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ABSTRACT Segmentation of pulmonary nodule in thoracic computed tomography (CT) plays an important
role in the computer-aided diagnosis (CAD) and clinical practices. However, segmentation of pulmonary
nodules still remains a challenging task due to the presence of intrinsic noise, low contrast, intensity-
profile inhomogeneity, variable sizes and shapes. Many variants and extensions of fuzzy C-mean (FCM)
clustering algorithm have been developed to preserve image details as well as suppress image noises.
However, these variants overemphasize the importance of the spatial information and neglect the role of
the prior knowledge. To address this problem, a GMM fuzzy C-means (GMMFCM) algorithm is proposed
for the segmentation of pulmonary nodules in this paper. A novel local similarity measure is defined by
using local spatial information and GMM statistical information. A neighboring term is added to the energy
function of traditional fuzzy C-mean algorithm. A superpixel-based random walker is proposed to segment
pulmonary parenchyma, which reduces the computational complexity and improves the segmentation
performance. Experiments performed on the LIDC dataset and the GHGZMCPLA dataset demonstrate
that the segmentation performance of proposed GMMFCM algorithm is superior to the state-of-the-art
algorithms.

INDEX TERMS Segmentation, lung cancer, pulmonary nodule, random walker, FCM, Gaussian mixture
model.

I. INTRODUCTION
Lung cancer is the leading cause of cancer-related death
worldwide. The American Cancer Society estimates that
1,688,780 new cancer cases and 600,920 cancer deaths will
be diagnosed in the United States in 2017. The five-year sur-
vival rate of lung cancer patients is only 18%, because most
lung cancer patients are diagnosed at an advanced stages [1].
Computed tomography (CT) is one of the most common
imaging modalities for examining and screening lung cancer.
Several studies have proved that early diagnosis of lung can-
cer could help improve survival rate and reduce the mortality
rate by up to 20% [1]. Lung cancer potentially manifests
itself as pulmonary nodules in an early stage. Although most
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pulmonary nodules with a size equal to or less than 5 mm
are benign, distinguishing lung cancer from benign lesions is
crucial. Therefore, an early diagnosis of pulmonary nodules
is essential to determine whether the treatment is necessary.

The accurate segmentation of pulmonary nodules in CT
images is an important task for the early diagnosis of
lung cancer. Traditionally, the pulmonary nodules are seg-
mented by the radiologists. However, manual segmentation is
time-consuming and prone to intra- and inter-observer vari-
ability, and thus making the results unreliable. In addition,
the vast amount of CT images to be analyzed bring an invis-
ible burden for radiologists. Hence, automatic segmentation
of pulmonary nodules in the thoracic CT images is an area of
ongoing and extensive research. Clinicians burdened in the
situations, which occur very often in clinical practices, will
indeed benefit from the automated segmentation methods.
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Segmentation of pulmonary nodules still remains a chal-
lenging task due to intra-nodules inhomogeneity, low con-
trast, blurred boundaries, variable sizes and irregular shapes.
During the last decades, plenty of efforts have been devoted
to pulmonary nodule segmentation in the literature, such
as threshold-based methods [2], region growth-based meth-
ods [3], morphology-based methods [4], [5], shape-based
methods [6], Hessian-based methods [7], [8], active contour-
based methods [9]–[11], level set-based methods [12], [13],
clustering-based methods [14], [15], local shape analysis
methods [16] andmachine learning-basedmethods [17], [18].
Threshold-based and region growth-based methods can
achieve good segmentation performance for solitary pul-
monary nodules, because intensity distributions are dis-
tinguishable between the nodule and background. The
segmentation of other pulmonary nodules often fails due
to the strong overlap of respective intensity distributions,
such as juxta-vascularized nodule, juxta-pleural, and ground-
glass opacity (GGO). Shape-based methods have been well
studied for pulmonary nodule segmentation. They model a
nodule either as a spherical or ellipsoidal shape. However, due
to the large morphology variability of pulmonary nodules,
their geometrical assumptions are not valid. Active contour
and level set methods have been attracting more and more
attentions for pulmonary nodule segmentation. Although
these deformable methods have obtained the satisfactory
segmentation performances, they are sensitive to noise and
depend on the location of initial contour. In addition, due
to the use of a huge number of iterations, these deformable
methods demand the high computational cost. Therefore, it is
of great interest to develop a simple and general algorithm for
pulmonary nodule segmentation.

Fuzzy C-means (FCM) algorithm has been widely used
in image segmentation. The main drawback of the conven-
tional FCM algorithm is sensitive to noise due to the lack of
the spatial information. However, the presence of intensity
inhomogeneity and noise is inevitable in the CT images.
Although the variations of FCM algorithm yield the desir-
able results for image segmentation, there still exist some
shortcomings. For example, some variations suffer from the
limitation of segmentation accuracy. Another variations can
suffer from the problem of noise and outliers. Selecting the
initial cluster centers is also a challenging problem.

These drawbacks significantly hinder the applications
of FCM algorithm on pulmonary nodule segmentation. To
address these problems, a GMM fuzzy C-mean (GMMFCM)
algorithm is proposed for pulmonary nodules segmentation
in this paper. Distinct from the FLICM algorithm, the pro-
posed algorithm incorporates GMM prior knowledge into the
traditional FCM algorithm by defining a new local similarity
measure.

The contributions of this paper are as follows:
1) A novel multiscale dot enhancement filter is pro-

posed. The traditional multiscale dot enhancement fil-
ter is sensitive to image noise due to the calculation
of second order derivatives of Hessian matrix. To address

this problem, a novel multiscale dot enhancement filter is
proposed by incorporating the Hessian matrix and shape
index (SI) to alleviate the interference of the intensity inho-
mogeneity within pulmonary nodules, as well as avoid the
influence of image noise and surrounding tissues.

2) The seeds of pulmonary nodule and background are
automatically selected. How to choose the proper seeds is
very important for the likelihood estimation of GMMmodel.
In this paper, the nodule seeds are chosen from the response
results of the multiscale dot filter, and the background seeds
are chosen by jointing the shape index and texture properties.

3) A novel local similarity is proposed by using GMM
prior knowledge. The traditional FLICM algorithm fails to
discriminate the nodule pixels and non-pixels in CT images,
resulting in non-optimal segmentation results. This severely
restricts the application of FLICM algorithm. To overcome
this limitation, a novel local similarity measure is proposed
by using GMM based on posterior probability. The posterior
probability is calculated according to nodule and background
seeds.

4) The initial cluster centers selection. For the previous
FCM algorithms, the initial cluster centers were selected ran-
domly. In this paper, the initial cluster centers of the nodules
are chosen from themultiscale dot filter, and the initial cluster
centers of background are chosen from background seeds.

The remainder of this paper is organized as follows:
Section II gives the previous studies related to our work.
Section III presents a detailed description of the proposed
GMMFCM algorithm for segmentation of pulmonary nod-
ules. Section IV describes the results of pulmonary nodule
segmentation, as well as the comparison of the proposed
with other related segmentation algorithms on the LIDC
dataset and the GHGZMCPLA dataset. Section V gives the
discussions of this paper. Finally, section VI provides the
conclusions and future work.

