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ABSTRACT Considering the event-based WSNs routing, the frequent changes of topology may result to
the large energy costs in the whole network. Therefore, this paper proposes a Compressed Sensing Routing-
control-method with Intelligent Migration-mechanism based on Sensing Cloud-computing (CSR-IM). First,
the method gives a determining the moving speed and position of the target node through compressed sensing
theory, and at the same time, it gives the lower bound calculation process of the target node state estimation
value at k + 1 time by the probability knowledge. Second, with the purpose of reducing the network load,
the routing tree with the center of fog nodes is established to obtain the data in the route effectively and
optimize the data aggregation routing process, and then energy cost of the whole network is balanced. Finally,
the simulation experiments show that method of this paper (CSR-IM) and other algorithms have improved
the average data aggregation rate by 8.19%, and the average network coverage has increased by 12.65%,
which proves that the proposed algorithm is effective and practical.

INDEX TERMS Intelligent migration-mechanism, sensing cloud-computing, routing-control-method,
compressed sensing.

I. INTRODUCTION
As an important support for the Internet of Things (IoT),
Wireless Sensor Networks (WSNs) has become a new
research hotspot in the fields of wireless networks [1]–[5].
With the development of microelectronics technology,
embedded low-power technology, wireless communication
and data compression, WSNs have the characteristics of
miniaturization, low cost, low energy consumption and
distribution and can provide people with anytime, fine-
grained, diversified monitoring information which has huge
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application potential in the fields of battlefield reconnais-
sance, biological habitat environmental monitoring, precision
agriculture and medical monitoring [6]–[9]. WSNs are a
new type of network that realizes the collection, processing,
and transmission of relevant sensory data in the layout area.
It usually consists of a large number of sensory nodes and
sink nodes [10]–[13]. Each sensory node is self-organized
and multi-hop. The sensor data is sent and relayed to the Sink
in a simple manner, and the external network can obtain the
real-time sensing information of each node in the sensing
area through the Sink. The main function of the WSNs is
to collect relevant sensing information in the layout area.
Because the network monitoring area is wide and most of
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them are deployed in the wild, each node in the network
is equipped with independent power source with limited
power [14]–[18]. In order to ensure the network’s working
life, the energy consumption of network nodes has become a
key factor restricting on the performance of sensor networks.
In the traditional collection processes for WSNs data, nodes
need to forward data packets of other node in addition to
send their own data packets. Therefore, the closer the node
is to the sink, the more energy it consumes, and it is easy
to exhaust its own energy in advance, which will cause the
problem of ‘‘energy Hole’’; In addition, due to the dense
deployment of sensor network nodes, there is a large spatial
correlation of sensory data between the adjacent nodes, and
there is also a large time correlation of the periodic sensory
data for each node. And then, WSNs sensing data have a
lot of redundancy in time and space, and there is a large
compressible space. In order to extend the working life of
WSNs and achieve efficient data collection, it is urgent to
study new data collection strategies so that it can not only
guarantee the energy balance of the network, avoid ‘‘energy
holes’’, but also reduce the data redundancy in the network
and reduce energy consumption in network [19].

Collecting sensory data is the main task for WSNs, and it
is the basis for realizing various applications in WSNs. Data
collection methods for WSNs can be divided into three cate-
gories: time-driven, query-driven, and event- driven. For data
collection way of time-driven, the sensor nodes periodically
sense the environment and transmit the sensed data to the
base station at a fixed data rate according to pre-scheduling.
This method of data collection is also called periodic data
collection and is suitable for applications that require global
monitoring. For data collection way of query-driven, the base
station sends a data collection request according to the user’s
needs, and only the sensor nodes that satisfy the request send
its sensing data. For data collection way of event-driven, any
sensor node remains silent until the target event occurs, and
the nodes that only need to monitor the events sends event-
related data to the base station. These are usually sent by a
part of nodes, and the randomness of the event causes that
the distribution is also random [20], [21]. In order to cope
with problems such as node failure and inaccurate sensing
data caused by the environment, WSNs usually deploy sensor
nodes densely in the monitoring area, but this also results
in greater information redundancy in the whole network.
If the base station collects all the original data directly, a lot
of precious energy will be wasted on the transmission of
redundant data. In view of this problem, data aggregation
technology uses various methods to process the sensed data
and reduce the redundant data transmission in the network.
It is an important technology to achieve energy- efficient data
collection in WSNs.

II. RELATED WORKS
With the emergence of distributed compressed sensing the-
ory, more andmore researchers have begun to pay attention to
the applications of compressed sensing technology to WSNs.

Paper [22] pointed out that distributed compressed sensing
has good fault tolerance and security in WSNs. The advan-
tages of high performance and adaptive channel capacity have
laid the foundation for the applications of compressed sensing
theory in WSNs.

