectively. The ordi-
nate represents the time required to traverse the edge. The
start node and end node of each edge are mainly located in
the scope formed by node ‘‘id’’ are [7.5 × 105, 1.75 × 106]
and [1.5 × 106, 1.9 × 106]. Finally, the traversal time is
mainly concentrated ranges from 500 to 2000 ms. From the
distribution of results in Fig. 9, the GSCO has less execution
time than Neo4j.

c: FINDSHORTESTPATH
We find the shortest path between the given starting node and
100 randomly chosen nodes by the FindShortestPathmethod.
We randomly select a node (that is id = ‘‘1926965′′) as the

VOLUME 8, 2020 29085



D. Wang et al.: Graph Compression Storage Based on Spatial Cluster Entity Optimization

FIGURE 10. The degree distribution of 100 node.

TABLE 3. The execution time of three QW (in ms).

starting node. The length of the shortest path between it and
random 100 nodes is mainly 9 different values, which degrees
are {2, 3, 4, 5, 6, 7, 8, 10, 11}. The shortest path distribution
between 100 nodes with the given node is shown in Fig. 10.

The distance between the 100 nodes and the majority of
the nodes at the starting node is 3. We display the execution
time in Table 3. It summarized the execution time of the
above three common queries. In the three query operation,
the query time of GSCO has the minimum consumption in
executive time. This is because GSCO is designed a many-
to-one structure, which can save round trip lookup time com-
pared with one-to-one mapping in the property graph storage
model Neo4j. The results of the query workload prove the
GSCO can prominently improve the graph database effective
in dealing with the space-intensive graph.

3) CLUSTERING WORKLOADS, CW
Clustering is a commonly used technique for statistical data
analysis in many fields [37]–[39]. The typical operations in
social networks include event discovery [40] and community
mining [41]–[43]. Therefore, it is a critical criterion that the
database can provide fast clustering operations. Currently,
the traditional clustering algorithms include K-means [33],
DBSCAN [34], spectral clustering [35], and hierarchical
clustering [36], etc.We conduct the four clustering algorithms
in dataset storage by GSCO and Neo4j respectively and eval-
uate the performance of the storage mechanisms.

Since the dataset contains 13 hot events, we set the number
of clusters to 13 and select the corresponding initial centroid
for K-means. Then, we adopt the vector space model (VSM)
to quantify the message content. The text similarities act the
distance measure of the nodes in the clustering, which is
calculated by the cosine angle. Note, we select the represen-
tative nodes as the initial centroids of K-means in the GSCO

TABLE 4. The result of clustering workloads (in ms).

storage model.We set the parameter radius Eps andMinPts in
advance in DBSCAN. According to the providedMinPts and
the value of the radiusEps, all the core points are calculated. It
is perceived from the nature of DBSCAN that every represen-
tative node is the core object. For the spectral clustering (SC)
algorithm, we also set the number of clusters as 13. The
K-nearest neighbor act as the composition method and Ncut
as the cut method. Besides, we use the cohesion method in
hierarchical clustering (HC) and set the number of clusters
to 13. For the above four clustering algorithms, we further
employ the H2E algorithm to anchor each representative node
in memory until the end of the cluster operation in the GSCO
storage model.

We carry out 20 experiments by the four clustering algo-
rithms on the microblog dataset stored in GSCO and Neo4j,
respectively. The average results about the accuracy, quality,
and running time are manifested in Table 4. It reveals the effi-
ciency of GSCO in the clustering task. The units of accuracy
and quality are percentages. The running time is estimated by
the millisecond.

From the comparison results in Table 4, we observe that
GSCO makes each clustering algorithm achieve the best
efficiency in all metrics. This is because the many-to-one
mapping structure and H2E algorithm play an important role
in the GSCO. Based on the many-to-one mapping structure,
the representative node can directly determine the classes of
multiple adjacent nodes. Through the process of mapping
creation, the related nodes have been aggregated according
to the forwarding rule. It is conducive to the enhancement of
accuracy and speed of the clustering algorithms. Additionally,
H2E can anchor the representative node (i.e., the 13 initial
centroids) in the memory. It reduces the space footprint of
nodes that operate infrequently. Therefore, the GSCO reduces
the iterations, thereby significantly improving the clustering
effect in time. In summary, the GSCO reaches superior per-
formance in the clustering.

To conclude, we explore the advantages of the GSCO
model compared with the Neo4j in storing social network
graph data through the abundant experimental results and
analysis.
• Write performance: GSCO throughput up to 50,000+
ops/sec, the delay in a few milliseconds. The main
bottleneck is the proportion of datasets that satisfy the
spatial cluster entity.