II. RELATED WORKS
Fuzzy C-Means (FCM) clustering is one of the most popular
clustering algorithms. FCM is a soft clustering algorithm
in which each image pixel can belong to more than one
cluster with different degrees of membership. FCM has been
successfully applied in several image processing problems
due to its simplicity and efficiency, such as image cluster-
ing [19]–[21], image segmentation [22]–[26] and image clas-
sification [27]–[32]. The traditional FCM algorithm achieves
the segmentation results by minimizing the sum of the
distance between the pixel and its corresponding cluster
centers. Although it works well on intensity homogeneous
and noise-free images, it fails to segment images corrupted by
noise and other imaging artifacts. It is because it does not con-
sider the spatial information and uses the square of Euclidean
distance. However, medical images are often corrupted by
noise and the artifacts due to the physical mechanisms of
the acquisition process and the movement of patient’s body.
Many variants and extensions have been developed in the
literature.Many researchers took the local spatial information
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into account. For example, Huang et al. [23] proposed an
FCM_S algorithm for segmentation of brain MIR images.
The authors introduced a spatial neighborhood term into
the original objective function of FCM algorithm. The main
shortcoming of FCM_S was its computational complexity
and storage requirement, because the neighborhood labels
of pixels were calculated in each iteration step. Its variants
FCM_S1 and FCM_S2 algorithms were developed to reduce
the computational burden of the spatial neighborhood term.
To further speed up the convergence rate, Cai et al. [33]
proposed fast generalized FCM (FGFCM) for image seg-
mentation. The authors combined the spatial and gray levels
information to construct a local similarity measure, then
formed a non-linearly weighted sum image. The clustering
process was performed on the summed image rather than the
original image. Unfortunately, some important information
of the original image may be lost, thus resulting in degrading
image segmentation performance.

Another critical issue is how to determine the crucial
parameters, which controls the tradeoff between robustness of
noise and effectiveness of preserving image details. However,
it is very difficult to select appropriate parameters. To address
these problems, Krinidis et al. [34] proposed a FLICM algo-
rithm for image segmentation. The authors introduced a fuzzy
factor to replace the parameters used in FCM_S algorithm and
its variants. Although FLICM algorithm achieved the desired
segmentation results, there are still some shortcomings in
keeping the image edge. Li et al. [35] proposed a modi-
fied FLICM algorithm for image segmentation, which intro-
duced edge and local information to reduce edge degradation.
Gong et al. [36] proposed a variant of FLICM algorithm,
which introduced a tradeoff weighted fuzzy factor and kernel
metric for image segmentation. Although FLICM algorithm
and its variants considered the influence of the neighboring
pixels, they failed to make full use of the information of
the center pixel in the local window. Thus, the borders and
edges of some regions may be over-smoothed. To reduce the
smoothness and further improve the segmentation accuracy,
Ji et al. [37] proposed a RSCFCM algorithm for brain MR
image segmentation. The authors introduced a spatial factor
based on posterior probabilities and prior probabilities to alle-
viate the disturbance of noise and intensity inhomogeneity.
The dissimilarity function was constructed by considering the
prior probabilities. Recently, Zhang et al. [38] proposed an
ADFLICM algorithm by introducing a fuzzy local similarity
measure to replace the fixed parameter of FCM_S algorithm.
The main advantage of the fuzzy local similarity measure is
that it can adaptively vary by the gray level and local spatial
relationships between the center pixel and its neighbors in a
local window. Zhao et al. [39] proposed interval type-2 fuzzy
C-Mean clustering algorithm for color image segmentation.
A novel interval type-2 fuzzy clustering objective function is
constructed by utilizing the intuitionistic fuzzy information
extracted from images. Singh and Bala [40] proposed the
local and nonlocal FCM, the distance function of the FCM
is represented as the sum of the local and nonlocal distances

which themselves are the weighted values of the Euclidean
distance used in the FCM.

III. METHODOLOGY
In this paper, a GMM fuzzy C-means clustering algorithm is
proposed for pulmonary nodule segmentation. The flowchart
of the proposed method is shown in Fig. 1. First, the orig-
inal CT thoracic images are smoothed by non-local mean
filter and down-sampled by Gaussian pyramid. Second,
the pulmonary parenchyma is segmented by superpixel-based
random walker algorithm. To generate the nodule seeds,
pulmonary nodules are enhanced by a new multiscale dot
enhancement filter. To generate background seeds, a scheme
is proposed by jointing shape index and texture features.
Then, the nodule and background GMM models are built
by generating the seeds. Finally, the pulmonary nodules are
segmented by GMM fuzzy C-mean algorithm. The details of
each step are described in the following sections.

FIGURE 1. The flowchart of the proposed algorithm.

A. PREPROCESSING
Due to the imaging mechanism of acquisition process and
the movement of the patient body, thoracic CT images are
inevitably contaminated by the noise and artifacts. Therefore,
the preprocessing is necessary to reduce the noise and
enhance the contrast.

Firstly, a non-local mean (NLM) filter with a mask of 3×3
is adapted in this section. The non-local mean (NLM) filter is
capable of reducing the noise without sacrificing the details
of the image. Secondly, the Gaussian pyramid is employed to
reduce the image resolution by half, which reduces the com-
putational complexity and accelerates the convergence rate.
The pyramid is a sequence of smoothed images generated
by a Gaussian filter. The basis of the Gaussian pyramid is
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FIGURE 2. An Example of CT image with a pulmonary nodule in a
preprocessing step. (a) Original CT images with a well-circumscribed
nodule. (b) Corresponding subsampled image obtained by using Gaussian
pyramid.

formulated in equation (1).

gl (i, j) =
2∑

m=−2

2∑
n=−2

w (m, n)gl−1 (2i+ m, 2j+ n) (1)

where l is a level of the Gaussian pyramid. i and j are the spa-
tial coordinate positions of x- and y-direction at the l-th level,
respectively. gl−1 is the Gaussian smoothed image at the
l− 1-th level. w (m, n) denotes a 5× 5 Gaussian filter, which
is used to the neighboring pixels of a pixel (i, j). g0 denotes
an initial image, i.e. an input image at the level l = 0. gl is
generated by smoothing the image gl−1 with a Gaussian filter
w (m, n). Fig. 2 shows a CT image with a nodule. Fig. 2(a) is
an original image with a well-circumscribed nodule. Fig. 2(b)
is the down-sampled result by Gaussian pyramid. The image
size of 512× 512 is down-sampled to the size of 256× 256.
This image is directly applied to segment pulmonary
parenchyma process.

B. GMM FUZZY C-MEANS
The traditional FCM algorithm neglects the spatial informa-
tion, hence it is more sensitive to noise. Although the FLICM
algorithm introduced a fuzzy factor to alleviate the image
noise and preserve the image details, it has the limitation in
discriminating the boundary pixels. To address this problem,
a GMM fuzzy C-mean algorithm (GMMFCM) is proposed
for pulmonary nodule segmentation. The proposed GMM-
FCM takes into account the spatial relationship between the
neighboring pixels, and computes the posterior probability of
the pixels belonging to each cluster. A new local similarity
measure is defined based on the posterior probabilities of the
GMMmodels. Then, the objective function of the GMMFCM
algorithm is defined. The details of each step are described in
the next sections.

1) DEFINITION OF LOCAL SIMILARITY MEASURE
The objective function of FCM algorithm is iteratively mini-
mized to find a solution to the problem. The highmembership
degree is assigned to the pixel whose intensity value is close
to the center of the corresponding cluster, and the low mem-
bership degree is assigned to the pixel whose intensity value is
far from the center. Hence, themembership degree is sensitive
to the presence of noise and intensity inhomogeneity.

The FLICM algorithm introduced a fuzzy factor to reduce
the image noise and simultaneously preserve image details.
The fuzzy factor characterizes the spatial relationships
between the pixel and its neighbors. However, it is unable
to handle the boundary pixels. It is well-known that some
pulmonary nodules and adjacent structures share the similar
intensities, thus resulting in the fuzzy boundaries. To address
this problem, a novel local similarity measure is introduced
for pulmonary nodule segmentation by incorporating the
local spatial information and the GMM statistics information.
For two pixels i and j, the spatial measure is defined in
equation (2).