The current researches on the application of compressive
sensing in WSNs are mainly divided into the following five
aspects:

(1) the application of data fusion in WSNs; paper in [23]
proposed the use of compressive sensing combined with the
spatiotemporal correlation of data Fusion of intra-network
data in a way that greatly reduces intra- network commu-
nication and prolongs network life. Paper [24] proposed a
hierarchical data fusion scheme based on the compression
domain. The parent collection clusters at each level compress
and fuse the data from lower-level clusters. The data is sent
to the upper layer in turn until it reaches the top cluster head
node. This solution greatly reduces the redundant data in
the network, reduces the amount of data transmitted in the
network, and reduces energy consumption.

(2) Application in target localization. Paper [25] adopts the
iterative backtracking CS algorithm to solve the grid-based
multi-target node localization problem, which can realize the
simultaneous localization of multiple targets and improve
the positioning accuracy. Paper [26] proposed a localization
algorithm based on CS for dynamic target positioning prob-
lem. By matching the target motion law and sparse basis,
the dynamic target positioning problem was transformed into
a reconstruction problem for sparse signals. And the position-
ing performance had been improved.

(3) Application in distributed data storage by the fields
of data security of WSNs. Paper [27] combined com-
pressed sensing and network coding, and proposed a data
storage scheme for compressed network coding based on
space-time correlation, respectively. The method of com-
pressing data from a time and space perspective reduced the
amount of data on the network and extended the life of the
network.

(4) Application in recovering lost data in sensor networks.
Paper [28] used the time and space correlation and com-
pressed sensing technology and designed a packet loss recov-
ery algorithm for spatiotemporal data based on compressed
sensing. And the proposed algorithm had great advantages
than the traditional packet loss recovery algorithms such as
data interpolation.

(5) Application in network data collection; this fieldmainly
studies how to effectively implement data collection, match
observation matrix and data collection routing, and minimize
the amount of data transmission in the network. Paper [29]
pointed out that if there is a small amount of Gaussian inde-
pendent random loss of node data in the entire network, the
CS reconstruction algorithm can use the correlation among
the data to reconstruct the lost information, and the actual
reasons for the packet loss in WSN link are complex, and
It cannot be simply described by a Gaussian independent
random packet loss model.
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Paper [30] proposed A Distributed and Morphological
Operation-based Data Collection Algorithm (DMOA), which
pointed out that there is a strong time correlation among
sensor data, and also proposed a joint optimization algorithm
combining CS and spatio-temporal correlation to recover
lost node data, but the algorithm is only applicable for the
lost data recovery of the sink database, and it does not
consider the problem of packet loss recovery during data
collection. Paper [31] proposed the A Trust-Based Secure
Routing (TBSR) algorithm, in which, some nodes are
selected randomly in each round to participate in data collec-
tion. On the Sink side, an extremely sparse observationmatrix
is constructed based on the received node number and the
entire network’s original data is reconstructed. Although the
method is aimed at solving the problem of CS data collection
under unreliable links, it is not applicable to environments
withweak spatial correlation of data on the entire network due
to the extremely sparse assumption. In addition, the algorithm
still uses traditional data collection methods in collecting
node data, which may cause an imbalanced energy consump-
tion problem in which the energy consumption of nodes
near Sink will be exhausted in advance. Paper [32] proposed
a Mobile Data Collectors (MDCS) algorithm, which used
the greedy algorithm to generate a chain with the shortest
distance among adjacent nodes according to the node posi-
tion. The head node in the chain was in turn responsible
for transmitting the aggregated data to base station. At the
same time, the nodes are organized into a two-layer chain
structure, i.e., multiple fixed-length low-level chains and a
high-level chain composed of low-level chain heads. Data
was transmitted and aggregated along the low-level chain to
the high-level chain, and finally reached the base station.

Paper [33] introduced a distance threshold to avoid the
generation of long chains, and selected nodes with more
residual energy and closer to the base station as the chain head
to balance nodes energy consumption. Paper [34] divided the
network area into multiple concentric rings, and the nodes in
each ring were stored to the link list. The data was first sent to
the chain head, and then was sent from the outside to the base
station along the chain head. Paper [35], the monitoring area
was divided into rectangular horizontal sub-areas with the
same size, and nodes within the same sub-area used a greedy
algorithm to form a routing chain. Similar to literature [35],
Paper [36] also divided the network area into rectangular
sub-areas, but the algorithm divided the network area along
the vertical direction, and each sub-area used a uniform step
algorithm instead of a greedy algorithm to form a routing
chain. Paper [37] used BeamStar technology to divide the
area into several fan-shaped sub-areas, and then used the data
integration control algorithm to establish a short chain, and
all chain heads were built into a routing chain which was con-
nected to the base station. Paper [38] proposed a local chain
construction strategy based onVoronoi region division, which
could build a routing chain with low energy consumption and
less interference. Paper [39] calculated the transmission cost
based on the optimal transmission power. After establishing a