• Reading performance: The H2E algorithm designed in
GSCO makes it possible to achieve a throughput of

29086 VOLUME 8, 2020



D. Wang et al.: Graph Compression Storage Based on Spatial Cluster Entity Optimization

about 25000+when reading spacial clustered data, with
a delay of a few to 20 milliseconds.

• Clustering performance: The GSCO model compresses
the redundancy data that originated from the same cate-
gory. Therefore, the clustering operation reaches distinct
effects.

V. CONCLUSION
In this paper, we propose the new graph storage engine
GSCO, considering that the existing storage model did not
scale well to spatial cluster entity in the social networks.
We decouple the data structure and improve the space utiliza-
tion rate and processing speed. Firstly, a new many-to-one
mapping structure is proposed based on the one-to-one the
labeled property graph model of the Neo4j graph database.
Then, we future design the H2E algorithm to dynamically
anchor data in memory based on the heat evolution accel-
eration. Finally, we conduct extensive experiments on a real
dataset, which indicates that GSCO outperforms the state-of-
the-art Neo4j in the space utilization and operation speed for
the spacial clustered data of social network.

REFERENCES
[1] M. Qiao, H. Zhang, and H. Cheng, ‘‘Subgraph matching: On compression

and computation,’’ Proc. VLDB Endowment, vol. 11, no. 2, pp. 176–188,
2017.

[2] C. Wang, Y. Feng, Q. Guo, Z. Li, K. Liu, Z. Tang, A. K. Tung, L. Wu,
and Y. Zheng, ‘‘ARShop: A cloud-based augmented reality system for
shopping,’’ Proc. VLDB Endowment, vol. 10, no. 12, pp. 1845–1848, 2017.

[3] R. Angles and C. Gutierrez, ‘‘An introduction to graph data manage-
ment,’’ 2017, arXiv:1801.00036. [Online]. Available: https://arxiv.org/
abs/1801.00036

[4] C. S. Park and B. K. Kaye, ‘‘The tweet goes on: Interconnection of Twitter
opinion leadership, network size, and civic engagement,’’ Comput. Hum.
Behav., vol. 69, pp. 174–180, Apr. 2017.

[5] H.-J. Li, Q. Wang, S. Liu, and J. Hu, ‘‘Exploring the trust management
mechanism in self-organizing complex network based on game theory,’’
Phys. A, Stat. Mech. Appl., Nov. 2019, Art. No. 123514.

[6] H.-J. Li, Z. Bu, Z. Wang, J. Cao, and Y. Shi, ‘‘Enhance the performance
of network computation by a tunable weighting strategy,’’ IEEE Trans.
Emerg. Topics Comput. Intell., vol. 2, no. 3, pp. 214–223, Jun. 2018.

[7] G. Tillmann, Usage-Driven Database Design. Berkeley CA, USA:
Springer, 2017, pp. 301–314.

[8] E. E. I. Robinson and J. Webber, Graph Databases. Newton, MA, USA:
O’Reilly Media, 2016.

[9] P. Purkait, T.-J. Chin, A. Sadri, andD. Suter, ‘‘Clusteringwith hypergraphs:
The case for large hyperedges,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 39, no. 9, pp. 1697–1711, Sep. 2017.

[10] N. Dayan, M. Athanassoulis, and S. Idreos, ‘‘Monkey: Optimal navigable
key-value store,’’ in Proc. Int. Conf. Manage. Data (SIGMOD), May 2017,
pp. 79–94.

[11] S. Bharadwaj, L. Chiticariu, M. Danilevsky, S. Dhingra, S. Divekar,
A. Carreno-Fuentes, H. Gupta, N. Gupta, S.-D. Han, and M. Hernández,
‘‘Creation and interaction with large-scale domain-specific knowledge
bases,’’ Proc. VLDB Endowment, vol. 10, no. 12, pp. 1965–1968, 2017.

[12] R. K. Kaliyar, ‘‘Graph databases: A survey,’’ in Proc. Int. Conf. Comput.,
Commun. Autom. (ICCCA), 2015, pp. 785–790.

[13] M. Arenas and M. Ugarte, ‘‘Designing a query language for RDF,’’ ACM
Trans. Database Syst., vol. 42, no. 17, p. 2, 2017.

[14] I. Kabiljo, B. Karrer, M. Pundir, S. Pupyrev, and A. Shalita, ‘‘Social hash
partitioner: A scalable distributed hypergraph partitioner,’’ Proc. VLDB
Endowment, vol. 10, no. 11, pp. 1418–1429, 2017.