SMGMM
ij

(k) =
Pki × Pkj

d2ij
, k ∈ {1, · · · , c} (2)

where d (·) is a spatial distance between two neighboring
pixels i and j. Pki and Pkj denote the posterior probabilities
of the pixels i and j by fitting the Gaussian Mixture Model
(GMM) of the cluster k . dij is the spatial Euclidean distance
between the pixels i and j. c is the number of clusters.

A novel local similarity measure is defined in equation (3).

wGMM
ir

=

{
SMGMM

ir i 6= r
0 i = r

(3)

where the i-th pixel is the center of local window Ni, and
the r-th pixel is the neighborhood pixel that falls into Ni.
The proposed local similarity function does not involve any
adjusted parameters. After the definition of local similarity
measure, the objective function of GMMFCM algorithm is
defined in the following section.

2) FORMULATION OF PROPOSED GMMFCM ALGORITHM
The objective function of the proposed GMMFCM algorithm
is defined in equation (4).

JGMMFCM =
N∑
i=1

c∑
k=1

umki ‖xi − vk‖
2

+
α

NR

N∑
i=1

c∑
k=1

umki

(1−wGMMir

)∑
xr∈Ni

‖xr−vk‖2


s.t.

c∑
k=1

uki = 1 0 ≤ uki ≤ 1 ∀k, i (4)

where uki is the degree ofmembership of the i-th pixel belong-
ing to the k-th cluster. vk is the prototype of the k-th cluster.
m is a fuzzy index, which determines the level of cluster
fuzziness of the membership grades. NR is the cardinality of
the neighborhood system Ni. ‖·‖ denotes the norm operator.
α is the tradeoff parameters, which controls the effect of the
factor terms. The first term is the objective function used in
traditional FCM algorithm, which assigns a high membership
to the image pixels whose intensity values are close to the
center of the particular cluster and a low membership to the
image pixels whose intensity values are far from the center
of the particular cluster. The second term is a local similar
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regularizer term, whose weight factor is automatically deter-
mined by incorporates the spatial relationship and the prior
knowledge information of two neighboring pixels. Therefore,
local spatial relationship was adaptively changed and more
local spatial information was considered.

According to the Lagrange multiplier method, the
Lagrange function of (4) is defined in equation (5).

FGMMFCM =
N∑
i=1

c∑
k=1

umki ‖xi − vk‖
2

+
α

NR

N∑
i=1

c∑
k=1

umki

∑
xr∈Ni

(
1−wGMM

ir

)
‖xr−vk‖2


+ λ

N∑
i=1

(
1−

c∑
k=1

uki

)
(5)

By the partial derivative of the Lagrange function (5) with
respect to the variances uki, vk , and setting them to be zero,
the membership uki and the center vk are updated according
to the updating equations (6) and (7).

vk =

N∑
i=1

umki

(
xi + α

NR

∑
xr∈Ni

(
1− wGMM

ir

)
xr

)
(
1+ α

NR

∑
xr∈N

(
1− wGMM

ir

))
·

N∑
i=1

umki

(6)

uki =
1

c∑
j=1

 ‖xi−vk‖2+ α
NR

∑
xr∈Ni

(
1−wGMM

ir

)
‖xr−vk‖2

‖xi−vj‖
2
+

α
NR

∑
xr∈Ni

(
1−wGMM

ir

)
‖xr−vj‖

2


1

m−1

(7)

After cluster centers are updated, the stopping criterion is
used to verify whether cluster centers have been converged or
not. If cluster centers have been converged, then the algorithm
is applied again to obtain the new fuzzy partitions and cluster
centers. This process is repeated until the cluster centers are
converged or the maximum number of iterations is reached.
The GMMFCM algorithm is summarized in Algorithm 1.

3) BUILD OF NODULE AND BACKGROUND GMM MODELS
To calculate the posterior probabilities of local similarity
function, the GMMmodels of the nodule and background are
built by using the generated seeds in this section. To reduce
the computational complexity, pulmonary parenchyma is seg-
mented by the proposed superpixel-based random walker
algorithm. Then, the nodule and background seeds are auto-
matically generated by the proposed multiscale dot filter and
a scheme of background seed generation.

In the case of normal lung, air-filled pulmonary
parenchyma and surrounding tissues have a large density
difference in the CT images. The simple thresholding meth-
ods are often used to segment the pulmonary parenchyma.
However, segmentation of pulmonary parenchyma with high-
density pulmonary nodules is a nontrivial problem. This is

Algorithm 1 GMMFCM
Input:
The number of cluster c, the stopping condition ε, fuzzy
index m.
Output:
Clusters v1, v2, · · · , vc and the new U .
1: Initial the fuzzy partition matrix U and the center vector
V ;
2: Set the loop counter b = 0;
3: Calculate the new local similarity measure wGMM

ir
by

equation (3);
4: Update the cluster center V by using equation (6);
5: Update the fuzzy partition matrix U by using equa-
tion (7);
6: Repeat the steps 3, 4 and 5, until the stopping criterion
is satisfied.

max
i

∣∣∣vbk − v(b+1)k

∣∣∣ < ε, k = 1, 2, · · · , c

Then, the iteration will stop; otherwise, let b = b + 1 and
go back to the step 3 and repeat.
7: When the algorithm converges, a new fuzzy partition
matrix U is obtained. Then, the optimization process can
assign a pixel i to the clusterC with the largest membership
value.
7: When the algorithm converges, a new fuzzy partition
matrix U is obtained. Then, the optimization process can
assign a pixel i to the clusterC with the largest membership
value.

Ci = arg
k
{max {uki}} , k = 1, 2, · · · , c

because lungs with pulmonary nodules may have density val-
ues similar to other anatomical tissues surrounding the lung
regions. Only a few literature have been published that handle
segmentation of lungs with pulmonary nodules [41], [42].
None of the existing segmentation methods directly segment
lungs with pulmonary nodules at arbitrary locations.

Recently, random walker (RW) algorithm has become a
hot topic in the field of computer vision. Regarding medical
image segmentation, some researches have been aware of its
advantages, and also have shown its benefits in segmenta-
tion of different organs and tissues [43]–[46]. The solution
of the RW model is obtained by solving a linear system
according to the norm used to define the energy function.
So, the total time complexity depends on the number of
pixels. Therefore, the computational complexity and memory
cost can be enormous for a large image. To address this
problem, the superpixel-based random walker (SRW) model
is proposed for pulmonary parenchyma segmentation, which
consists of two steps. The first step is to over-segment the CT
image into some small regions via SLIC superpixel algorithm
and the second step is to build RW model for pulmonary
parenchyma segmentation.

Simple Linear Iterative Clustering (SLIC) superpixel algo-
rithm [47] is employed to efficiently generate superpixels
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due to its simplicity and efficiency. Each input image is
over-segmented into a set of superpixels {Ri}Mi=1 by SLIC
superpixel algorithm, whereM is the number of superpixels.
Based on superpixels, an undirected weighted graph G =
(V ,E) is constructed, where each superpixel is represented as
a node and each edge connects two neighboring superpixels.
Due to the great reduction of the number of image primitives,
superpixel-level RWmodel can significantly reduce the com-
putational complexity and memory requirement compared to
pixel-level RW model. In addition, these superpixels provide
compact and structural information, which can reduce the risk
of assigning error labels to the corresponding pixels.

For each pixel within a superpixel, intensity, texture, gradi-
ent features and spatial distance are extracted. A multivariate
normal distribution N

(
ui,
∑

i
)
of a superpixel is modeled in

the eight dimensional feature space. Given two neighboring
superpixels Ri and Rj, we measure the similarity of their
probability distributions based on Kullback–Leibler (KL)
divergence. The more similar two probability distributions
are, the smaller the KL divergence is. The new weighted
matrix is defined in equation (8).

wKL
(
Ri,Rj

)
= 1−

(
KL

(
fi, fj

)
+ KL

(
fj, fi

))
/2 (8)

where fi and fj are the multivariate Gaussians with

their distribution N
(
ui,
∑

i
)

and N
(
uj,
∑

j

)
. KL

(
fi, fj

)
denotes the Kullback–Leibler (KL) divergence between two
d-dimensional Gaussian distributions, which is calculated in
equation (9).