minimum cost tree, a distributed depth-first search was used
to construct a routing chain that starts at the base station.
Paper [40] first used Strip Tree Geometry algorithm to obtain
a hierarchical tree, and then used an in-order traversal search
based on the tree to obtain a routing chain containing all
nodes. Paper [41] proposed a set of routing chain construction
algorithms based on minimum spanning tree (MST). It first
built an undirected MST, then used the node closest to the
center of the network as the root to obtain a directed MST by
breadth-first search, and finally used the first order, middle
order, and post order to traverse to obtain the routing chain
containing the entire network of nodes. Paper [42] divided the
area into a grid. The node with the most remaining energy in
each cell acted as the head. All heads form a routing chain
and the head with the most remaining energy was the routing
chain head.

The above studies can complete the process of data
aggregation and routing selection, but in multi-hop routing,
the nodes within one hop of the base station are responsible
for forwarding the data of all other nodes in the network.
The load is heavy and energy consumption is fast. And the
density is large. Therefore, the sensed data in the network has
a large redundancy. It is often necessary to perform related
processing to reduce the redundancy and reduce unnecessary
data transmission in the network. In event-driven WSNs,
clustering of event domain nodes can easily implement de-
redundant processing of event data, and establishing a suit-
able routing tree based on event clusters can further reduce
data transmission energy consumption. Therefore, how to
building a reasonable hybrid routing structure is very effec-
tive for energy saving of event-driven WSNs.

III. NETWORK MODEL AND SOLUTION
A. MODEL ESTABLISHMENT AND ANALYSIS
In order to facilitate the research, we make the following
assumptions about the WSNs:

1. In the initial phase, all sensor nodes have equal energy
and are isomorphic [43]–[45].

2. The sensing areas of all sensor nodes are discs and their
own position information can be obtained by the positioning
algorithm (e.g. RSSI, TDOA) [46], [47].

3. Themigration probability and communication capability
of fog nodes are higher than other sensor nodes.

4. The working hours of all sensor nodes change periodi-
cally and are synchronized on time.
Definition 1: The intersection of the sensor node coverage

area and the monitoring area is called the effective coverage
area.

�1 = area(∪Si) ∩ area(�) (1)

where Si represents the coverage area of any sensor node,
area(�) represents the area of the monitoring area and
�1 represents the effective coverage area.
Definition 2: The ratio of the effective coverage area

with the area of the monitoring area is called the effective
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coverage ratio.

P = [area(∪Si) ∩ area(�)]
/
area(�) (2)

where P is expressed as effective coverage.
Definition 3: The sum of network runtimes is called the

network life cycle.
Definition 4: The Euler distance between any two sensor

nodes is less than the sum of the sensing radius of the sensing
nodes, which are called neighbor nodes. The node set formed
by neighbor nodes is called the neighbor set.

d(i, j) ≤ Ri + Rj (3)

where d(i, j) is the Euler distance of any two sensor nodes, Ri
and Rj are the sensing radius of the sensor nodes.
Definition 5: If there exists a constant δk ∈ [0, 1], and then

for any sparse signal s with sparseness k has the following
condition.

(1− δk) ‖s‖2 ≤ ‖2s‖2 ≤ (1+ δk) ‖s‖2 (4)

It is said that the matrix 2 satisfies the RIP condition
of the k-th order Restricted Isometry Property (RIP), where
δk is called the RIP constant of the matrix 2. Although
theoretically, the sensor matrix 2 satisfies the RIP condition
and can reconstruct the original signal with a high probability,
but in practical applications, the RIP condition is proved to
be an NP-hard problem, so an equivalent condition for non-
coherence is proposed.
Definition 6: If the row vector {φI} in the observation

matrix 8 cannot be represented by the column vector {9i}
in the sparse basis 9, and the column vector in the sparse
basis 9 cannot be represented by the row vector in the
measurement matrix, the observation matrix8 and the sparse
basis 9 means to be irrelevant. Non-coherent conditions can
be measured by the degree of coherence, and the definition of
correlation is as follows.
Definition 7:8 is assumed as the observationmatrix and9

as the sparse basis. The correlation between the observation
matrix8 = {φi}Nl and the sparse basis9 =

{
ψj
}N
l is defined

as:

µ (8,9) =
√
N · max

1≤i,j≤N

{∣∣(φi, 9j
)∣∣} (5)

Correlation indicates the correlation between any row vec-
tor in the observation matrix φ and any column vector in the
sparse basis9. There is at least jmaking

∣∣〈ϕk , 9j
〉∣∣ ≥ 1

/√
N ,

and then µ (Φ,9) ≥ 1, there is also any column vector in the
observation matrix φ which satisfy the following condition.