[15] J. Chen, Y. Lin, G. Lin, J. Li, andY. Zhang, ‘‘Attribute reduction of covering
decision systems by hypergraph model,’’ Knowl.-Based Syst., vol. 118,
pp. 93–104, Feb. 2017.

[16] P. Yang, W. L. Faro, R. S. Arvapally, and C. J. Merz, ‘‘Systems
and methods for generating relationships via a property graph model,’’
U.S. Patent 14 829 219, Feb. 23, 2017.

[17] R. Raman, S. Hong, and H. Chafi, ‘‘Graph data processing system that sup-
ports automatic data model conversion from resource description frame-
work to property graph,’’ U.S. Patent 14 812 819, Feb. 2, 2017.

[18] C. Kankanamge, S. Sahu, A. Mhedbhi, J. Chen, and S. Salihoglu, ‘‘Graph-
Flow: An active graph database,’’ in Proc. ACM Int. Conf. Manage. Data,
2017, pp. 1695–1698.

[19] R.-H. Li, J. X. Yu, R. Mao, and T. Jin, ‘‘Recursive stratified sampling:
A new framework for query evaluation on uncertain graphs,’’ IEEE Trans.
Knowl. Data Eng., vol. 28, no. 2, pp. 468–482, Feb. 2016. [Online].
Available: http://ieeexplore.ieee.org/document/7286806/

[20] B. Lyu, L. Qin, X. Lin, L. Chang, and J. X. Yu, ‘‘Scalable super-
graph search in large graph databases,’’ in Proc. IEEE 32nd Int.
Conf. Data Eng. (ICDE), May 2016, pp. 157–168. [Online]. Available:
http://ieeexplore.ieee.org/abstract/document/7498237/

[21] K. Zhao and J. X. Yu, ‘‘All-in-one: Graph processing in RDBMSs
revisited,’’ in Proc. Int. Conf. Manage. Data (SIGMOD), May 2017,
pp. 1165–1180.

[22] R.-H. Li, L. Qin, and J. X. Yu, ‘‘Efficient and progressive group steiner
tree search,’’ in Proc. Int. Conf. Manage. Data (SIGMOD), Jun. 2016,
pp. 91–106.

[23] P. Goyal and E. Ferrara, ‘‘Graph embedding techniques, applications,
and performance: A survey,’’ Knowl.-Based Syst., vol. 151, pp. 78–94,
Jul. 2018.

[24] A. Sadri, F. D. Salim, Y. Ren, M. Zameni, J. Chan, and T. Sellis, ‘‘Shrink:
Distance preserving graph compression,’’ Inf. Syst., vol. 69, pp. 180–193,
Sep. 2017.

[25] R. A. Rossi and R. Zhou, ‘‘GraphZip: A clique-based sparse graph com-
pression method,’’ J. Big Data, vol. 5, no. 1, p. 10, 2018.

[26] R. Reas, S. Ash, R. Barton, and A. Borthwick, ‘‘SuperPart: Supervised
graph partitioning for record linkage,’’ in Proc. IEEE Int. Conf. Data
Mining (ICDM), Nov. 2018, pp. 387–396.

[27] N. R. Brisaboa, S. Ladra, and G. Navarro, ‘‘Compact representation of
Web graphs with extended functionality,’’ Inf. Syst., vol. 39, pp. 152–174,
Jan. 2014.

[28] M. Nelson, S. Radhakrishnan, A. Chatterjee, and C. N. Sekharan,
‘‘Queryable compression on streaming social networks,’’ in Proc. IEEE
Int. Conf. Big Data (Big Data), Dec. 2017, pp. 988–993.

[29] J. Han, K. Zheng, A. Sun, S. Shang, and J.-R. Wen, ‘‘Discovering neigh-
borhood pattern queries by sample answers in knowledge base,’’ in Proc.
IEEE 32nd Int. Conf. Data Eng. (ICDE), May 2016, pp. 1014–1025.

[30] A. Khan and C. Aggarwal, ‘‘Query-friendly compression of graph
streams,’’ in Proc. IEEE/ACM Int. Conf. Adv. Social Netw. Anal. Mining,
Aug. 2016, pp. 130–137.

[31] L. D. Valstar, G. H. Fletcher, and Y. Yoshida, ‘‘Landmark indexing for
evaluation of label-constrained reachability queries,’’ in Proc. ACM Int.
Conf. Manage. Data, 2017, pp. 345–358.

[32] J. Guia, V. G. Soares, and J. Bernardino, ‘‘Graph databases: Neo4j analy-
sis,’’ in Proc. 19th Int. Conf. Enterprise Inf. Syst. (ICEIS), Porto, Portugal,
Jan. 2017, pp. 351–356.