KL
(
fi, fj

)
=

1
2

[(
ui − uj

)T ∑−1

j

(
ui − uj

)
+Tr

(∑−1

j

∑
i

)
+ log

∣∣∣∑j

∣∣∣∣∣∑
i

∣∣ − d
 (9)

By minimizing the energy function of SRW model,
the probability of a superpixel Ri is close to that of its
neighboring superpixel Rj when a high weight wKL

(
Ri,Rj

)
is

given. That is, two neighboring superpixels with similar prob-
ability distributions can get similar probabilities. Fig. 3 shows
the segmentation results for a juxta-pleural nodule.
Fig. 3(b) and (c) show results by using the conventional
RW (red contour) and the proposed SRW algorithm (green
contour) for pulmonary parenchyma segmentation. The con-
ventional RW algorithm is more prone to produce incor-
rect results, as shown Fig. 3(b). This is because the Juxta-
pleural nodules may damage the pleural surfaces, resulting
in disrupting the integrity of the boundary of the lung. Some
local segmentation errors of the pulmonary parenchyma with
pulmonary nodules are indicated by red arrows. As shown
Fig. 3(c), the SRW algorithm achieves the desirable segmen-
tation results compared with the conventional RW algorithm
for pulmonary parenchyma segmentation. After pulmonary
parenchyma segmentation, the nodule and background seeds
are generated to build the GMM models. A detailed descrip-
tion is given in the next section.

FIGURE 3. Segmentation results of pulmonary parenchyma with a
juxta-pleural nodule. (a) The preprocessed CT image; (b) Segmentation
results of the conventional RW algorithm. The red arrows indicate some
local segmentation errors; (c) Segmentation results of the proposed the
SRW algorithm.

To generate the nodule seeds, a new multiscale enhance-
ment dot filter (NMEDF) is proposed in this section. The
MEDF was firstly proposed by Li et al. [48] for pulmonary
nodule enhancement. The MEDF can enhance dot-like pix-
els while suppressing other surrounding tissues, such as
line-like vessels and planar-like airway walls. The traditional
MEDF is highly sensitive to image noise, partial volume
effects and patient motion. This is because the calculation
of the Hessian matrix is based on the second-order partial
derivatives. The novel MEDF incorporates Hessian matrix
and the shape index [49], which is more robust against
the intensity inhomogeneity within pulmonary nodules and
image noise, as well as avoid the influence of surrounding
tissues.

Let λ1 and λ2 denote two eigenvalues of the Hessian matrix
in two-dimensional (2D) image space, which are ordered
based on their magnitudes such as |λ2| ≥ |λ1|. The shape
index (SI) is calculated in equation (10).

SI (σ ) =
1
2
−

1
π
arctan

λ1 + λ2

λ2 − λ1
(10)

Then, the likelihood function of the novel multiscale dot
enhancement filter is defined in equation (11).

Zdotσi
(λ1, λ2) =

 g (SI (σi)) ·
|λ2|

2

|λ1|
λ2 = λ1 < 0

0 otherwise
(11)

where g (SI (σi)) is an indicator function such that g (SI (σi))
when the value of SI (σi) is greater than or equal to 0.75 to
find only dot-like shape. Otherwise, when the value of
SI (σi) is less than to 0.75, the value of g (SI (σi)) is equal
to 0. If the sizes of pulmonary nodules with diameter
range from d0 to d1, then each scale factor is calculated in
equation (12).

σ1=
d0
4
, σ2=rσ1, σ3=r2σ1, · · · , σN =rN−1σ1=

d1
4
(12)

where r = (d1/d0)
1

N−1 and N is the number of the scale
factors. At each scale σ , the finally output of enhancement
filter is calculated as the maximum response for a pixel x,
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which is represented in equation (13).

Zmax= max
σmin≤σ≤σmax

(
σ 2
i · Z

dot
σi

)
, i=1, 2, · · · ,N (13)

The nodule seeds are generated by thresholding the
enhanced pulmonary nodule image. To generate the back-
ground seeds, shape index and texture features are used.
The pixels with shape index map less than a threshold T1
are extracted as the background seeds. However, the pixels
may be mistakenly identified by shape index. To address
this problem, the texture feature is considered. The Gabor
transform is employed to generate the texture map. All pixels
with texture map less than a threshold T2 are extracted as the
background seeds. The finally background seeds are obtained
by jointing shape index and texture properties. After the
seeds are obtained, the nodule and the background GMMs are
built to calculate the posterior probability of local similarity
function.

Fig. 4 shows the generation results of nodule and back-
ground. Fig. 4(a) is a segmented pulmonary parenchyma with
a pulmonary nodule. Fig. 4(b) and (c) are the nodule enhance-
ment results by the traditional NMEDF and the proposed
NMEDF, respectively. As shown in Fig. 4(b) and (c), the pro-
posedMEDF obtains a better nodule enhancement results and
suppresses more background regions. The red arrows indicate
the enhanced nodules. The good result benefits from the
incorporation of Hessian matrix and shape index. After pul-
monary nodule enhancement, a suspicious pulmonary nodule
within the region of interest is obtained by threshold-based
technique, which is shown in Fig. 4(d). Fig. 4(e) is the nodule
seeds obtained by thresholding the enhanced image, which
are spotted with red points. Fig. 4(f) and (g) are background
seeds obtained by thresholding the shape index map and the
texture map, respectively. As shown in Fig. 4(f), a small part

FIGURE 4. Generation of pulmonary nodule and background seeds.
(a) The segmented pulmonary parenchyma; (b) Enhancement result of the
conventional MEDF. (c) Enhancement result of the proposed MEDF;
(d) The enhanced nodules within the region of interest obtained by
threshold-based technique. (e) The nodule seeds obtained by
thresholding the enhanced image, which are spotted with red points;
(f) The background seeds obtained by thresholding the shape index map,
which are spotted with blue points; (g) The background seeds obtained
by thresholding the texture map, which are spotted with purple points;
(h) The final background seeds obtained by the joint of shape index and
texture properties, which are spotted with yellow points.

of the pixels within the pulmonary nodule region are regarded
as the background seeds (red arrows) when the shape index is
only used. As shown Fig. 4(h), the wrong background seeds
is removed by jointing the shape index and texture properties.

IV. EXPERIMENTAL SETUP
In this section, the experiments are performed on two datasets
to validate the performance of the proposed method. The
segmentation performance of the proposed GMMFCM algo-
rithm is evaluated by the qualitative and quantitative analysis.
We compare the accuracy and effectiveness of the proposed
algorithm with FCM, FCM_S, FCM_S1, FCM_S2, FLICM,
FCM-type andNon-FCMalgorithms. All experiments are run
in the MATLAB platform on a PC with Intel E3-1225 CPU
(3.31 GHz) and 4 GB RAM.

A. DATASETS
The LIDC dataset is the largest publicly available computed
tomography (CT) images for validating the segmentation
or classification performance of pulmonary nodules, which
consists of 1018 cases from seven academic centers and
eight medical imaging companies worldwide. Each subject
contains two parts: the images from a clinical thoracic CT
scan and the corresponding XML file that records the seg-
mentation results of two-phase image annotation process per-
formed by four experienced chest radiologists. The diameters
of pulmonary nodule range from 2.03 mm to 38.12 mm, and
the intervals of the slices range from 0.45 mm to 5.0 mm. All
pulmonary nodules are segmented by up to four radiologists.
The coordinates of the outlines of the nodules ≥ 3 mm
are individually marked by four radiologists. The nodules
< 3 mm are represented by a single coordinate.
In this paper, the nodules ≥ 3 mm (a total of about

893 pulmonary nodules) are selected to conduct the experi-
ments. The nodules < 3 mm are not considered. Due to the
inter-variability of segmentation results among four radiolo-
gists, a 50% consensus criterion [4] is used to produce the
outline of ground truth. For all 893 nodules, 200 nodules are
randomly selected for performance evaluation in this paper.