N∑
k=1

∣∣〈ϕk , 9j
〉∣∣2 = ∥∥9j

∥∥2
l2
= 1 (6)

Therefore, µ (8,9) ≤
√
N and the range of the correla-

tion is 1 ≤ µ (8,9) ≤
√
N , when µ (8,9) = 1, the max-

imum non-coherence between 8 and 9 has been obtained.
The less non-coherence between observation matrix and the
sparse base, the compression ratio of the CS observation is

FIGURE 1. Schematic diagram of data migration mechanism-aware cloud
computing.

larger, and the higher the probability for the reconstruction
end which can achieve highly accurate reconstruction.
Definition 8: Defining a random variable z as the ratio of

the number of dropped packets in the sliding window to the
window length, that is,

z =

L∑
i=1
(1− Xi)

L
(7)

Figure 1 shows the principle diagram of the perceptual
cloud computing of the datamigrationmechanism. The ‘‘pen-
tagram’’ indicates a fog node, and the rest of them indicate
sensor nodes. We divide the monitoring area into four equal
coverage areas, and each area give a node clustering form
and uploaded the collected data to the base station through
the fog nodes. After the data fusion processing by the base
station, the data is finally submitted to the perceptual cloud
computing platform. In the following sections, we mainly
study the routing mechanism of a certain coverage area.

B. METHODS AND ANALYSIS
We suppose that the sensor network randomly deploys
N nodes, and its collected data is recorded as d = (d1,
d2, . . . dn)T , d is sparse under the sparse basis 9N×N , and
the observation matrix is 8 = (φij)M×N , where M × N
observation vector is Y = (yi)M×1 = 8 ·9T

· d , and then
the Sink node can be reconstructed under certain accuracy
constraints by solving the optimization problems shown in
equations (8) and (9).

Y = 8 · S = 8 ·9T
· d = 2 · d (8)

d̂ = argmin ‖d‖l s.t. Y = 8 · S (9)

When the target node of interest enters the monitor-
ing area at a certain speed, the defined target state are

28440 VOLUME 8, 2020



Z. Sun et al.: CSR-IM: Compressed Sensing Routing-Control-Method With Intelligent Migration-Mechanism

xt = [xt , yt , ẋt , ẏt ] where [xt , yt ] and [ẋt , ẏt ] represent the
target position and target speed at the k-th moment. The
system state equation is shown in (10):

xk+1 = 9kxk +Wk (10)

where, ψk is a state transfer matrix, Wk is process noise and
Gaussian white noise, and its covariance matrix is Q.

F =


1 0 t 0
0 1 0 t
t 0 1 0
0 t 0 1

 (11)

Q = q ·



t3

3
0

t2

2
0

0
t3

3
0

t2

2
t2

2
0

t3

3
0

0
t2

2
0

t3

3


(12)

where t is the observation interval and q is the white noise
parameter.

zjk+1 = hjk+1 + v
j
k+1 = arctan

(
xk+1 − x j

yk+1 − yj

)
+ vjk+1 (13)

hjk+1 is the ideal measurement, [x j, yj] is the position of
the j-th node, vjk+1 is Gaussian noise, and its average value
is 0, and the standard deviation is σv, i.e. v

j
k+1 ∼ N

(
0, σ 2

v
)
.

Process noise and measurement noise are uncorrelated.
x0:k and z1:k represents the target state and measurement

from 0 to k, and the initial joint probability density p(x0),
noise model Wk and vk are known. And then, the joint prob-
ability density of (x0:k , z1 : k) is known by Equation 14.

p (x0:k , z1:k) = p (x0)
k∏
i=1

p (xk |xk−1 )
k∏
j=1

p
(
zj, xj

)
(14)

The traditional Cramer-Rao lower bound on mean square
error provides a performance limit for any unbiased
estimation of fixed parameters. This article assumes x̂ an
estimate of x, and the posterior Cramer-Rao inequality gives
the mean square error bound of the estimator as shown in
Equation (15).

E
{[
x̂k − xk

]
·
[
x̂k − xk

]T}
≥ L−1 (xk) (15)

where L is the Fisher information matrix, L = E{logp(x, z)},
where the expectation is about the joint probability density
p(x0:k , z1:k ).

In the traditional unconditional constraints, x0:k and z1:k are
random vectors, and the boundary is obtained by averaging
all z1:k and x0:k . In fact, at time k + 1, it may be known
in addition to the target state equation and measurement
equation, and z1:k . is also known.

Under all known past z1:k conditions, when a new mea-
surement zk+1 arrives, the lower bound of the estimated target
state satisfies the equation (16).