[33] Z. Huang, N. Li, K. Rao, C. Liu, Y. Huang,M.Ma, and Z.Wang, ‘‘Develop-
ment of a data-processing method based on Bayesian K -means clustering
to discriminate aneugens and clastogens in a high-content micronucleus
assay,’’ Hum. Exp. Toxicol., vol. 37, no. 3, pp. 285–294, Mar. 2018.

[34] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, ‘‘DBSCAN
revisited, revisited: Why and how you should (still) use DBSCAN,’’ ACM
Trans. Database Syst., vol. 42, no. 3, p. 19, 2017.

[35] N. Binkiewicz, J. T. Vogelstein, and K. Rohe, ‘‘Covariate-assisted spectral
clustering,’’ Biometrika, vol. 104, no. 2, pp. 361–377, Jun. 2017.

[36] A.-A. Liu, Y.-T. Su, W.-Z. Nie, and M. Kankanhalli, ‘‘Hierarchical cluster-
ing multi-task learning for joint human action grouping and recognition,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 1, pp. 102–114,
Jan. 2017.

[37] Z. Bu, H.-J. Li, C. Zhang, J. Cao, A. Li, and Y. Shi, ‘‘Graph k-means
based on leader identification, dynamic game and opinion dynamics,’’
IEEE Trans. Knowl. Data Eng., to be published.

[38] H.-J. Li, Z. Bu, Z. Wang, and J. Cao, ‘‘Dynamical clustering in electronic
commerce systems via optimization and leadership expansion,’’ IEEE
Trans. Ind. Informat., to be published.

[39] Z. Bu, H.-J. Li, J. Cao, Z. Wang, and G. Gao, ‘‘Dynamic cluster formation
game for attributed graph clustering,’’ IEEE Trans. Cybern., vol. 49, no. 1,
pp. 328–341, Jan. 2019.

VOLUME 8, 2020 29087



D. Wang et al.: Graph Compression Storage Based on Spatial Cluster Entity Optimization

[40] N. Ko, B. Jeong, S. Choi, and J. Yoon, ‘‘Identifying product opportunities
using social media mining: Application of topic modeling and chance
discovery theory,’’ IEEE Access, vol. 6, pp. 1680–1693, 2017.

[41] J. Obregon, M. Song, and J.-Y. Jung, ‘‘InfoFlow: Mining information flow
based on user community in social networking services,’’ IEEE Access,
vol. 7, pp. 48024–48036, 2019.

[42] J. Cao, Z. Bu, Y. Wang, H. Yang, J. Jiang, and H.-J. Li, ‘‘Detecting
prosumer-community groups in smart grids from the multiagent perspec-
tive,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 8, pp. 1652–1664,
Aug. 2019.

[43] H.-J. Li and J. J. Daniels, ‘‘Social significance of community structure: Sta-
tistical view,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 91, no. 1, 2015, Art. no. 012801.

DAWEI WANG was born in Shandong, China.
He is currently pursuing the Ph.D. degree with
the School of Information, Renmin University
of China, Beijing. His research interests include
design and analysis of algorithms, social network
mining, databases, and graph query.

WANQIU CUI was born in Liaoning, China. She
is currently pursuing the Ph.D. degree in computer
science and technology with the Beijing Univer-
sity of Posts and Telecommunications, China. Her
main research interests include artificial intelli-
gence, social network analysis, machine learning,
and information retrieval.

BIAO QIN received the Ph.D. degree in com-
puter science from the Huazhong University of
Science and Technology, in 2003. He is currently
an Associate Professor with the Renmin Univer-
sity of China. His main research interests include
probabilistic database, uncertain data mining, and
Bayesian networks.

29088 VOLUME 8, 2020


	INTRODUCTION
	RELATED WORK
	GRAPH STORAGE MODELS
	GRAPH COMPRESSION METHODS

	OUR MODEL
	PROBLEM STATEMENT
	SPATIAL CLUSTER ENTITY
	GSCO STORAGE MODEL
	MANY-TO-ONE MAPPING STRUCTURE
	HEAT EVOLUTION ELIMINATION ALGORITHM (H2E)


	EXPERIMENT AND EVALUATION
	EXPERIMENTAL ENVIRONMENT AND DATASET
	EXPERIMENTAL ENVIRONMENT
	DATASET

	EXPERIMENTAL COMPARISON
	DATA LOADING
	QUERY WORKLOAD, QW
	CLUSTERING WORKLOADS, CW


	CONCLUSION
	REFERENCES
	Biographies
	DAWEI WANG
	WANQIU CUI
	BIAO QIN