B. EVALUTION METRICS
To quantitatively evaluate segmentation performance of the
proposed GMMFCM algorithm, seven evaluation criteria
are used in this paper, including Accuracy, Sensitivity,
Specificity, False positive ratio (FPR) and False negative
ratio (FNR), Overlap score and Dice similarity coefficient
(DSC).

Accuracy is the proportion of correctly identified pixels
in the image segmented by the algorithms. It is calculated in
equation (14).

Acc =
TP+ TN

TP+ FP+ TN + FN
(14)

Sensitivity is the proportion of correctly identified as
nodule pixels and specificity is the proportion of correctly
identified as background pixels, which are calculated in
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equation (15) and (16).

Se =
TP

TP+ FN
(15)

Sp =
TN

TN + FP
(16)

FPR is the fraction of falsely identified as nodule
pixels and false negative ratio (FNR) is the fraction of
falsely identified as background pixels, which are defined in
equation (17) and (18).

FPR =
FP

TP+ TN
(17)

FNR =
FN

TP+ TN
(18)

Overlap score is a similarity measure, which reflects how
the segmentation result of the algorithms matches the ground
truth. It is calculated in equation (19).

Overlap =
TP

TP+ FP+ FN
(19)

DSC is an overlap measure between the segmented
pulmonary nodule and ground truth. It is calculated in
equation (20).

DSC =
2TP

2TP+ FP+ FN
(20)

where true positive (TP) is the number of correctly identified
as nodule pixels. False positive (FP) is the number of wrongly
identified as nodule pixels. True positive negative (TN) is
the number of correctly identified as background pixels.
False Negative (FN) is the number of wrongly identified as
background pixels. The values of seven evaluation criteria
range from 0 to 1. The larger accuracy, sensitivity, specificity,
overlap score and DSC are, the higher similarity between the
segmented nodule and ground truth is. The smaller FPR and
FNR are, the better segmentation performance of pulmonary
nodules is.

C. PARAMETER SRTTING
In this paper, the parameters of the proposed GMMFCM
method were optimized in all experiments. In the pulmonary
nodule enhancement stage, the parameter σ should enough
large to cover all the size of nodules, which is set the range
from 2.03 mm to 68.43 mm at steps of 0.5 for all the exper-
iments. Hence, the small or large pulmonary nodules can be
successfully enhanced. d0 and d1 are set as 4 and 36 mm in
the implementation, respectively. In the pulmonary nodule
segmentation stage, there are four parameters, namely, T1,
T2, α. In the case of the generation of nodule and background
seeds method, the thresholds T1 and T2 control the numbers
of nodule and background seeds, which are set to 0.9 and
0.7 to identify the image pixels that belong to the background,
respectively.

The parameter α controls the effect of the factor terms.
If the parameter α is set to 0, the proposed GMMFCM algo-
rithm will degenerate to the conventional FCM algorithm.

FIGURE 5. Segmentation results of the proposed algorithm with varying
the parameter α. (a) the preprocessing image; (b) α = 0; (c) α = 0.1;
(d) α = 0.2; (e) α = 0.6; (f) α = 0.8; (g) α = 1.

The segmentation performance of the proposed GMMFCM
algorithm depends on the choice of parameters. To validate
the dependence of segmentation accuracy on the regulariza-
tion parameter α, a trial-and-error process is used to esti-
mate the parameters. Firstly, the regularization parameter α
were set the initial value αinit = 0. Then, a range of
parameter values are set to verify the performance of the
proposed algorithm. Fig. 8 shows the segmentation results
using the proposed algorithm with varying the parameter α.
As shown in Fig. 5, the segmentation results slightly go
down with the increasing the parameter α, which are shown
in Fig. 5(b), (c) and (d). In a proper range, the proposed algo-
rithm remains relatively stable for the regularization param-
eter, which are shown in Fig. 5(e), (f) and (g). After the
several iterations, the segmentation results are desired when
the parameters > 0.6. Based on the above analysis it can be
concluded, that the parameter are directly set to α = 0.8 and
in all experiments to obtain the best segmentation results. All
experiments are performed on two datasets based on these
optimal parameters.

D. QUALITATIVE RESULTS AND COMPARISONS
In this section, some qualitative comparisons are conducted
on two datasets to evaluate the segmentation accuracy of the
proposed algorithm.

1) QUALITATIVE EVALUATION ON THE LIDC DATASET
To qualitatively evaluate the proposed GMMFCM algorithm
on the LIDC dataset, we apply the proposed algorithm to
segment the CT slice with various types of pulmonary nod-
ules and compare the segmentation results with ground truths.
Four CT slice examples with different types of pulmonary
nodules are obtained from the LIDC dataset for comprehen-
sive validation of the proposed algorithm. The segmentation
results are compared with that of the corresponding ground
truths. The red and green contour indicate the segmenta-
tion results by the proposed algorithm and ground truth,
respectively.

The visualization of the obtained segmentation results is
shown in Fig. 6. The CT images after the preprocessing are
shown in the leftmost column of Fig. 6. The red rectangles
indicate the pulmonary nodule regions. The second column
of Fig. 6 shows the close-ups of the segmentation results.
From the second column of Fig. 6, we can see clearly that
the results of the proposed algorithm is very close to the
pulmonary nodule boundaries. As shown in the rightmost col-
umn of Fig. 6, the proposed GMMFCM algorithm produces
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FIGURE 6. Examples of segmentation results on the LIDC dataset using
GMMFCM algorithm for different types of pulmonary nodules. The first
column: The CT images after the preprocessing; The second column: the
close-ups of the segmentation results; The third column: the contours of
the ground truth; The fourth column: the comparison between the
segmentation results and ground truths.

the segmentation results closer to the ground truths. Although
some pulmonary nodules are extremely subtle with fuzzy
boundaries or homogeneous intensity, the proposed GMM-
FCMalgorithm can successfully segment theses nodules. The
experiment results demonstrate that the proposed GMMFCM
algorithm achieves the desired segmentation results for differ-
ent types of pulmonary nodules from the LIDC dataset.

To qualitatively evaluate the superior segmentation results
of the proposed GMMFCM algorithm, three comparison
experiments are conducted on the LIDC dataset. The compar-
ison experiments are performed by using five different algo-
rithms (i.e., FCM, FCM_S, FCM_S1, FCM_S2, FLICM).
Each algorithm directly uses the best parameters in the experi-
ments and then we perform the experiments on three different
types of pulmonary nodules, including a juxta-vascularized
nodule, a juxta-pleural nodule and a GGO nodule.