E
{[
x̂k − xk

]
·
[
x̂k − xk

]T
|z1:k

}
≥ L−1 (xk |z1:k ) (16)

The measurement z1:k is a random vector, we use the target
state estimate at time k to predict the performance lower
bound of the target state estimate at time k+1. Under known
measurement z1:k conditions, the conditions of the mean
square error of the target state vector xk+1 can be calculated
as Equation (17):

L (xk+1 |z1:k ) = M22
k = M21

k

[
LA (xk |z1:k )+M11

k

]−1
M12
k

(17)

M11
k = Epck+1

[
log p (xk+1 |xk )

]
(18)

M12
k =EpcK=1

[
− log p (xk+1 |xk )

]
=

(
M21
k

)T
(19)

M22
k = Epck+1

[
log p (xk+1 |xk )

]
+Epck+1

[
log p (zk+1 |xk )

]
(20)

where pck+1 = p (x0:k+1, zk+1 |z1:k ). A more direct CPCRLB
approximate iterative formula is provided in [17], as shown
in equation (21):

L (xk+1 |z1:k )≈M22
k −M

21
k

[
LA (xk |z1:k−1 )+M11

k

]
M12
k

(21)

According to the state model and measurement model of
the target motion, this article can obtain L, as shown in
equation (22):

L (xk+1 |z1:k )≈
[
FL−1 (xk |z1:k+1 )FT + Q

]−1
+M22

k (22)

where M22
k = Epck+1

[
log p (zk+1 |xk )

]
, its initial iteration

condition is L (x0 |zx−1 ) = E
[
log p (x0)

]
.

The DOA-based target tracking system does not exist in a
real mathematical expression of M22

k . We assume that there
are Np particles with weights, it can be expressed {x lk ,w

l
k}
Np
t=1

at time k , the weight of these particles becomes 1/Np after
resampling, so at time k the posterior joint probability density
function can be expressed as:

p (x0:k |z1:k ) ≈
1
N

Np∑
l=1

δ
(
x0:k − x l0:k

)
(23)

At the same time, according to the measurement model, the
likelihood function can be obtained as follows.

ln p (zk+1 |xk+1 ) =
Np∑
j=1

−
(
zjk+1 − j

j
k+1

)
2σ 2

v
− ln
√
2πσv


(24)
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And the elements of matrix M22
k can be expressed as

follows.

M22
k =


M22
k (1, 1) M22

k (1, 2) 0 0
M22
k (2, 1) M22

k (2, 2) 0 0
0 0 M22

k (3, 3) M22
k (3, 4)

0 0 M22
k (4, 3) M22

k (4, 4)


(25)

where,

M22
k (1, 1)

=
1

Npσ 2
v

Np∑
i=1

Na∑
j=1

(yk+1 − yi)2[
(xk+1 − x i)2 + (yk+1 − yi)2

]2
∣∣∣∣∣∣
xk+1=xik+1

(26)

M22
k (1, 2)

=
1

Npσ 2
v

Np∑
i=1

Na∑
j=2

(yk+1 − yi)(xk+1 − x i)[
(xk+1 − x i)2 + (yk+1 − yi)2

]2
∣∣∣∣∣∣
xk+1=xik+1

(27)

M22
k (2, 1)

=
1

Npσ 2
v

Np∑
i=2

Na∑
j=1

(xk+1 − x i)2[
(xk+1 − x i)2 + (yk+1 − yi)2

]2
∣∣∣∣∣∣
xk+1=xik+1

(28)

M22
k (2, 2)

=
1

Npσ 2
v

Np∑
i=2

Na∑
j=2

(xk+1 − x i)(yk+1 − yi)[
(xk+1 − x i)2 + (yk+1 − yi)2

]2
∣∣∣∣∣∣
xk+1=xik+1

(29)

IV. IMPLEMENTATION OF IM-CSR ALGORITHM
A. LEVEL DETERMINATION OF THE LOCAL DENSITY FOR
MONITORING TARGET
The load balancing mechanism deploys sensor nodes based
on the distribution of monitoring targets. This deployment
solution not only completes the basic tasks of node deploy-
ment, i.e. coverage and connectivity, but also achieves load
balancing at various locations. In short, we investigate the
density of monitoring targets at various locations, deploy
more nodes in dense locations, and deploy fewer nodes in
sparse locations.

We determine a uniform local range σ of the entire net-
work, and calculate the number of monitoring targets in the
local range σ at any position x in the entire network as
the local density ρx of the monitoring targets at that posi-
tion. If the local density exceeds the threshold φ, and then
the actual required sensing radius rx . of the sensor node is
reduced.

FIGURE 2. Comparison of Lx and ρx .

FIGURE 3. Comparison of r0 and ρx .

We set the local density level Lx of the monitoring target
as in equation (30), as show in Fig2.

Lx =


0, if ρx < 81
ρx −81
1ρ

, if 81 ≤ ρx ≤ 82

Lmax if ρx > 82

(30)

The actual required sensing radius of the sensor node at
position x is shown in equation (31).

rx =


r0 if r0 < ρx

r0 − Lx ×1r if r0 = ρx
rmax if r0 > ρx

(31)

where 1r represents a basic unit with a reduced sensing
radius. The following figure showsthe relationship between
the actual required sensing radius and local density. Because
the monitoring targets are distributed on the grid, there is an
upper limit on the local density of the monitoring targets and
an upper limit on the local density level. The actual required
sensing radius also has an upper limit, i.e., it must meet
rx > 0, as show in Fig3.
Monitoring targets may be located in different isolated

areas. An isolated area is randomly selected, and the location,
where the local density of the monitoring target is relatively
large, is deployed to deploy the first sensor node. The greedy
method based on the local density of the monitoring target
is used for tackling the coverage problem of other locations
in this area [48], [49]. Specifically, within the maximum
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FIGURE 4. Processing of target migration coverage.

communication range Rmax of the currently deployed sensor
node locations xi, the location xi+1 with the highest local
density of the monitoring target is selected as the deployment
location of the next sensor node, that is,

xi+1 = arg{N (xi+1)} (32)

d(xi, xi+1) ≤ Rmax (33)

If the local density of monitoring targets of all locations
within the maximum communication range around the cur-
rent sensor node is zero, the previously deployed sensor node
location is felled back and is used as the current position, and
then the new position will be selected to deploy the sensor
node. If the local density of monitoring targets within the
maximum communication range of all previously deployed
sensor node locations is zero, a sensor node is deployed in
any of the isolated areas that can cover the monitoring target
by a hopping way and sensor nodes continue to be deployed
by new position until all monitoring targets throughout the
network are covered.

It is worth noting that each time a sensor node is deployed
at any location to complete the coverage task, the actual
required sensing range of that location is used as its sens-
ing range to achieve load balancing, as shown in Figure 4.
In addition, each time a sensor node is deployed, the num-
ber of deployed sensor nodes and the number of remaining
monitoring targets must be updated.

More specifically, for any two segments Su and Sv, we need
to find the specific grid cells �i and �j that can satisfy{

�i = arg {min d(Su,Sv)}

�j = arg {min d(Su,Sv)}
(34)

where

d(Su,Sv) = d(�i, �j)

subject to �i ∈ Su
�j ∈ Sv (35)

FIGURE 5. The reference transmission distance.

where d(�i,�j) is the distance between the centers of the two
grid cells �i and �j.

B. TRANSMISSION DISTANCE CONTROL MECHANISM
In order to improve network life, two factors must be met, the
first factor is to minimize energy consumption, and the other
one is to balance energy consumption. Therefore we have
designed two transmission distances in transmission. One is
the minimum distance for energy consumption, and the other
is the energy balance distance. Both distances guide the data
transmission route.

(1) Reference Transmission Distance
The reference transmission distance is used to fit a linearly

increasing distance set for load balancing, as show in Fig5.

D = d0 + ad (36)

where d is the distance to the sink. It can be seen from
the Figure 5, the farther away from the base station sink,
the larger the reference transmission distance. After the nodes
are deployed, clustering is performed, and data is transmitted
by clusters. The way in which each cluster chooses a route
is considered based on two factors, the reference transmis-
sion distance and the amount of data received. Specifically,
the cluster head Xi selects the next hop cluster head Xj accord-
ing to the following formula.

f (j) = c1
ϕ(j)
ϕmax

+ c2
|Di − d(i, j)|

dmax
(37)

where ϕ(j) represents the amount of data received by the clus-
ter head, and d(i, j) represents the distance between clusters i
and j. The first denominator represents the product of the
number of monitoring targets and the data generation rate,
i.e., the total amount of data, and the second denominator
represents the maximum distance between the node and the
base station sink.

In the above formulas, j with the smallest function value
is selected as the relaying node of i. Obviously, if the relay-
ing node forwards a smaller amount of data, the closer the
distance between the cluster heads Xi and Xj is near to the
reference distance, and then the more likely the node Xj is
selected as the relaying node.
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In order to further realize load balancing across the net-
work, we propose a data traffic transferring mechanism. The
core idea of this mechanism is to deploy sensor nodes among
different groups with large traffic differences to create an
additional path to transfer part of the data from the group
with higher traffic to the group with smaller traffic, thereby
balancing the load of different regions. This data traffic trans-
ferring mechanism involves both node deployment and data
transmission.

(1) Representation for data flow level
To reduce the computational complexity, the communica-

tion load is calculated by each group �i as the unit. The data
traffic level of a group is as followed.