Fig. 7 illustrates the segmentation results derived
from the FCM, FCM_S, FCM_S1, FCM_S2, FLICM
and GMMFCM algorithms for a juxta-vascularized pul-
monary nodule, respectively. Fig. 7(a) is a lung CT slice
with a juxta-vascularized pulmonary nodule. Fig. 7(b)-(f)
are the segmentation contours obtained by using FCM,
FCM_S, FCM_S1, FCM_S2, FLICM algorithms. As shown

FIGURE 7. Comparison of the segmentation results using FCM, FCM_S,
FCM_S1, FCM_S2, FLICM and algorithms for a CT image with a
juxta-vascularized nodule. (a) A CT image with a juxta-vascularized
nodule, marked with a red rectangular; (b) FCM algorithm; (c) FCM_S
algorithm; (d) FCM_S1 algorithm; (e) FCM_S2 algorithm; (f) FLICM
algorithm; (g) the proposed algorithm.

in Fig. 7(b), FCM algorithm produces the inferior segmen-
tation result for the juxta-vascularized nodule. Many pix-
els belonging to the vessel structure are misclassified as a
part of the pulmonary nodule. As shown in Fig. 7(c)-(e),
the FCM_S, FCM_S1, FCM_S2 algorithms also produce the
serious over-segmentation results for the juxta-vascularized
nodule. Although they improve the traditional FCM algo-
rithm to some extent by considering the spatial neighbor-
ing information, the negative effects of intensity similarity
profiles between the pulmonary nodule and its adjacent
vessel structure cannot be completely resolved. The FLICM
algorithm obtains an improved segmentation result by intro-
ducing a fuzzy factor, which is shown Fig. 7(f). The most
of the over-segmentation pixels are removed by the FLICM
algorithm, but some pixels belonging to the vessel structure
still remain, which are indicated by yellow arrows. This is
because the FLICM algorithm has some shortcomings in
identifying the pixels of weak boundary. Fig. 7(g) shows the
segmentation contour of the proposed algorithm. As observed
fromFig. 7(g), the proposed algorithm corrects the pixels who
are misclassified as nodule pixels, and produces the desirable
segmentation result. The proposed algorithm incorporates
the spatial and statistical information to reduce boundary
degradation.

Fig. 8 illustrates the segmentation results derived from
the FCM, FCM_S, FCM_S1, FCM_S2, FLICM and
GMMFCM algorithms for the juxta-pleural pulmonary
nodule, respectively. Fig. 11(b)-(f) are the segmentation con-
tours obtained by using FCM, FCM_S, FCM_S1, FCM_S2,
FLICM algorithms. As shown in Fig. 8(b)-(e), the FCM,
FCM_S, FCM_S1, FCM_S2 algorithms also produce the
over-segmentation results for the juxta-pleural pulmonary
nodule. From Fig. 8(f), we can clearly observe that the
FLICM algorithm produces slightly over-segmentation result
for juxta-pleural nodule, which is indicated by yellow arrows.
The negative effects of intensity similarity profiles between
the pulmonary nodule and its adjacent pleural structure also
cannot be completely resolved. This is because the FLICM
algorithm fail to handle the pixels of weak boundary. The pro-
posed algorithm produces the desirable segmentation result
for the juxta-pleural pulmonary nodules, which is shown
in Fig. 8(g). The segmentation results obtained by the FCM,
FCM_S, FCM_S1, FCM_S2, FLICM and GMMFCM algo-
rithms for the GGO nodule are illustrated in Fig. 9. A lung CT
slice around a GGO pulmonary nodule is shown Fig. 9(a).

FIGURE 8. Comparison of the segmentation results using FCM, FCM_S,
FCM_S1, FCM_S2, FLICM and GMMFCM algorithms for a CT image with a
juxta-pleural nodule. (a) A CT image with a juxta-pleural nodule, marked
with a red rectangular; (b) FCM algorithm; (c) FCM_S algorithm;
(d) FCM_S1 algorithm; (e) FCM_S2 algorithm; (f) FLICM algorithm;
(g) GMMFCM algorithm.
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FIGURE 9. Comparison of the segmentation results using FCM, FCM_S,
FCM_S1, FCM_S2, FLICM and GMMFCM algorithms for a CT image with a
GGO nodule. (a) A CT image with a GGO nodule, marked with a red
rectangular; (b) The segmentation result of FCM algorithm; (c) FCM_S
algorithm; (d) FCM_S1 algorithm; (e) FCM_S2 algorithm; (f) FLICM
algorithm; (g) GMMFCM algorithm.

Fig. The segmentation contours obtained by using FCM,
FCM_S, FCM_S1, FCM_S2, FLICM algorithms are shown
in 12(b)-(f), respectively. As observed in Fig. 9(b)-(e),
the FCM, FCM_S, FCM_S1, FCM_S2 algorithms also pro-
duce the over-segmentation results for the GGO nodule. The
segmentation result of the FLICM algorithm for a GGO
pulmonary nodule are shown in Fig. 9 (f). From Fig. 9(f),
we can observe that the FLICM algorithm produces slightly
over-segmentation result for GGO nodule, which is indi-
cated by yellow arrows. The negative effects of intensity
inhomogeneity within the pulmonary nodule also cannot be
completely resolved by the FLICM algorithm. The proposed
algorithm yields the satisfactory segmentation result for the
GGO pulmonary nodule, which is shown in Fig. 9(g).

2) QUALITATIVE EVALUATION ON THE GHGZMCPLA
DATASET
The segmentation performance of the proposed GMMFCM
algorithm is also evaluated on theGHGZMCPLAdataset. In a
comparison experiment, the proposed GMMFCM algorithm
is performed to segment the CT slices around various types
of pulmonary nodules and compare the segmentation results
with ground truths.

Fig. 10 shows the segmentation results of some exam-
ples. It is clearly seen that these examples are corrupted by
intensity inhomogeneity and fuzzy boundary. For each pul-
monary nodule, four images are shown in Fig. 10. They are,
from left to right, the preprocessed image, the segmentation
result using the proposed algorithm, the ground truth and the
comparison result between the segmented nodule and ground
truth. As shown in the last column of Fig. 10, the proposed
algorithm produces the segmentation results closer to the
ground truths. The experimental results also demonstrate that
the proposed algorithm obtains the satisfactory segmentation
results for different types of pulmonary nodules from the
GHGZMCPLA dataset. Another comparison experiment is
conducted on the GHGZMCPLA dataset to evaluate the supe-
rior performance of the proposed GMMFCM algorithm.

Fig. 11 shows the comparison results with FCM, FCM_S,
FCM_S1, FCM_S2, FLICM algorithms. As can be seen from
the last column of Fig. 11, the pixels belonging to nodule
structures can be accurately identified. The comparisons of
the algorithms can be similarly illustrated by the comparison
experiments on the LIDC dataset. The qualitative results
of comparison experiments on the LIDC dataset and the

FIGURE 10. Examples of segmentation results on the GHGZMCPLA
dataset using GMMFCM algorithm for different types of pulmonary
nodules. The first column: The CT images after the preprocessing; The
second column: the close-ups of the segmentation results; The third
column: the contours of the ground truths; The fourth column: the
comparisons between the segmented results and ground truths.

FIGURE 11. Comparisons of the segmentation results of some examples
from the GHGZMCPLA dataset using FCM, FCM_S, FCM_S1, FCM_S2,
FLICM algorithms. The first column: CT images with pulmonary nodules,
marked with a red rectangular; The second column: FCM algorithm; The
third column: FCM_S algorithm; The fourth column: FCM_S1 algorithm;
The fifth column: FCM_S2 algorithm; The sixth column: FLICM algorithm;
The seventh column: the proposed algorithm.

GHGZMCPLA dataset demonstrate that the proposed algo-
rithm can achieve satisfactory results for various types of
pulmonary nodules. The good segmentation results could be
attributed to that the proposed GMMFCM algorithm incor-
porates the spatial and statistical information to reduce the
boundary degradation. The proposed GMMFCM algorithm
introduces the new local similar measure to define the weight-
ing factor, which is not only influenced by the spatial infor-
mation of neighboring pixels but also the posterior probability
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belonging to the clusters, resulting in the improvement of
segmentation results.

E. QUANTITATIVE RESULTS AND COMPARISONS
In this section, some comparison experiments are conducted
on two datasets to quantitatively evaluate the segmentation
accuracy and effectiveness of the proposed algorithm.