ξ (�i) =

∑
j∈LH (Gi)

ϕ(j)

B(�i)
(38)

where φ(j) represents the amount of data forwarded by the
cluster of the last hop (which is directly sent to the base
station), LH(�i) represents the set of cluster j of the last hop
in group �i, and B(�i) represents the number of cluster j of
the last hop in group �i. The above formula represents the
average data forwarding volume of cluster j in the last hop of
group �i.
(2) Determine of the location for traffic transfer
This is how the start and end positions of the data transfer

route are chosen. We use the following function to judge.
Prerequisites for traffic transfer (from cluster �i to

cluster �j):
ξ (�u)− ξ (�v) > ξ0

ϕ(i)− ϕ(j) > ϕ0, i ∈ ξ (�u), j ∈ ξ (�v)
d(i, j) < d0, i ∈ ξ (�u), j ∈ ξ (�v)
d(i, sink) > L0, d(j, sink) > L0

(39)

Determination of the start position (cluster �i) and end
position (cluster �j) of the traffic transfer.(

�i, �j
)
= max g(�i, �j) (40)

g(�i, �j) =
ϕ(�i)− ϕ(�j)
d(�i, �j)

(41)

The numerator is the difference in data forwarding traffic
between the two clusters, and the denominator is the distance
between the two clusters. Obviously, the larger the difference,
the smaller the distance, i.e., the smaller the cost, and then the
more suitable for data traffic transfer.

V. PERFORMANCE EVALUATION
We compare CSR-IM with the following algorithms:
DMOA [30], TBSR [31], and MDCS [32]. DMOA is a non-
clustering algorithm for event-driven sensor networks, and
TBSR is a dynamic clustering algorithm based on events, both
of which use fixed base stations. MDCS are non-clustered
algorithms using mobile base stations, while CSR-IM is
a combination of cluster and mobile base station technol-
ogy. Through the experimental comparison among them,

FIGURE 6. CSR-IM clustering results at t = 100s.

FIGURE 7. CSR-IM clustering results at t = 300s.

the advantages brought by clustering and base station move-
ment can be clearly demonstrated.

With the purpose of convenient comparison, we use the
wireless network energy consumption model in [19]. And we
assume that the shape of the event domain is square, and the
location, time, and duration of the event are random. CSR-IM
and DMOA aggregate data in the cluster and the experiment
considers different data aggregation rates.

The clustering results of the CSR-IM algorithm at different
times are shown in Figure 6 to Figure 8. In the simulation,
the sensor nodes are randomly deployed in the square mon-
itoring area. The CSR-IM algorithm fully considers the dis-
tance relationship between the cluster head and other nodes.
At the same time, more attention is paid to the remaining
energy of the node and the position of the base station, and
the selected cluster head is more biased towards the base
station, so the energy consumption of the members in the
cluster to transmit data to the cluster head will be reduced.

28444 VOLUME 8, 2020



Z. Sun et al.: CSR-IM: Compressed Sensing Routing-Control-Method With Intelligent Migration-Mechanism

FIGURE 8. Figure 6 CSR-IM clustering results at t = 500s.

FIGURE 9. Comparison of data aggregation rate of four algorithms
(t = 100s).

The CSR-IM algorithm has randomness in the number of
clusters, the number of nodes in the cluster is uneven, and the
cluster and cluster coverage is relatively even, which balances
the data transmission energy consumption of the nodes in
the cluster. The DMOA algorithm given in [30] uses the
dual cluster head method. The primary and secondary cluster
heads have a clear division of labor. Due to different cluster-
ing reasons for reference, the main cluster head selection of
the DMOA algorithm is based on the distance from the cluster
center The remaining energy is used as a reference standard,
so it is closer to the center of the cluster, and the secondary
cluster head uses the remaining energy and the distance to the
base station point as reference factors in the election, so the
selected secondary cluster head is closer to the base station.

When E = 5J, the data aggregation rate of each algo-
rithm is shown in Figure 9-13 under the number of sensor
nodes at different times. It can be seen from the simulation

FIGURE 10. Comparison of data aggregation rate of four algorithms
(t = 300s).

FIGURE 11. Comparison of data aggregation rate of four algorithms
(t = 500s).

results that the CSR-IM algorithm has a higher data aggre-
gation rate than the other three algorithms at different times.
At the initial moment of the network, due to the difference
between network connectivity and the state of the sensor
nodes, the aggregation rate of all algorithms is poor. As the
number of sensor nodes increases, the advantages brought
by data aggregation gradually increase, compared to CSR-
In terms of IM algorithm and TBSR algorithm, the perfor-
mance enhancement speed ofMDCS and DMOA is relatively
slow, and the difference in data aggregation rate between the
two algorithms is small. The main reasons are as follows.
First, the cluster-based event information reporting mecha-
nism of CSR-IM reduces the number of control messages
related to event information acquisition, and the data aggrega-
tion within the cluster reduces the transmission of redundant
data. Second, the data migration mechanism can make more
nodes have the opportunity to become one-hop neighbors of
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FIGURE 12. Comparison of data aggregation rate of four algorithms
(t = 700s).

FIGURE 13. Comparison of data aggregation rate of four algorithms
(t = 900s).

the base station. Third, the data information obtained based
on the number, location, and average energy of the event
domain nodes enables the fog nodes to accurately grasp the
optimal location. That is to shorten the data transmission
distance and better balance energy consumption. The compar-
ison results between different numbers of sensor nodes and
data aggregation rate under different time effects show that
the data aggregation rate of the CSR-IM algorithm proposed
in this paper is higher than the other three algorithms. At dif-
ferent times, they were higher than 7.89%, 8.05%, 8.13%,
8.39%, and 8.51%, respectively, and their data aggregation
rates increased by 8.19% on average.

In order to investigate the effect of sensor nodes on network
coverage, we used different parameter values as the basis for
calculation in the experiments. We calculated the network
coverage of four algorithms when the parameters changed.
The results are shown in Figure 14 to Figure 18. With the

FIGURE 14. Comparison of network coverage of four algorithms
(t = 100s).

FIGURE 15. Comparison of network coverage of four algorithms
(t = 300s) .

increase of the number of sensor nodes, the network coverage
of four algorithms has increased, but with the passage of time,
the improvement of the MDCS algorithm and the DMOA
algorithm has gradually flattened. The main reasons are as
follows. First, the CSR-IM algorithm in this paper uses a
dynamicmigrationmechanism. In the unit cycle, the fog node
recalculates the speed and position of the target node to make
it more accurately calculate the trajectory of the target node.
Second, as the dynamic parameters increase, the correspond-
ing time among sensor nodes is shortened, and the network
coverage changes significantly. Third, when the target node
is located in the event domain, the clustering structure and the
state transition among sensor nodes can effectively reduce the
amount of data transmission in the network, thereby extend-
ing the network lifetime. Fourth, the CSR-IM algorithm in
this article has used the data aggregation mechanism. When
the data aggregation rate is small, the abnormal death of nodes
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FIGURE 16. Comparison of network coverage of four algorithms
(t = 500s).

FIGURE 17. Comparison of network coverage of four algorithms
(t = 700s).

in the event domain has a small impact on the reduction
of the amount of data in the network. At the same time,
the migration strategy of the CSR-IM algorithm suppresses
the probability of abnormal death nodes. Therefore, the
CSR-IM algorithm’s network coverage will increase as
the parameter value increases. The other three algorithms
increase network coverage by increasing the number of sen-
sor nodes, and do not consider the impact of data redundancy
on network coverage, which results to a slow increase in
the network coverage of the three algorithms. The CSR-IM
algorithm has three different coverage effects at the same
time when we set δ to 0.3, 0.6 and 0.9. When the number
of sensor nodes is 500 to 700, the network coverage of
the CSR-IM algorithm has a great advantage. The other
three algorithms cannot obtain higher network coverage
by changing the dynamic parameters. Based on the anal-
ysis of Figure 14 to Figure 18, the network coverage has
increased by 12.02%, 12.56%, 12.77%, 12.86%, and 13.05%,

FIGURE 18. Comparison of network coverage of four algorithms
(t = 900s).

respectively, and its network coverage has increased
by 12.65% on average.

VI. CONCLUSION
This paper studies dynamic data aggregation routing and
network coverage with migration mechanism, and pro-
poses the Compressed Sensing Routing-control- method
with Intelligent Migration-mechanism based on Sensing
Cloud-computing. First, when the dynamic target node
reaches a new location, the CSR-IM algorithm establishes a
full-network routing tree with the fog node as the root, and
at the same time, clusters the nodes in the event domain with
distributed way. When an event occurs or ends, the accurate
and optimal position of the event information is calculated
according to the compressed sensing theory, which effec-
tively shortens the data transmission distance and balances
the network load, extending the network life cycle. Second,
the CSR-IM algorithm uses dynamic parameter thresholds
to improve network coverage, and at the same time which
can effectively calculate the new location information of the
moving target node and reduce unnecessary location calcula-
tions, thereby reducing the computational complexity. Third,
the CSR-IM algorithm provides a data migration mechanism,
which can quickly determine the location information of the
target node through the perception among sensor nodes, and
avoid data loss during the movement process. For the trans-
mission of data within the network, the CSR-IM algorithm
aggregates data within the cluster and can reliably transmit
the aggregated data. And when a node dies, the CSR-IM
algorithm can simply and effectively complete route repair.
Finally, algorithm analysis and simulation experiments show
that the CSR-IM algorithm can effectively reduce the average
energy consumption of data packets, improve the data aggre-
gation rate and coverage rate, and then extend the network
life cycle. It has laid a certain foundation for the research
of heterogeneous sensor networks. How to use multiple base
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stations to comprehensively improve the performance of
ultra-large- scale WSNs is the next research focus.
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