1) QUANTITATIVE EVALUATION ON THE LIDC DATASET
In a first experiment, to quantitatively evaluate the proposed
GMMFCM algorithm on the LIDC dataset, we run the code
of the proposed GMMFCM algorithm to segment the 100 CT
slices around various types of pulmonary nodules and com-
pare the segmentation results with ground truth. The segmen-
tation results of only 23 cases are summarized in Table 1 due
to the limited space of the paper. However, because these
cases are randomly selected, the results is similar for all
the considered cases. The first column and second columns
show the IDs and the corresponding names. For each case,
the Accuracy, Sensitivity, Specificity, Overlap score and Dice
similarity coefficient (DSC) are given in columns number the
three, four, five, six and seven. As observed from Table 1,
an average accuracy of the proposed SRW_GMMFCM algo-
rithm is 0.9997 ± 0.0002. The proposed algorithm also
achieves an average sensitivity of 0.9257 ± 0.0545 and
an average specificity of 0.9998 ± 0.0002, respectively.
The results manifests that the proposed algorithm produces
the less FPs than that of the ground truth. Fig. 12 shows the

TABLE 1. Quantitative segmentation results using the proposed
GMMFCM algorithm in terms of Accuracy, Sensitivity, Specificity,
Overlap, DSC.

FIGURE 12. Curves of quantitative segmentation results of the proposed
algorithm. (a) The curve of Sensitivity; (b) The curve of Overlap; (c) The
curve of DSC.

validation results of the proposed GMMFCM algorithm on
23 cases.

Fig. 12 (a) is the sensitivity curve. A high sensitivity of
the proposed algorithm is achieved by the proposed algo-
rithm. Fig. 12 (b) and (c) are the overlap and DSC curves,
respectively. From Fig. 12(b) and (c), we can observe that
the proposed algorithm still remains a high overlap and a
high DSC, which indicate the high similarity between the
segmented nodule and ground truth.

Another comparison experiment is conducted using FCM,
FCM_S, FCM_S1, FCM_S2, FLICM, FCM-type [39] and
Non-FCM [40] algorithms to quantitatively evaluate the supe-
rior performance of the proposed GMMFCM algorithm on
the LIDC dataset. Table 2 summarizes the average values of
accuracy, sensitivity, specificity, overlap, DSC, FPR and FNR
for each algorithm of the six algorithms compared above.
As shown in Table 2, the performance of FCM algorithm are
slightly smaller than that of FCM_S algorithm for pulmonary
nodule segmentation. This is because that FCM algorithm
is sensitive to the image noise and intensity inhomogene-
ity, while the FCM_S algorithm considers the spatial neigh-
boring information. As shown in the fifth row of Table 2,
the FCM_S1 or FCM_S2 algorithm is slightly better than
FCM_S but worse than FLICM algorithm. That is because the
FLICM algorithm incorporates both the local spatial infor-
mation and gray level relationship. The mean accuracy of the
FLICM algorithm is 0.9991 and the mean overlap is 0.8204,
which indicate the segmentation performance improvement
of the FLICM algorithm.

TABLE 2. Quantitative comparison of segmentation results on the LIDC
dataset using FCM, FCM_S, FCM_S1, FCM_S2, FLICM, FCM-type, Non-FCM
and GMMFCM algorithms in terms of Accuracy, Sensitivity, Specificity,
Overlap, DSC.
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The mean accuracy of the proposed algorithm is
0.9995 and the mean overlap is 0.8581, which are higher
than those of the FLICM algorithms for different types of
pulmonary nodules. The higher overlap and DSC of the
proposed algorithm indicate the higher similarity between
the segmented nodule and ground truth. The sensitivity
and specificity of the proposed algorithm is 0.9756 and
0.9999, which are also higher than those of the FLICM
algorithm. The proposed algorithm obtains a lower FPR and
a lower FNR, which also indicates the high segmentation
performance. No matter which types of pulmonary nodules,
the proposed algorithm still achieves a better segmentation
performance than that of other five algorithms, as it uses
the prior knowledge. The quantitative analysis of comparison
results demonstrates that the prior knowledge can improve
the segmentation performance when segmented various types
of pulmonary nodules. Accordingly, as confirmed by the
quantitative results, we can conclude that the incorporation
of GMM posterior probability and spatial information after
the enhanced images with pulmonary nodules leads to a
better segmentation performance compared to the incorpo-
ration of spatial information alone. Therefore, the proposed
GMMFCM algorithm can successfully segment different
types of pulmonary nodules and significantly improve the
performance of pulmonary nodule segmentation.

2) QUANTITATIVE EVALUATION ON THE GHGZMCPLA
DATASET
To evaluate the effectiveness of the proposed GMMFCM
algorithm on theGHGZMCPLAdataset, a comparison exper-
iment is conducted using FCM, FCM_S, FCM_S1, FCM_S2,
FLICM, FCM-type and Non-FCM algorithms.

Table 3 shows the average values of accuracy, sensitivity,
specificity, overlap and DSC metrics between the segmented
nodules and ground truth on the GHGZMCPLA dataset.
As shown in Table 3, the segmentation results of the pro-
posed algorithm with a highest Overlap and DSC are better
than the others for the segmentation of various types of
pulmonary nodules. In addition, the sensitivity of 0.9868 and
specificity of 0.9997 are also higher than the almost others.

TABLE 3. Quantitative comparison of segmentation results on the
GHGZMCPLA dataset using FCM, FCM_S, FCM_S1, FCM_S2, FLICM,
FCM-type, Non-FCM and GMMFCM algorithms in terms of Accuracy,
Sensitivity, Specificity, Overlap and DSC.

The experimental results manifest the robustness and effec-
tiveness of the proposed algorithm on GHGZMCPLA dataset
for pulmonary nodule segmentation.

F. COMPARISON WITH THE STATE-OF-THE-ART
ALGORITHMS
To justify the accuracy and effectiveness of the proposed
algorithm for pulmonary nodule segmentation, we compare
the proposed algorithmwith the state-of-the-art segmentation
algorithms of pulmonary nodules. It is difficult to make a
comparison with previously published literatures, as some
of them usually use the private datasets or the subsets of
public datasets, and sometimes, the published literature do
not report the cases that are selected. However, it is very
important to stress a fair comparison among the algorithms.
Therefore, we attempt to compare the published performance
results that use the LIDC dataset, which helps to mitigate
one of the variability factors. Since some metrics used in
different algorithms are inconsistent in the published litera-
tures, the mainly reported overlap scores of these state-of-
the-art algorithms are listed in Table 4 for a completely fair
comparison. We believe that the performance comparison
results on the GHGZMCPLA dataset are sufficiently similar
to those of the LIDC dataset.

TABLE 4. Comparison of segmentation performance on the LIDC dataset
with the state-of-the-art algorithms. Overlap scores are relative to the
50% consensus truth.

Here, each row represents a published algorithm for pul-
monary nodule segmentation and lists the reported overlap
score. The first through eighth rows shown the reported
overlap score of eight algorithms. They are, from up
to down, the algorithms reported by Kostis et al. [50],
Okada et al. [6], van Ginneken [51], Kuhnigk et al. [52],
Wang et al. [53], Messay et al. [54], Kubota et al. [4] and
Messay et al. [55]. Their algorithms will be called
W. J. Kostis’s algorithm, K. Okada’s algorithm,
B. van Ginneken’s algorithm, J. M. Kuhnigk’s algorithm,
J. Wang’s algorithm, T. Messay2010’s algorithm, T. Kubota’s
algorithm and T. Messay2015’s algorithm for the conve-
nience of description. The average overlap of W. J. Kostis’s
algorithm and K. Okada’s algorithm were 0.57 ± 0.20 and
0.52 ± 0.25, respectively. W. J. Kostis’s algorithm obtained
a lowest overlap among the other algorithms. This was
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because that W. J. Kostis’s algorithm used an ellipsoid shape
to model the pulmonary nodules. However, the pulmonary
nodule boundaries were not strictly ellipsoid shape, which
might miss some parts of real pulmonary nodule boundaries.
The average overlap of B. van Ginneken’s algorithm was
0.66 ± 0.18, which was higher than that of W. J. Kostis’s
algorithm and K. Okada’s algorithm. This was because that
B. van Ginneken’s algorithm used the leave-one-out regime.
However, it required the manual classification of pulmonary
nodule into solid and non-solid nodules. The average overlap
of J. M. Kuhnigk’s algorithm and J. Wang’s algorithm were
0.67 ± 0.22 and 0.64 ± 0.18, respectively. J. M. Kuhnigk’s
algorithm obtained a relative higher overlap than the above
other algorithms. This was because that J. M. Kuhnigk’s
algorithm used an erosion operation to remove the adjacent
vessel structures. However, it obtained a lower higher overlap
than that of T. Messay2015’s algorithm. Since it was difficult
to determine the size of structure element, too large or too
small size could have the great impact for segmentation
accuracy. The erosion operation removemay remove a signif-
icant portion of the pulmonary nodule, because the narrowest
part of nodule and the adjacent vessel have the same size.
T. Kubota’s algorithm obtained a higher overlap of 0.69 ±
0.18 than that of T. Messay2010’s algorithm. The authors
took full advantage of additional control points to improve
the segmentation performance. However, this algorithm was
inadequate to segment the invasive juxta-pleural nodules.
T. Messay2015’s algorithm reported the average overlap of
0.77 ± 0.09, which was a relative higher overlap than that
of the T. Kubota’s algorithm and was comparable to our
algorithm. The competition–diffusion (CD) based figure-
ground separation could effectively remove the partial vol-
ume effects, resulting in the better segmentation performance.

As observed from the last row of Table 4, the proposed
algorithm achieves a competitive segmentation performance
in comparison with other algorithms. Due to the similar inten-
sity between the nodule and adjacent structures, the segmen-
tation of juxta-vascularized nodules and juxta-pleural nodules
is usually not so accurate by using these algorithms. It is
worth noting that the proposed algorithm achieves the average
overlap of 0.86 ± 0.06, which is the highest overlap scores
among these state-of-the-art segmentation algorithms. The
good segmentation performance of the proposed algorithm
attributes to the incorporate of GMM prior knowledge and
spatial information.

To evaluate the computational efficiency, the mean execu-
tive time is summarized in Table 5, which is measured in sec-
onds on LIDC datasets. 23 cases with the nodules are selected
in our experiment, which provide with different shapes,
sizes and texture information. We run our code in 23 cases.
The GMMFCM algorithm and Kostis’s algorithm [50] obtain
the mean executive time of 3.14 and 4.49, respectively. The
executive time of GMMFCM algorithm is notably lower than
other state-of-the-art algorithms. The result demonstrates that
the proposed method is much faster than other state-of-the-
art algorithms.

TABLE 5. Comparison of executive time on the LIDC dataset with the
state-of-the-art algorithms.

V. DISCUSSIONS
The proposed GMMFCM algorithm can successfully seg-
ment various types of pulmonary nodules. The proposed
superpixel-based random walker could reduce the computa-
tional complexity and the risk of assigning error labels to the
corresponding pixels. The proposed multiscale dot enhance-
ment filter could generate more reliable nodule seeds, and the
proposed scheme of background seeds generation could gen-
erate more accurate background. The nodule and background
GMMmodels were built by using the generated seeds. Then,
the GMMmodels were used to define a local similarity mea-
sure. The new energy function was defined based on the local
similarity measure to improve the segmentation performance.
The comparison visual segmentation results of the proposed
algorithm compared with the ground truths on two datasets
were shown Fig. 6 and Fig. 10. For some complex cases,
such as juxta-pleural, juxta-vascularized and GGO nod-
ules, the comparison results with FCM, FCM_S, FCM_S1,
FCM_S2 and LIFCM algorithms on the LIDC dataset were
shown in Fig. 7, Fig. 8 and Fig. 9. The comparison results
on the GHGZMCPLA dataset were shown in Fig. 11. The
segmentation results were shown by the red contours and the
ground truths were shown by the green contours.

The quantitative comparison was performed in terms of
seven evaluation criteria, including accuracy (see Eqn. 13),
sensitivity (see Eqn. 14), specificity (see Eqn. 15), FPR
(see Eqn. 16) and FNR (see Eqn. 17), overlap score (see
Eqn. 18) and DSC (see Eqn. 19). For comparison purpose,
100 images from the LIDC dataset were selected and each
image was rescaled to 256 × 256 pixels to reduce the time
cost. Considering the limited space of the paper, the five
evaluation criteria of only 23 cases were shown in Table 1.
Based on the numerical results shown in Table 1, it could be
seen that the proposed algorithm was capable of segmenting
various types of pulmonary nodules and obtained the desired
segmentation results. The average overlap and DSC were
0.8528 and 0.9167, respectively.

In particular, the overlap and DSC were compared
in Fig. 12(b) and (c), respectively. The sensitivity of pul-
monary nodule segmentation were shown in Fig. 12(a).
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For all cases, the quantitative segmentation results of the
proposed algorithm were compared with the results provided
by the FCM, FCM_S, FCM_S1, FCM_S2 and LIFCM algo-
rithms, as well as some other state-of-the-art algorithms of
pulmonary nodule segmentation. In particular, the LIFCM
algorithm was comparable to the proposed algorithm. The
comparison results of proposed algorithm with the con-
ventional FCM, FCM_S, FCM_S1, FCM_S2 and LIFCM,
FCM-type and Non-FCM algorithms on the LIDC dataset
and the GHGZMCPLA dataset were shown in Table 2 and
Table 3, respectively. From Table 2 it can be clearly seen
that the proposed algorithm provided the high overlap about
0.8581 and DSC about 0.8986, which indicated a high simi-
larity between the segmentation results and ground truth. The
similar results could be seen from Table 3, which compared
the results on the GHGZMCPLA dataset. The segmentation
performance of the proposed algorithm was improved by
using the new local similar measure. The quantitative seg-
mentation results of the proposed algorithm were compared
with the results provided by the state-of-the-art algorithms
of pulmonary nodule segmentation. Based on the numerical
results shown in Table 4 it can be also seen that the proposed
algorithm achieved the comparable segmentation results.

VI. CONCLUSION AND FUTURE WORK
In this paper, the GMMFCM algorithm is proposed for seg-
mentation of the pulmonary nodules.We performed a detailed
segmentation performance comparison with FCM, FCM_S,
FCM_S1, FCM_S2, FLICM, FCM-type and Non-FCM algo-
rithms. The experiments have been conducted on the LIDC
dataset and the GHGZMCPLA dataset to test the per-
formance of the GMMFCM algorithm. The results show
that the performance of the proposed GMMFCM algorithm
is promising for segmentation of the pulmonary nodules, and
is more robust than the other algorithms.

Several other factors also play a role in the performance
improvement of the proposed algorithm. Superpixel-based
random walker algorithm is employed for pulmonary
parenchyma segmentation, and a newmultiscale dot enhance-
ment filter is defined for nodule seed generation. The local
similarity measure is defined by using the GMM posterior
probability and spatial information. In particular, the overlap
and sensitivity of the proposed algorithm are the higher com-
pared with some other algorithms.

In future work, we will investigate the techniques of data
sampling so that the proposed algorithm can be extended
to large-scale segmentation problems. Further study on this
topic will also include many applications of the GMMFCM
algorithm in other problems.
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